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Abstract Outsourcing data storage and computation

to the cloud is appealing due to the cost savings it en-

tails. However, when the data to be outsourced con-

tain private information, appropriate protection mech-

anisms should be implemented by the data controller.

Data splitting, which consists of fragmenting the data

and storing them in separate clouds for the sake of

privacy preservation, is an interesting alternative to

encryption in terms of flexibility and efficiency. How-

ever, multivariate analyses on data split among various

clouds are challenging, and they are even harder when

data are nominal categorical (i.e., textual, non-ordinal),

because the standard arithmetic operators cannot be

used. In this article, we tackle the problem of outsourc-

ing multivariate analyses on nominal data split over

several honest-but-curious clouds. Specifically, we pro-

pose several secure protocols to outsource to multi-

ple clouds the computation of a variety of multivariate

analyses on nominal categorical data (frequency-based

and semantic-based). Our protocols have been designed

to outsource as much workload as possible to the clouds,

in order to retain the cost-saving benefits of cloud com-

puting while ensuring that the outsourced stay split and

hence privacy-protected versus the clouds. The experi-

ments we report on the Amazon cloud service show that
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Universitat Rovira i Virgili, Dept. of Computer Science and
Mathematics, UNESCO Chair in Data Privacy, CYBERCAT-
Center for Cybersecurity Research of Catalonia, Av. Päısos
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by using our protocols the controller can save nearly all

the runtime because it can integrate partial results re-

ceived from the clouds with very little computation.
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1 Introduction

Statistical analyses involve collecting and investigating

(potentially large) data samples. In turn, collecting and

investigating data requires storing them and computing

on them. Among the usual analyses, measuring the de-

pendence between attributes in multivariate data sets is

one of the costliest operations. For instance, measuring

the correlation between (just) two categorical attributes
in a data set containing one million records may require

computing and storing matrices of size one million times

one million [36]. If matrix values are as short as 4-byte

integers (real numbers would take more), then storing

one matrix alone takes nearly 4 terabytes.

Coping with such huge data amounts is often infea-

sible for data controllers. In this scenario, outsourcing

storage and computation to the cloud is an attractive

alternative because of the large, cheap and highly scal-

able resources it offers. Nevertheless, when the data to

be outsourced contain sensitive information (e.g., per-

sonal information, clinical outcomes, etc.), controllers

may refrain from embracing the cloud due to privacy

concerns [4] or privacy regulations [20]. The problem is

not only that the cloud service providers (CSPs) may

read, use or even sell the data outsourced by their cus-

tomers, but also that CSPs may suffer attacks or leak-

ages that can compromise data confidentiality.

To mitigate the above concerns, privacy-preserving

methods for storing and processing the data outsourced
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to the cloud should be designed. This has been the main

goal of the European project CLARUS [12] in which the

current work is framed. CLARUS consists in a proxy lo-

cated in a domain trusted by the controller that imple-

ments security and privacy-enabling features towards

the CSP. Among other protection techniques, CLARUS

relies on vertical data splitting : fragments consisting in

projections of the data set on subsets of attributes are

distributed to different CSPs. Specifically, data are par-

titioned into several fragments (so that leakage of any

single fragment does not entail a significant privacy

risk), and each fragment is stored in clear form in a

different CSP so that attributes in different fragments

cannot be linked, see [1] and [11]. Since fragments are

stored in the clear, splitting allows efficient computa-

tions while protecting privacy. For this reason, split-

ting is an interesting alternative to encryption-based

methods (e.g., searchable or homomorphic encryption)

in terms of flexibility and efficiency, because computing

on encrypted data is extremely limited and costly [34].

However, performing many statistical analyses, such

as data dependence or correlation assessment, requires

using the whole data set or at any rate more than a

single fragment. With split data, the problem is for

the controller to manage as effortlessly as possible the

fragments stored at different untrusted CSPs to con-

duct such computations while ensuring that attributes

in different fragments cannot be linked by the CSPs [9,

47]. The problem is even more challenging when deal-

ing with nominal categorical data, i.e., data whose at-

tribute values are noun-phrases corresponding to jobs,

interests, conditions, etc. These data, that are textual

and non-ordinal and on which the standard arithmetic

operators cannot be used, account for most of the per-

sonal information currently being collected (e.g., in so-

cial networks, B2C transactions, etc.) [48]. In partic-

ular, accurately measuring the dependence or correla-

tion between nominal attributes requires semantically

grounded techniques [37] that are costly, both in com-

putational power and storage.

Contribution and plan of this article

In [9,14], we evaluated several non-cryptographic pro-

posals for statistical computation (basically correlations)

on numerical split data. We explored application to

categorical nominal data in the conference paper [36].

The present article describes a full approach to privacy-

protected outsourcing of storage and computation on

nominal categorical split data. We also include detailed

performance analyses.

The novel contributions of this paper can be sum-

marized as follows:

– We propose efficient protocols to securely compute

statistical dependence analyses on split outsourced

data for a variety of methods, encompassing frequency-

based and semantic-based tests. In all cases, the goal

of the protocols is to outsource as much workload

as possible to the cloud, while ensuring that confi-

dential data are not leaked to the CSPs.

– We show how frequency-based tests (χ2-test, ANO-

VA or Cramér’s V) can be efficiently derived from

contingency table computation. Our protocols com-

pute the contingency table on the cloud side and

then transfer it to the local side, i.e. the controller’s

side. After that, the frequency-based tests can be

easily computed locally, because they are not com-

putationally demanding.

– Semantic-based tests, which were partially treated

in [36], are analyzed in greater detail. Specifically,

the computational costs of several semantic mea-

sures to quantify distances between nominal val-

ues are assessed, both theoretically and empirically.

Note that semantic-based tests are the costliest ones

and, hence, those that can benefit the most from

outsourcing the computation to the cloud.

– Following the approach used in [36], we show how

statistical dependence analyses can be performed on

split data outsourced to separate clouds by relying

on secure scalar product protocols.

– We also report on empirical work on Amazon Web

Services cloud instances. Performance figures show

that our protocols are able to outsource most of the

workload to the CSPs, thereby reconciling data pri-

vacy with the cost-saving benefits of the cloud.

The rest of this article is organized as follows. Sec-
tion 2 reviews related work on outsourcing data to the

cloud. Section 3 surveys multivariate analyses on nomi-

nal data and reviews frequency-based tests and semantic-

based tests. Section 4 presents the CLARUS architec-

ture and the security assumptions considered in the de-

sign of our protocols. Section 5 discusses the advan-

tages of vertical splitting for privacy-aware outsourcing

of storage and computation, and then recalls two se-

cure scalar product protocols used in the rest of the

paper. After that, we propose protocols to outsource in

a privacy-protected manner the computation of multi-

variate frequency-based tests (Section 6) and semantic

tests based on the semantic-distance covariance (Sec-

tion 7). These protocols decompose the multivariate

analyses being considered into several secure scalar prod-

ucts that can be securely computed on the cloud side.

Section 8 reports the experimental results obtained when

implementing our protocols for the costliest analysis

(the semantic-based test) and compares the workload

savings against a local computation by the controller.
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Section 9 contains the conclusions and lists some future

research lines. Finally, there are two appendices. Ap-

pendix A details the calculation of semantic distances

in semantic-based tests with three types of measures:

edge-counting, feature-based and information content-

based. Appendix B justifies the security of the two se-

cure scalar product protocols used.

