
 

1 

 

IDENTIFYING TECHNOLOGY SHOCKS AT THE BUSINESS 

CYCLE VIA SPECTRAL VARIANCE DECOMPOSITIONS
* 

 

YULIYA LOVCHA  

Universitat Rovira-i-Virgili and CREIP.  

Phone: (+34) 977759847 

Fax: (+34) 977758907 

e_mail: yuliya.lovcha@gmail.com 

 

ALEJANDRO PEREZ-LABORDA
 

Universitat Rovira-i-Virgili and CREIP 

Phone: (+34) 977758912 

Fax: (+34) 977758907 

e_mail: alejandro.perez@urv.cat
 

 

 

 

 

 

 

*
This paper has benefited from numerous comments and suggestions from two anonymous 

Referees. Perez-Laborda acknowledges financial support from the Spanish Ministry of 

Economy and Competitiveness through AEI/FEDER-EU (ECO2016-75410-P) grant. The 

usual disclaimers apply. Address correspondence to Yuliya Lovcha, Department of 

Economics, Universitat Rovira-i-Virgili. Av. Universitat 1, 43204 Reus, Spain, or e-mail to 

yuliya.lovcha@gmail.com 

mailto:yuliya.lovcha@gmail.com
mailto:alejandro.perez@urv.cat
mailto:yuliya.lovcha@gmail.com


 

2 

 

SPECTRAL VARIANCE IDENTIFICATION 

Yuliya Lovcha. Department of Economics, Universitat Rovira-i-Virgili. Av. Universitat 1, 

43204 Reus, Spain. Fax: (+34) 977758907. Phone: (+34) 977759847. 

email:yuliya.lovcha@gmail.com. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 

 

 

 

Abstract: In this paper, we identify the technology shock at business cycle frequencies to 

improve the performance of the SVAR in small samples. To this end, we propose a new 

identification method based on the spectral decomposition of the variance, which targets the 

contributions of the shock in theoretical models. Results from a Monte-Carlo assessment 

show that the proposed method can deliver a precise estimate of the response of hours in 

small samples. We illustrate the application of our methodology using U.S. data and a 

standard RBC. We find a positive response of hours in the short-run following a non-

significant, near-zero impact. This result is robust to a large set of credible parameterizations 

of the theoretical model.  
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1. INTRODUCTION  

Structural vector autoregressions (SVARs) are widely employed in the analysis of economic 

fluctuations. The SVAR provides a flexible representation of relationships among variables, 

allowing for a quantitative assessment of their responses to shocks. However, it is necessary 

to impose additional restrictions to identify the shock of interest from the reduced-form VAR 

estimation. These restrictions are generally built on the grounds of economic theory to ensure 

the identified shock has the correct economic interpretation.  

In this regard, the long-run (LR) restriction has become the standard scheme for the 

technology shock since it was employed by Gali (1999).
1
 This restriction imposes technology 

to be the only shock contributing to the long-run productivity variance, a condition satisfied in 

many theoretical models. Given its relative simplicity, the scheme has become popular among 

researchers and is currently employed in many SVAR studies.  

However, there are also strong arguments that advise against the use of the LR 

restriction to identify the technology shock. As noted in Uhlig (2004), changes in social 

attitude towards workplace or capital taxation may equally contribute to moving productivity 

in the long-run, invalidating the assumptions on which the scheme is constructed. More 

importantly, even if the LR restriction is met, its implementation requires a precise estimation 

of the low-frequency variance, something that is unfeasible from the short data spans 

available [Faust and Leeper (1997)]. As a result, the SVAR performs poorly in small-samples, 

and the response of hours is recovered with significant bias and considerable uncertainty 

[Christiano et al. (2003); Erceg et al. (2005); Chari et al. (2008)].  

In this paper, we propose an alternative identification method aimed to improve the 

small-sample performance of the SVAR. Our approach is based on the spectral decomposition 

of the variance [Geweke (1977)] and minimizes the distance between the empirical 

contributions to the business cycle fluctuations of the variables and a set of targets for these 
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percentages. The proposed Spectral Variance (SV) method does not impose the technology 

shock alone to explain all productivity fluctuations at the business cycle, nor does select the 

maximal contribution admissible in the SVAR, as many other shocks may move productivity 

at this range of frequencies. We assess the performance of our methodology in samples of 

simulated data from a Real Business Cycle (RBC) model, showing it can deliver a precise 

estimate of the response of hours in small samples.  

In empirical applications, the SV method may target shares derived from Dynamic 

Stochastic General Equilibrium (DSGE) models to identify the shock in the SVAR. Resorting 

to an economic model is necessary for this context because it cannot be expected that 

technology alone explains all fluctuations in labor productivity at business cycle frequencies. 

However, the SV method does not impose the complete structure of the theoretical model; for 

example, the dynamic relationships between variables are estimated from the data. 

Furthermore, the particular targets taken from the DSGE are generally non-admissible in the 

SVAR and cannot be exactly matched. As a result, the empirical response of hours usually 

differs from the response in the theoretical model, not only in magnitude and persistence but 

sometimes even in sign.  

We apply the proposed methodology to U.S. data using the contributions implied by a 

standard RBC. The SV method recovers a positive response of hours in the short-run, 

following a non-significant, near-zero impact. We generalize this finding by establishing a 

robust interval for the estimated response of hours. To do so, we base on a large set of 

credible parameterizations of the theoretical model, following an approach similar to the one 

Dedola and Neri (2007), Pappa (2009), and Canova and Paustian (2011) employed to 

establish robust sign restrictions. Overall, the robust interval for the response of hours offers 

considerable support for the baseline impulse response.  
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Our proposed methodology is not the first identification scheme placing the 

identification of the technology shock at a finite horizon. Ramey (2016) does an excellent 

review of the existing methods. Uhlig (2004), for example, restricts the forecast revision of 

productivity variance at four years to be driven by the technology shock only, with the 

acknowledgment, however, that the actual contribution at this horizon is not total. Francis et 

al. (2014) propose to maximize the share of