2 Related work

There is a sizeable body of literature devoted to out-

sourcing matrix and polynomial computations, depicted

in Table 1. However, most of it deals with numerical

data.

Many contributions require that the server(s) only

see encrypted versions or shares of the actual data.

In [5], a client securely outsources algebraic computa-

tions to one or several remote servers, in such a way

that the server learns nothing about the client’s private

input or the result of the computation. This scheme is

based on multiparty secure computation via secret shar-

ing. In [26] and [27], a client outsources a matrix inver-

sion and a large matrix multiplication, respectively, to

an untrusted cloud, so that the cloud does not learn ei-

ther the original or the resulting matrices. In this case,

the original data are multiplied by two permutation ma-

trices as encryption procedure. The more recent contri-

bution [44] follows the same line (outsourcing polynomi-

als and matrix computations), but it focuses on public

verifiability of the computation (any third party can

verify its correctness, and not just the client as in the

previous proposals). This comes at the price of using

more complex cryptographic schemes.

Hybrid schemes mixing vertical splitting and cryp-

tography are an alternative. For the sake of privacy,

in [29] symmetric homomorphic encryption is carried

out on vertically partitioned databases. However, the

use of homomorphic encryption limits the possible com-

putations that can be performed on the encrypted data.

In [52], a medical data set is vertically split into three

tables. The contents of each table stay in the clear and

can be encrypted or anonymized depending on their

sensitivity level. The original data set can be recovered

partially or entirely depending on the level of authoriza-

tion of the user. The cloud is used as a secure repository

and to generate the different tables; statistical analyses

can be performed by the users in their local computing

facilities.

Other proposals use the cloud as a repository of en-

crypted files. In particular, the data are encrypted and

labeled with keywords, which allow different users to

query on encrypted data. In [51], a logarithmic-time

ranked search over encrypted documents outsourced to

a cloud is presented. In [28], the data are encrypted

using a symmetric cryptosystem, and then a variant

of the k-nearest-neighbors algorithm, which can com-

pute the Euclidean distance between two encrypted vec-

tors, is used to perform searchable encryption. In [19],

a content-based search scheme is designed that can find

the semantic relationship between concepts in the en-

crypted datasets. It considers the similarity among con-

cepts belonging to one attribute.

However, searchable encryption normally works on

a collection of documents rather than on a numeri-

cal/categorical data set. The use of this technique to

compute on a categorical data set would require label-

ing any single value in the data set and, therefore, the

set of labels would be as large as the data set. In fact, if

the whole data set is encrypted and labeled with only

one keyword or only some parts of it are labelled, mul-

tivariate statistical analyses of its contents are not sup-

ported.

Outsourcing matrix computations where the server

computes on additively split matrices rather than en-

crypted matrices is considered in [31]. Even though no

encryption is used, the split versions of the matrices

seen by the server do not preserve any of the statistical

features of the original data (they look gibberish), so

that no direct exploratory analyses can be performed

on them.

A substantial difference between our proposals in

this paper and the previous literature is that the out-

sourced data preserve the utility of the original data.

Therefore, our approach allows performing direct ex-

ploratory analyses.

3 Multivariate analyses on categorical data

When data are numerical, multivariate statistical anal-

yses such as correlations, covariances, regressions and

classifications are easy to perform and can be computed

using standard arithmetic operators. In contrast, ana-

lyzing categorical data is more difficult. Especially chal-

lenging are nominal categorical attributes, whose val-

ues are noun-phrases describing jobs, interests or con-

ditions, etc., because they are textual and non-ordinal

and, therefore, require specific analytical methods. The

difficulty of computing on nominal data has been ad-

dressed in the literature; examples can be found in [21,

46,53] which focus on nominal and mixed data.

3.1 Frequency-based tests

The simplest methods rely on the frequencies of at-

tribute values. Well-known frequency-based procedures
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4 Josep Domingo-Ferrer et al.

Table 1 Main features of related work on outsourcing computation: reference, data type, cloud security model, outsourcing
method, outsourced computation, experimental results, pros and cons. “N” stands for numerical, “C” for categorical, “file” for
document, “H-but-C” for honest-but-curious.

Reference Data Clouds Methods Computation Exp. Pros & Cons

Atallah et al [5] N
H-but-C, data split by matrix

NO
hidden data,

(t,n)-collision resistant secret sharing product no flexibility

Lei et al [26] N malicious
data permuted matrix

YES
hidden data, cheating

and masked inversion resistant, no flexibility

Lei et al [27] N malicious
data permuted matrix

YES
hidden data, cheating

and masked product resistant, no flexibility

Sun et al [44] N malicious data encrypted verifiability NO
encrypted data, cheating
resistant, no flexibility

Li et al [29] N+C H-but-C
data vertically split secure comparison

YES
encrypted data,

and encrypted problem no flexibility

Yang et al [52] N+C H-but-C
data vert. split, plain query on plain/

YES
computation on

or encrypted or masked masked data original data on user side

Xia et al [51] file H-but-C data encrypted
searchable

YES
encrypted data,

encryption no flexibility

Li et al [28] file H-but-C data encrypted
searchable

YES
encrypted data,

encryption no flexibility

Fu et al [19] C H-but-C data encrypted
searchable

YES
encrypted data,

encryption no flexibility

Nassar et al [31] N H-but-C
data additively matrix product

NO
hidden data,

split and inversion no flexibility

to measure the statistical dependence between two cat-

egorical attributes are the χ2-test of independence [2],

ANOVA [22] and Cramér’s V [2]. These tests use the

contingency tables associated with categorical attributes

as input for a linear regression analysis.

In particular, a contingency table (or cross-classif-

ication table) is a table containing the (multivariate)

frequency distributions of the nominal attributes. Let

a and b denote two nominal attributes, a with h cate-

gories c1(a), . . . , ch(a) and b with k categories c1(b),

. . . , ck(b). The contingency table has h rows and k

columns displaying the sample frequency counts of the

h× k category combinations.

3.2 Semantic-based tests

Even if frequency-based methods can measure some de-

gree of statistical dependence, they only consider the

similarities between the distributions of categorical la-

bels; therefore, they fail to capture the semantic sim-

ilarity among the categories themselves, which is the

means by which human beings create, understand and

manage nominal data.

To tackle this issue, semantically grounded methods

have been recently proposed. In [15], nominal values

are assigned numbers that capture both their semantic

and distributional features; from these, semantically co-

herent variances [42] and correlations can be computed

based on standard numerical methods. In [45], a more

accurate way to measure the dependence between cate-

gorical attributes is proposed. Specifically, the distance

covariance and the distance correlation measures are

proposed as alternatives to numerical covariance and

correlation, respectively. Numerical covariance requires

the values of attributes to be totally ordered, and it

measures dependence by checking whether greater val-

ues of one attribute correspond to greater values of the

other attribute, and smaller values to smaller values.

This assumption does not work for non-ordinal (i.e.,

nominal) categorical attributes, which lack total order.

In contrast, the distance covariance quantifies to what

extent the two attributes are independently dispersed,

where dispersion is measured according to the pairwise

distances between all pairs of values of each attribute.

Unlike frequency-based approaches, pairwise distances

can capture the semantics inherent to categorical val-

ues. To do so, the pairwise distance can be calculated

using similarity/distance measures [37], that quantify

how similar the meanings of the concepts associated

with the categorical values are, based on the seman-

tic evidences gathered from one or several knowledge

sources (e.g., ontologies, corpora).

Following the approach presented in [37], let x1 =

(x1
1, . . . , x

1
n)T and x2 = (x2

1, . . . , x
2
n)T be vectors of val-

ues of two nominal attributes. The calculation of the

distance covariance requires measuring the pairwise se-

mantic distance between the nominal values of each at-

tribute. The semantic-distance matrix of x1 is given by

X1 = [x1
ij ]i,j≤n, (1)

where x1
ij = |x1

i − x1
j | are the semantic distances be-

tween two nominal values of the same attribute xj (see

Appendix A for more details). Similarly, we define X2 =

[x2
ij ]i,j≤n, where x2

ij = |x2
i − x2

j |. Then, the double-

centered matrix X̂1 is computed, whose elements are

obtained as
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X̂1
kl = x1

kl − x̄1
k· − x̄1

·l + x̄1
·· for k, l = 1, . . . , n, (2)

and where

x̄1
k· =

1

n

n∑
l=1

x1
kl, x̄1

·l =
1

n

n∑
k=1

x1
kl, x̄1

·· =
1

n2

n∑
k,l=1

x1
kl.

(3)

Similarly, let us define X̂2
kl = x2

kl− x̄2
k·− x̄2

·l + x̄2
·· for

k, l = 1, . . . , n.

Definition 1 The squared semantic-distance covariance

is obtained as the arithmetic average of the products

X1
klX

2
kl, that is,

dV2
n(x1,x2) =

1

n2

n∑
k,l=1

X1
klX

2
kl, (4)

and the squared semantic-distance variance is obtained

as

dV2
n(x1) = dV2

n(x1,x1) =
1

n2

n∑
k,l=1

X1
klX

1
kl. (5)

See [45] and [37] for details and justification of the

above definition.

In general, if X = (x1, . . . ,xm) is a data set with

m attributes xj , j = 1, . . . ,m, the distance covariance

matrix Σ̂ of X is

Σ̂ =


dVn(x1) dVn(x1,x2) · · · dVn(x1,xm)

dVn(x2,x1) dVn(x2) · · · dVn(x2,xm)
...

...
. . .

...

dVn(xm,x1) dVn(xm,x2) · · · dVn(xm)

 .

The method we have just recalled accurately cap-

tures the (semantic) dependence between nominal at-

tributes; however, its main drawback is cost. Due to the

need to compute pairwise distance matrices, the calcu-

lation of the distance covariance between two nominal

attributes has quadratic cost, both in time and stor-

age. Moreover, as we discuss in Appendix A, evaluat-

ing the semantic distance between each pair of nominal

attribute values adds a significant burden. Specifically,

we consider three types of ontology-based semantic dis-

tances:

1. Edge-counting measures, whose cost is O(D), where

D is the depth of the ontology.

2. Feature-based measures, whose cost is O(S), where

S is the maximum number of ancestors of a concept

in the ontology (equal to its depth D if there is no

multiple inheritance).

3. Measures based on information content, whose cost

is O(C+D), where C is the total number of concepts

in the ontology. These are the costliest measures,

but as argued in Appendix A they are also the most

accurate.

Thus, whatever the semantic distance considered,

the cost of assessing semantic dependences makes it at-

tractive for data practitioners to outsource the calcula-

tion to the cloud. However, when the data are sensitive

(which is often the case because most of the personal at-

tributes gathered on individuals are nominal [48]), out-

sourcing storage and calculation should be performed

in a privacy-preserving way. This is precisely the main

goal of the present article.

4 System architecture and assumptions

The scenario we consider involves the three entities in

Figure 1: the data controller, the CLARUS proxy and

the CSPs. The controller owns the data that need to

be outsourced to the CSP. CLARUS is a proxy lo-

cated in a domain trusted by the controller that imple-

ments security and privacy-enabling features towards

the cloud service provider so that i) the CSP only re-

ceives privacy-protected versions of the controller’s (or

the controller’s users’) data, ii) CLARUS makes access

to such data transparent to the controller’s users (by

adapting their queries and reconstructing the results

retrieved from the cloud) and iii) it remains possible

for the users to leverage the cloud to perform accurate

computations on the outsourced data without down-

loading them.

CLARUS may outsource data either in separate cloud

accounts within the same CSP (see left side of Fig-

ure 1) or to different clouds, each one run by a different

CSP (see right side of Figure 1). The CSPs that re-

ceive privacy-protected versions of the controller’s data

are not trusted and, hence, they should not be given

access to the entire original data set. CSPs are consid-

ered honest-but-curious: they will properly fill their role

in the communication and computation protocols but

they may gather and analyze the data they store and

the messages they receive. We also assume that CSPs

do not share information between them, i.e., they do

not collude to aggregate their data.

The raison d’être of this architecture is to outsource

as much storage and computation as possible to the

cloud in a privacy-preserving manner, while keeping

the workload of the CLARUS proxy (which sits in the

controller’s premises) as low as possible. The privacy-

preserving calculation protocols implemented by CLA-

RUS should, thus, follow this principle. The underlying
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6 Josep Domingo-Ferrer et al.

assumption is that computing in the cloud is cheaper

and/or more convenient than computing in the con-

troller’s local facilities.

5 Vertical splitting for privacy-protected

storage and computation outsourcing

A privacy breach occurs when individuals are re-identified

in a data set containing confidential attributes. Re-

identification may be enabled by single attributes (like

SS numbers) or by sets of attributes each of which

does not uniquely identify the individual to whom the

record corresponds but whose combination may (e.g.,

job+age+place of birth). The former type of attributes

are known as identifiers, whereas the latter are called

quasi-identifiers.

If a data set is to be released without splitting, iden-

tifiers should be removed or at the very least encrypted

or pseudonymized, whereas quasi-identifiers should be

masked (by either perturbing them or reducing their

detail); see [24] for details. Thus, information is lost in

this process (removed identifiers, reduction of detail or

perturbation of quasi-identifiers).

However, if the data set is protected by splitting

it among several untrusted clouds, no information loss

needs to be incurred. Under vertical data splitting, iden-

tifiers may be fragmented (e.g. locations can be split

into longitude and latitude, SS numbers may be frag-

mented into several subgroups of digits, etc.) and the

set of quasi-identifier attributes may also be fragmented

into several disjoint subsets; this fragmentation of iden-

tifiers and quasi-identifiers should be such that no re-

identification is feasible from a single fragment [39].

Then fragments (either split values or attribute subsets)

are stored in separate locations (i.e., different CSPs or

cloud accounts).

Since re-identification is not possible from single

fragments, these can be stored in clear form. Thanks

to this feature, data splitting allows fast additions and

updates of the outsourced data, provided that the lo-

cal proxy in charge of orchestrating the splitting pro-

cess keeps track of the criteria employed to fragment

the data and the locations at which fragments were

stored [39].

In contrast, when protecting data by masking in-

stead of splitting, adding or updating a value typically

requires re-encrypting or re-masking the entire data set

or in any case larger chunks than just the value that

has been added/updated. For example, if data are pro-

tected according to the k-anonymity privacy model by

generalizing quasi-identifiers [38] or microaggregating

them [16], adding or updating an original record may

require k-anonymizing again the entire data set. Fur-

thermore, the CSP storing the anonymized data set

might be able to infer the value of some original records

by comparing the successive anonymized versions of

the data set; thus, splitting may afford more protec-

tion than masking as long as the various CSPs holding

fragments do not collude.

Similar issues arise if protecting data using function-

ality-preserving encryption: to update a single value,

the data controller has to (1) retrieve the entire data

set from the cloud, (2) decrypt, update and re-encrypt

it and, (3) send back the entire encrypted data to the

cloud. Therefore, data splitting is significantly more ef-

ficient for additions and updates than encryption meth-

ods, such as searchable or homomorphic encryption [39].

Regarding data processing on the cloud, even though

searchable and homomorphic encryption allow perform-

ing some operations on ciphertext [18], computing on

encrypted data is extremely limited and costly [34], and

it requires careful management of encryption keys. Out-

sourced data processing can be performed much more

efficiently on split data: although each CSP only holds

partial data, these are in the clear. Admittedly, both

the orchestration of the split calculations to be done

and the aggregation of the partial results retrieved from

each CSPs should be done by the local proxy; therefore,

computation protocols should be designed to minimize

both the data that need to be locally stored and the

amount of local calculations needed to obtain the final

result.

In vertical splitting, analyses that involve single at-

tributes (e.g., mean, variance) or attributes stored within

a single data fragment are fast and straightforward:

the cloud storing the fragment can independently com-

pute and send the output of the analysis to the lo-

cal proxy. However, analyses assessing the relationship

(e.g., correlation) between attributes may involve frag-

ments stored in different locations, and thus, commu-

nication between several clouds. As shown in [9,14],

performing calculations on data split among multiple

clouds can be decomposed into several secure scalar

products to be conducted between pairs of clouds. Scalar

products can be made secure with or without cryptog-

raphy. Cryptographic approaches use a variety of tech-

niques; for instance, the protocol in [23] involves ho-

momorphic encryption. Non-cryptographic approaches

are rather based on modifying the data before sharing

them, in such a way that the original data cannot be

inferred from the shared data but the final results are

preserved (e.g., [13], [25]).

We next recall two protocols that will be used in the

remainder of this paper to compute secure scalar prod-

ucts with honest-but-curious clouds. The security of the
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Fig. 1 System architecture: CLARUS sits in the controller’s trusted premises while the CSPs are untrusted. Left, data and
computation splitting among two accounts at the same CSP; right, splitting among two different CSPs. When the data
controller sends a computation “request” to CLARUS, CLARUS reformulates this computation in two tasks “task 1” and
“task 2”, which are sent to the involved CSPs. The CSPs use (if needed) a secure protocol “sec” to exchange data (e.g. a
secure scalar product), and then they send to CLARUS their partial results “res 1” and “res 2”. CLARUS combines the partial
results and sends the final result to the data controller.

first protocol does not rely on cryptography, whereas

the security of the second does. Let x and y be two vec-

tors with n components owned by Alice and Bob (e.g.,

two CSPs), respectively. The goal is to securely com-

pute the product xTy. Note that the desired result is

obtained by the local proxy (CLARUS) and, therefore,

any disclosure by Alice or Bob to CLARUS during the

protocol does not entail any privacy leakage, because

(unlike Alice and Bob) CLARUS is trusted by the data

controller.

5.1 Non-cryptographic secure scalar product

In [17], the authors propose a protocol based on what

they call a commodity server. Let Alice and Bob be as

previously defined and Charlie be a third cloud who

plays the role of the commodity server. This protocol

was identified as the most efficient one in the compari-

son of [49]. Its privacy relies on the fact that the origi-

nal vectors x and y are not shared at any time by the

respective CSPs owning them; only linear transforma-

tions of them are, such that the number of unknowns

(randomness) added by the transformations is greater

than or equal to the number of private unknowns.

In [14], we modified the above protocol to make it

suitable for the CLARUS scenario and we increased its

security by adding permutation operations by Alice and

Bob (see security discussion below). The resulting pro-

tocol was:

Protocol 1

1. Charlie sends to Alice the seed for a common ran-

dom generator of a random n-vector rx, and sends

to Bob the seed for a common random generator of

a random n-vector ry (or equivalently generates and

sends the vectors if doing so is faster than Alice and

Bob generating them).

2. Alice computes x̂ = x + rx and randomly permutes

the values in x̂ to obtain x̂′ = Px(x̂).

3. Alice sends x̂′ to Bob and r′x = x̂′ − x to Charlie.

4. Bob computes ŷ = y + ry and randomly permutes

the values in ŷ to obtain ŷ′ = Py(ŷ).

5. Bob sends ŷ′ to Alice and r′y = ŷ′ − y to Charlie.
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8 Josep Domingo-Ferrer et al.

6. Charlie sends p = (r′x)Tr′y (note that p is a number)

to CLARUS.

7. Bob sends t = (x̂′)Ty to CLARUS.

8. Alice sends sx = (r′x)T ŷ′ to CLARUS.

9. CLARUS computes

t−sx+p [= (x+r′x)Ty−(r′x)T (y+r′y)+(r′x)T (r′y)] = xTy.

The following proposition characterizes the security

of Protocol 1 and is proven in Appendix B:

Proposition 1 Protocol 1 does not allow Charlie to

learn x or y, it does not allow Alice to learn y, and it

does not allow Bob to learn x.

Note that in Protocol 1, vectors r′x and r′y should

be reused in successive instances of the protocol with

the same original data vectors x and/or y, in order

to avoid leaking new equations that would facilitate

the reconstruction of the original data vectors by an

unauthorized part. Vectors r′x and r′y are kept in mem-

ory respectively by Alice and Bob, instead of being re-

generated every time the protocol is run. The underly-

ing assumption is that the CSPs have unlimited storage

and, therefore, they can store any random matrices or

vectors that may need to be reused.

5.2 Cryptographic secure scalar product

In [23], the authors proposed a cryptographic proto-

col based on Paillier’s homomorphic cryptosystem [32].

The use of cryptography increases the computational

complexity with respect to non-cryptographic proto-
cols. However, it is attractive in terms of security since

the difficulty for Alice to learn y or Bob to learn x

amounts to breaking a cryptosystem proven to be se-

cure. Let x = (x1, . . . , xn)T and y = (y1, . . . , yn)T be

the private vectors of Alice and Bob, respectively.

In [36], we suggested a variant that consists of the

following steps:

Protocol 2

Set-up phase:

1. Alice generates a private and public key pair (sk, pk)

and sends pk to Bob.

Scalar product:

2. Alice generates the ciphertexts ci = Encpk
(xi; ri),

where ri is a random number in FN , for every i =

1, . . . , n, and sends them to Bob.

3. Bob computes ω =
∏n

i=1 c
yi

i .

4. Bob generates a random plaintext sB, a random num-

ber r′ and sends ω′ = ωEncpk
(−sB ; r′) to Alice and

sends sB to CLARUS.

5. Alice sends sA = Decsk(ω′) = xTy − sB to CLA-

RUS.

6. CLARUS computes sA + sB = xTy.

For completeness, we justify in Appendix B that

Protocol 2 still offers the same security versus Alice

and Bob as the basic protocol [23].

Protocol 2 works in a finite field FN , where the or-

der N is the product of two primes p and q of the same

length and such that gcd(pq, (p − 1)(q − 1)) = 1. In

case Alice and Bob need to execute this protocol sev-

eral times, they can reuse the public and private keys;

therefore, the set-up step (first step) needs to be ex-

ecuted only once. The complexity of all these opera-

tions depends on N : the larger N , the more computa-

tionally demanding they are. Since we are computing

xTy mod N , if we do not want the result to be mod-

ified by the modulus, it must hold that N > xTy. Let

Mx = maxxi∈x xi and My = maxyi∈y yi. It is sufficient

to choose N > nMxMy.

6 Privacy-preserving frequency-based analyses

on the cloud

In this section, we show how the frequency-based mul-

tivariate analyses introduced in Section 3.1 can be per-

formed on split data outsourced to separate clouds by

relying on secure scalar products. For each analysis, we

give a protocol describing how the CLARUS proxy de-

composes and orchestrates calculations and aggregates

partial results. To avoid overloading the local system

in which the CLARUS proxy runs, the protocols are

designed to keep the workload of the CLARUS proxy

as low as possible by outsourcing as much storage and

computation as possible to the CSPs in a privacy-pre-

serving way.

To calculate the χ2-test, ANOVA or Cramér’s V,

CLARUS orchestrates the calculation of the contin-

gency table of the split attributes stored in separated

CSPs. This table is the input of the aforementioned

tests.

To obtain the contingency table from data vertically

split among several clouds, one just needs to compute

the table cells. Let (a1, . . . , an)T and (b1, . . . , bn)T be

the vectors of values from the attributes a and b, owned

by the CSPs Alice and Bob, respectively. A cell Cij (for

every i = 1, . . . , h and j = 1, . . . , k) is computed by

counting the number of records in the original data set

containing both the categories ci(a) and cj(b). Alice

creates a new vector x = (x1, . . . , xn)T such that

xl =

{
1 if al = ci(a)

0 otherwise
for l = 1, . . . , n. (6)
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Bob creates y = (y1, . . . , yn)T such that

yl =

{
1 if bl = cj(b)

0 otherwise
for l = 1, . . . , n. (7)

The scalar product xTy (computed by means of

Protocol 1 or Protocol 2 above) gives the number Cij

of records in the original data set containing both the

categories ci(a) and cj(b).

Specifically, Alice and Bob can use Protocol 1 or

Protocol 2 above to securely compute Cij by just adding

two preliminary steps to the scalar product computa-

tion part: one step by Alice to generate x from (a1, . . . , an)T

using Equation (6), and another step by Bob to gener-

ate y from (b1, . . . , bn)T using Equation (7).

6.1 Security

The only modification with respect to Protocols 1 or 2

is that Alice and Bob compute x and y, respectively.

These computations are done by the clouds in isolation,

i.e., without exchanging information; hence, the secu-

rity of the underlying secure scalar product protocol is

preserved.

6.2 Cost

Once the contingency table is obtained, frequency-based

tests, which have a low computational cost, can be run

locally by CLARUS. In fact, for the χ2-test, ANOVA

and Cramér’s V the most demanding computation is a

linear regression; therefore, given a h × k contingency

table with h < k, the linear regression has complexity

O(h2k+h3) (notice that h and k are much smaller than

the number n of records of the original data set). For

CSPs Alice and Bob the computation of one cell has

O(n) cost in both Protocol 1 and Protocol 2. In par-

ticular, in Protocol 1 Alice and Bob have to perform,

respectively, n products and n reads as the most de-

manding computations; Charlie (the third cloud needed

in the protocol) generates two random n-vectors and

CLARUS just performs two sums. In Protocol 2 Alice

performs n encryptions, n reads and n random num-

ber generations. Bob performs n reads and n products

as demanding computations. CLARUS computes one

sum. Since the contingency table has h×k cells, Alice’s

and Bob’s calculation has O(n× h× k) cost. CLARUS

just needs to compute 2 sums in Protocol 1 or 1 sum

in Protocol 2 for each table cell, that is, constant cost.

Therefore, the CLARUS computation has complexity

O(h× k).

Another reason to conduct the calculation of the

frequency-based tests locally is that sharing the con-

tingency table with a CSP can lead to privacy issues,

because the table may contain cells with values one or

zero that may allow re-identifying some subjects. For

instance, if a cell representing the number of Asian peo-

ple with HIV that answered a specific survey has value

equal to one, just knowing that only one participant of

the survey was Asian discloses that he is sick. Moreover,

this information can be enough to recognize a subject

if, for example, the survey was carried out in an area

with only few Asian families.

Observe that, if one CSP stores in its own data frag-

ment all the attributes required for the contingency ta-

ble computation, all the calculations are done by that

CSP in isolation, and CLARUS just receives the result

of the required frequency-based test.

7 Privacy-preserving semantic-based analyses

on the cloud

In this section, we deal with the semantic-based mul-

tivariate analyses mentioned in Section 3.2. We show

how they can be performed on split data outsourced to

separate clouds.

As introduced in Section 3, the calculation of the

distance covariance requires measuring the pairwise se-

mantic distance between the nominal values of each at-

tribute. The pairwise distances as well as the double-

centered matrices are computed among the values of

one attribute at once and, therefore, the CSP owning

the attribute performs the calculation in isolation. Each

CSP can also compute the distance variance of its at-

tribute in isolation. Then the CSPs use a secure scalar

product like those in Sections 5.1 or 5.2 to securely com-

pute the distance covariances in view of completing the

distance covariance matrix Σ̂.

Formally, let x1 = (x1
1, . . . , x

1
n)T and x2 = (x2

1, . . . ,

x2
n)T be vectors of values of two nominal attributes

owned by CSPs Alice and Bob, respectively. Alice com-

putes X1 and X̂1 and Bob computes X2 and X̂2. In this

case, the distance covariance matrix Σ̂ of X = (x1,x2)

is given by

Σ̂ =

(
dVn(x1) dVn(x1,x2)

dVn(x2,x1) dVn(x2)

)
.

Note that dVn(xi,xj) is the square root of dV2
n(xi,xj),

for i, j = 1, . . . ,m, and that Xj , Xj
kl, dVn(xj), for

j = 1, . . . ,m, are separately computed by the CSP stor-

ing the respective attribute. The most challenging task

is, therefore, calculating the squared sample distance

covariance, i.e., Equation (4), which requires perform-

ing n secure scalar products of vector pairs, where the
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two vectors in each pair are respectively held by two

different CSPs.

In fact, by calling X1
k = (X1

k1, . . . , X
1
kn)T and X2

k =

(X2
k1, . . . , X

2
kn)T for k = 1, . . . , n, we can rewrite Equa-

tion (4) as

dV2
n(x1,x2) =

1

n2

n∑
k=1

(
n∑

l=1

X1
klX

2
kl

)
=

1

n2

n∑
k=1

(X1
k)TX2

k,

(8)

where the n scalar products are (X1
k)TX2

k for k = 1, . . . , n.

Therefore, once the double-centered matrices are

obtained, the distance covariance matrix computation

with data split among different CSPs can be decom-

posed into several secure scalar products to be con-

ducted between pairs of clouds. To compute (X1
k)TX2

k,

for k = 1, . . . , n, use one of the two protocols in Sec-

tions 5.1 and 5.2 by adding two preliminary steps: one

step for Alice to compute x = X1
k from x1, and another

step for Bob to compute y = X2
k from x2.

7.1 Security

The two preliminary steps added before the secure scalar

product are separately performed by Alice and Bob, so

there is no additional exchange of information between

the clouds. Hence, the security of the underlying secure

scalar product protocol is preserved.

7.2 Cost

Calculating the distance covariance matrix between two

nominal attributes has a quadratic cost, both in time

and storage. Moreover, generating the semantic-distance

matrices (Eq. (1)) requires using the semantic mea-

sures. Let h1 be the number of categories of x1 and h2

be the number of categories of x2, where h1, h2 ≤ n;

then h2
1/2 and h2

2/2 semantic distances are computed

for each attribute by Alice and Bob, respectively. Re-

calling the costs mentioned in Section 3.2 and justi-

fied in Appendix A for each type of semantic mea-

sure, we have that the cost of generating the semantic-

distance matrix is O(h2
j × D) for the edge-counting

measure, O(h2
j × S) for the feature-based measure and

O(h2
j×(C+D)) for the information content-based mea-

sure, for j = 1, 2 and where D is the depth of the tax-

onomy, S is the maximum number of subsumers of any

concept and C is the total number of concepts in the on-

tology (which can be in the order of thousands or hun-

dreds of thousands in large ontologies). On the other

hand, the double-centered matrix (Eq. (2)), which is

also computed by each CSP independently, has O(n2)

computational cost.

Finally, the distance covariance matrix computation

is decomposed into several scalar products, where the

total number of scalar products performed by the CSPs

is 3n. Each scalar product has O(n) computational cost

for both protocols in Sections 5.1 and 5.2. In particu-

lar, in Protocol 1 Alice and Bob have to perform, re-

spectively, n products as the most demanding compu-

tations, Charlie generates two random n-vectors, and

CLARUS just performs two sums. In Protocol 2, Alice

performs n encryptions and n random number genera-

tions, Bob performs n products as the most demand-

ing computations, and CLARUS computes one sum.

Consequently, the CSPs’ computation has O(n2) cost

and CLARUS’s computation has O(1) cost. The storage

needs at the CSPs are also quadratic due to the need to

create several n × n matrices, i.e., 1 semantic-distance

matrix and 1 double-centered matrix per attribute.

One can notice that the calculation of the semantic-

distance covariance is significantly costlier than the fre-

quency-based method (both in time and storage); yet,

the protocol we propose is able to outsource the cost

to the CSPs, thus keeping the CLARUS workload low

even with large data sets.

8 Experimental results

Most of the literature on outsourcing matrix computa-

tions to CSPs focuses on numerical data, see for exam-

ple [5,26,31]. Computing on nominal data is harder [21]

and contributions like [19] show how basic search can

be performed on nominal data in CSPs. However, the

combined problem of outsourcing statistical multivari-

ate analyses on categorical data to the cloud has not

been tackled yet by previous works. Therefore, our tests

cannot compare with previous similar approaches. For

this reason, we show how to make the analyses on cat-

egorical data over several CSPs by decomposing them

into several scalar products, and we focus on comparing

the performance with the two best secure scalar prod-

uct protocols in [14]. We also try different semantic dis-

tances for the computation of the distance covariance

matrix.

In the rest of this section, we report the results of

the implementation of our protocols in a real setting. As

a use case, we employed the most computationally de-

manding analysis: the semantic-distance covariance. As

evaluation metrics, we report the workload of each en-

tity (CLARUS and the CSPs) and quantify the percent-

age of workload that our protocols were able to securely

outsource to the CSPs w.r.t. a local implementation of

the analysis.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Outsourcing Analyses on Privacy-Protected Multivariate Categorical Data Stored in Untrusted Clouds 11

The tests were run in a free-tier CSP provided by

Amazon Web Services (AWS). It is important to note

that the computing power and storage of such a free-

of-charge service are substantially limited and, there-

fore, significant improvements can be expected when

moving to payment services. On the client side, a local

computer was configured to act as the CLARUS proxy,

which is in charge of orchestrating the storage and the

calculations on the outsourced data. The specifications

of AWS and CLARUS are summarized in Table 2.

The experiments were conducted on a sample of

1,000 records with two nominal attributes extracted

from a patient discharge database provided by the Cal-

ifornia Office of Statewide Health Planning and Devel-

opment [8]. The two nominal attributes represent the

diagnosis (x) and medical procedure (y) of each patient.

Notice that the size of the sample is deliberately small

because of the limited resources of the CSPs instances

we used. To cope with larger data sets, one just needs

to hire more powerful CSP instances, e.g., see those of-

fered by AWS [3] in Table 3. Given the computational

cost figures we discussed in the previous section, scal-

ing the obtained results for larger data sets and more

attributes is straightforward.

SNOMED-CT was used as the ontology for the se-

mantic distance calculation in the semantic-based test.

SNOMED-CT models 321,901 clinical concepts and con-

stitutes the largest and most detailed medical knowl-

edge base [43].

In all the experiments, two AWS CSPs (Alice and

Bob) separately store the two attributes (diagnosis (x)

and procedures (y), respectively), whereas a third CSP

(Charlie) is used as commodity server. For each analy-

sis, we report the storage requirements and workload of

each CSP and CLARUS for the protocols we propose,

and compare them against a local implementation in

which CLARUS should store the whole data and per-

form all the computations.

As detailed in Section 7, first each CSP computes

in isolation the semantic-distance matrix (Eq. (1)) and

the double-centered matrix (Eq. (2)) of the attribute it

stores; then, Alice and Bob jointly work on the calcu-

lation of the distance covariance. CLARUS performs a

small part in this latter calculation, and its workload

depends on the secure scalar protocol in use: Protocol 1

or Protocol 2. In particular, the total number of scalar

products performed by the CSPs is (m(m− 1)/2) ∗n+

m ∗ n, out of which (m(m− 1)/2) ∗ n are secure scalar

products, being n the number of records and m the

number of attributes.

In the local implementation, CLARUS plays the

part of the data controller and is required to perform all

the computation by itself: semantic-distance matrices,

double-centered matrices and the distance covariance.

However, since CLARUS owns the whole data and runs

in a trusted environment, no secure scalar products are

needed.

Table 4 shows the storage requirements of the cal-

culations for the cloud-based and local scenarios. The

storage is broken down into long-term and temporary:

the former corresponds to the storage of the split data,

whereas the latter is the storage required to conduct

the calculation at some point, which can be discarded

once the calculation is finished. In terms of tempo-

rary storage, the CSPs (or CLARUS in the local so-

lution) need to load into RAM the SNOMED-CT on-

tology, which requires 242.5 MB. The semantic-distance

and the double-centered matrices of the attributes are

stored in the long-term storage for them to be re-used

in further calculations. The local solution, which re-

quires storing the matrices of all the attributes, can be

considerably heavy for CLARUS when the number of

records and/or attributes is large. In contrast, in the

cloud-based solution only the semantic-distance covari-

ances are stored by CLARUS. The use of secure scalar

products imperceptibly increases the required storage

(for 1,000 records, the storage increases by around 0.032

MB for Protocol 1 and by 0.065 MB for Protocol 2).

Table 5 shows the computation and communication

runtimes of the distance covariance calculation with the

three ontology-based semantic measures. Notice that

in the local scenario there is no exchange of informa-

tion between separate entities and, therefore, there is no

communication cost. In the cloud-based solution, Pro-

tocols 1 and 2 were used for the computation of the

secure scalar products. Observe that Protocol 2 results

in higher costs in terms of computation due to the use

of cryptographic primitives. Moreover, the runtime of

Alice is significantly greater than Bob’s, although the

attributes have the same length. The reason is that the

SNOMED-CT taxonomy for the attribute stored by Al-

ice (diagnosis, i.e., clinical finding) is much larger than

that of Bob’s attribute (procedure), as shown in Ta-

ble 6. Furthermore, within the 1,000-record data set,

Alice’s attribute has 434 categories, whereas Bob’s at-

tribute has only 342; hence, Alice needs to perform a

greater number of semantic-distance assessments.

The reported runtime figures are consistent with

the cost of the semantic measures we detail in Ap-

pendix A: whereas the edge-counting and the feature-

based measures have similar costs, because both ana-

lyze the set of ancestors of the concepts to be com-

pared, the measure based on information content is sig-

nificantly costlier (around 8 times slower in the local

solution) due to the need to iterate through all the

hyponyms of each concept. In fact, the calculation of
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Table 2 Specifications of CLARUS (the trusted proxy running on a local computer) and the AWS CSPs (free-of-charge t2.micro Amazon
EC2 instances)

Machine Operating System Width(bits) CPU(GHz) RAM(GB) HDD(GB) Instances

CLARUS Windows 7 64 2.5 8 500 1
AWS CSP (t2.micro instance) Ubuntu Server 16.04 LTS 64 2.4 1 30 3

Table 3 AWS instance types. The t2.micro free-of-charge instance was used in our experiments.

AWS instance type Name CPU Cores RAM(GB) Clock Speed(GHz)

General purpose t2.micro 1 1 Up to 3.3
General purpose t2.2xlarge 8 32 Up to 3.0
General purpose m4.16xlarge 64 256 2.3

Compute optimized c4.8xlarge 36 60 2.9
Accelerated computing f1.16xlarge 64 976 2.3

Memory optimized r4.16xlarge 64 488 2.3
Memory optimized x1.32xlarge 128 1, 952 2.3

Table 4 Long-term and temporary storage for the semantic-distance covariance calculation with two attributes and 1,000 records

Storage requirements (MB)

LOCAL CLOUD

Long-term Temporary Long-term Temporary

CLARUS CLARUS Alice Bob CLARUS Charlie Alice Bob CLARUS Charlie

40 242.5 16 16 8 0 242.5 242.5 0 0

the semantic-distance matrix takes around 13 hours for

Alice’s attribute (whose domain is significantly larger

than Bob’s). Even if the runtime of the cloud-based

scenario is around 5 times greater that the local one,

we should consider the very limited resources of the

free t2.micro instance we use. With more powerful in-

stances, runtimes will be decreased to reasonable fig-

ures, e.g., a general-purpose t2.2xlarge instance should

be around 8 times faster than the free instance (see Ta-

ble 3), which would make the cloud-based calculation

faster than the local one.

Since absolute runtime figures depend on the amount

of resources of the CSPs, in Table 7 we report a more

general metric stating the percentage of runtime saved

by CLARUS (which runs on local premises) when out-

sourcing local calculations to the cloud. The runtime

saved by CLARUS was computed with the formula

100 ∗ CLARUSl − CLARUSc

CLARUSl
, (9)

where CLARUSl represents the computation runtime

of CLARUS in the local scenario and CLARUSc rep-

resents the computation runtime of CLARUS in the

cloud-based scenario.

Table 6 Number of concepts in some taxonomies of SNOMED-CT

Taxonomy Number of concepts

Body structure 31, 206
Clinical findings 104, 737

Pharmaceutical/biologic product 17, 425
Procedure 55, 880
Substance 25, 911

Since the calculation of the semantic-distance ma-

trices is, by far, the costliest operation (especially for

the measure based on information content), outsourcing

this calculation results in very large savings (i.e., very

low workload and also very low storage requirements)

for CLARUS.

9 Conclusions and future work

Data splitting is an alternative to encryption that is

more flexible and efficient for securing sensitive data

outsourced to the cloud. With data splitting, CSPs do

not only store data, but they can efficiently conduct

computations on the data they store in a privacy-pre-

serving manner. Multivariate analyses are, however, chal-

lenging; the reason is not just their potentially large

computational cost, but also the difficulty of perform-

ing the calculations involving data fragments stored in

different clouds.

In this paper, we have presented protocols to se-

curely outsource the computation of several multivari-

ate statistical analyses on nominal data split among

a number of honest-but-curious clouds. Our protocols

are designed to outsource as much workload as possible

to the CSPs, which is especially interesting for com-

putationally demanding calculations that may not be

affordable locally. In this way, we retain the cost-saving

benefits of the cloud while ensuring that the outsourced

data do not incur privacy risks.

Empirical tests conducted on AWS free tier cloud

instances confirm our theoretical assumptions. Experi-

mental results clearly show that outsourcing the calcu-
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Table 5 Computation and communication runtimes for the distance-covariance calculation with the three semantic-distance measures and the
two secure scalar product protocols. The computation runtime (Comp. runtime) represents the time each entity spent following the protocol.
The communication runtime (Comm. runtime) is an approximation of the time the CSPs and CLARUS spent sending and receiving the data.
The times are given in minutes (m.).

LOCAL CLOUD

Comp. Comp. runtime (m.) Comm. runtime (m.)
runtime (m.)

Edge-counting measure (Eq. (10))

CLARUS Alice Bob Charlie CLARUS Total comp. Total comm.

21.3
Prot.1 9.9 2.4 3.5× 10−4 2.8× 10−5 12.3 16.5

Prot.2 34.2 2.4 − 8.7× 10−5 36.7 6.3

Feature-based measure (Eq. (11))

CLARUS Alice Bob Charlie CLARUS Total comp. Total comm.

22.8
Prot.1 9.6 2.5 3.5× 10−4 2.7× 10−5 12.1 16.5

Prot.2 33.8 2.4 − 9.1× 10−5 36.2 6.6

Information content-based measure (Eq. (12))

CLARUS Alice Bob Charlie CLARUS Total comp. Total comm.

183.8
Prot.1 836.5 49.2 3.9× 10−4 2.6× 10−5 885.7 16.5

Prot.2 863.2 49.3 − 9.7× 10−5 912.5 6.6

Table 7 Percentage of computation runtime saved by CLARUS when moving from the local scenario to the cloud-based scenario for the
different semantic measures and scalar product protocols

Computation runtime saved by CLARUS (%)

Edge-counting Feature-based Information content-based

Prot. 1 99.99987 Prot. 1 99.99988 Prot. 1 99.99999

Prot. 2 99.99959 Prot. 2 99.99960 Prot. 2 99.99995

lations to the cloud considerably decreases the workload

of the data controller, who can save more than 99.999

percent of the runtime for the most demanding test we

considered.

As future research, we plan to combine the numeri-

cal methods presented in [9] with those meant for nom-

inal data presented here to deal with data sets with

heterogeneous attribute types. Other scenarios more

challenging than the honest-but-curious CSPs assump-

tion may also be considered, e.g., malicious or collud-

ing clouds. Furthermore, we also intend to tackle out-

sourcing additional multivariate analyses for nominal

data, such as multidimensional scaling, multiple corre-

spondence analysis and non-linear principal component

analysis. Finally, using non-free cloud services will al-

low experimenting on larger data sets, which can be

expected to increase even more the proportional com-

putational savings at the controller.
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A Semantic distance calculation

The semantic distance quantifies the difference between the
meaning of two nominal values. Semantic similarity/distance
measures rely on the semantic evidences gathered from knowl-
edge bases, such as ontologies, which taxonomically structure
the concepts of a domain of knowledge [7]. Formally, an ontol-
ogy O is composed, at least, of a set of concepts or classes C

organized in a directed acyclic graph (due to multiple inheri-
tance) by means of is-a (ci < cj) relationships [10], as shown
in Figure 2.

Measuring the semantic distance in large ontologies can
be costly. In this section we discuss the computational cost
of some well-known measures by relying on the concepts in-
troduced in the following definition.

Definition 1 Let S(Xa) be the set of subsumers (i.e., taxo-
nomic ancestors) of the nominal values of attribute Xa mapped
in an ontology O. The least common subsumer of Xa, denoted
by LCS(Xa), is the most specific concept in S(Xa). Formally,

S(Xa) = {ci ∈ O|∀cj ∈ Xa : cj ≤ ci};

LCS(Xa) = {c ∈ S(Xa)|∀ci ∈ S(Xa) : c ≤ ci}.

The semantic distance is defined as a function ds : O×O →
R mapping a pair of concepts (corresponding to nominal val-
ues) to a real number that quantifies the difference between
their meanings. According to the calculation principle em-
ployed, ontology-based measures can be divided in three fam-
ilies:

1. Edge-counting measures.
2. Feature-based measures.
3. Measures based on information content.

A.1 Edge-counting measures

They estimate the semantic distance between concept pairs
as a function of the length of the taxonomic path connecting
the two concepts in the ontology [33].

A well-known edge-counting measure was proposed by
Wu and Palmer [50]:

dWP(c1, c2) = 1−
2× depth(LCS(c1, c2))

denominator
, (10)

where denominator = 2× depth(LCS(c1, c2))
+path(c1, LCS(c1, c2)) +path(c2, LCS(c1, c2));
LCS(c1, c2) is the most specific subsumer of c1 and c2 in
the ontology; depth(LCS(c1, c2)) is the number of nodes in
the longest taxonomic path between the LCS(c1, c2) and the
node root of the taxonomy; and path(ci, LCS(c1, c2)) is the
number of taxonomic edges in the shortest taxonomic path
between the two concepts.

Simplicity is the main advantage of edge-counting mea-
sures. However, they present some shortcomings: 1) if they
are applied to ontologies incorporating multiple taxonomical
inheritance, several taxonomical paths are not taken into ac-
count, and 2) by considering only the paths (i.e., subsumers)
between the concepts, much of the taxonomical knowledge
explicitly modeled in the ontology is ignored.

Assuming that concepts in the ontology are linked with
their ancestors through pointers, in the worst case (comparing
the two most specific concepts in the ontology that have the
root node as LCS), obtaining the LCS(c1, c2) requires run-
ning through the longest path in the taxonomy, i.e., twice the
taxonomy depth D. Therefore, it takes O(D) cost to compute
Expression (10).

A.2 Feature-based measures

They consider the degree of overlap between the sets of on-
tological features of the concepts to be compared. In [40],
the authors suggested measuring the semantic distance as a
function of taxonomic features, i.e., as the ratio between the
number of non-common taxonomic ancestors and the total
number of ancestors of the two concepts:

dlogSC(c1, c2)

= log2

(
1 +
|S(c1) ∪ S(c2)| − |S(c1) ∩ S(c2)|

|S(c1) ∪ S(c2)|

)
, (11)

where S(ci) is the set of taxonomic subsumers of the concept
ci, for i = 1, 2. Due to the additional knowledge feature-based
measures take into account (i.e., multiple direct ancestors in
case of multiple inheritance), they tend to be more accurate
than edge-counting measures [40].

If S is the maximum number of ancestors that a concept
can have in the ontology, computing Expression (11) takes
O(S) cost. Notice that, for ontologies without multiple in-
heritance, this cost is the same as the one of edge-counting
measures.

A.3 Measures based on information content

They measure the semantic distance between two concepts
as the inverse of the amount of information they share in the
ontology, which is represented by their LCS [35]. In particu-
lar, Lin [30] proposed as a measure the inverse of the ratio
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Fig. 2 Ontology extract for the “Diagnosis” concept

between the information content of the LCS of the concepts
and the sum of the information content of each concept.

dlin(c1, c2) = 1−
IC(LCS(c1, c2))

IC(c1) + IC(c2)
. (12)

In [41], IC(c) is intrinsically estimated within the ontol-
ogy as the normalized ratio between the number of leaves
(i.e., terminal hyponyms) under concept c in the taxonomy
and the number of subsumers of c:

IC(c) = − log

 |leaves(c)|
|S(c)| + 1

|max leaves + 1|

 . (13)

Thanks to IC-based measures exploiting the largest amount
of ontological evidence (i.e., ancestors and leaves), they achieve
better accuracy than edge-counting and feature-based mea-
sures [6].

Expression (12) requires computing the LCS of the two
concepts, plus the ICs of the LCS and the concepts. Like
in edge-counting measures, computing the LCS has a worst-
case complexity O(D). On the other hand, Expression (13)
requires obtaining all the possible concepts connected to c,
either subsumers of hyponyms; hence, in the worst case (i.e.,
when c is the root node, which subsumes all the concepts in
the ontology), the IC computation takes O(C) cost, where C is
the total number of concepts in the taxonomy. In conclusion,
Expression (12) has O(C +D) computational cost. Thus, IC-
based measures are not only the most accurate but also the
costliest.

B Security of the scalar product protocols used

B.1 Proof of Proposition 1

Charlie receives r′
x from Alice. But r′

x can be obtained as the
difference between x̂′ + k and x + k, where k is an n-vector
with all its components set to k and k is any real number.
Hence, Charlie learns nothing about x. A similar argument
shows that Charlie learns nothing about y.

Bob receives x̂′ from Alice and ry from Charlie. Clearly,
ry contains no information on x. On the other hand,

x̂′ = Px(x̂) = Px(x + rx).

Since Px is a random permutation, the probability of Bob’s
learning x̂ from x̂′ is 1 over the number of permutations of
x̂, that is

nx
1!nx

2! . . . nx
dx

!

n!
,

where dx is the number of different values among the n values
of x̂, and nx

i is the number of repetitions of the i-th different
value. Since x̂ is the result of adding a random vector to
x, it is highly unlikely that x̂ contains repeated values, so
the probability of Bob’s learning x̂ is very low. Furthermore,
Bob does not know rx. Without knowledge of x̂ and rx, Bob
cannot learn x.

The argument on the inability of Alice to learn y is anal-
ogous.

B.2 On the security of Protocol 2

Protocol 2 is a variation of a protocol proposed in [23]. The
latter protocol takes place only between Alice and Bob and
there is no CLARUS proxy. Thus it differs from Protocol 2
in the last three steps, which are as follows:

4. Bob generates a random plaintext sB , a random number
r′ and sends ω′ = ωEncpk (−sB ; r′) to Alice.

5. Alice computes sA = Decsk (ω′) = xTy − sB .
6. Alice and Bob simultaneously exchange the values sA and

sB , respectively, so that both can compute sA+sB = xTy.

The authors of [23] prove that, if Paillier’s cryptosystem
is secure, Alice cannot learn y and Bob cannot learn x in
their protocol.

The only modification introduced by Protocol 2 is that
Alice and Bob do not share their results sA and sB , but they
send these values to CLARUS. Since neither Alice nor Bob
have more information than in the protocol of [23], the secu-
rity of the latter protocol is preserved in Protocol 2.
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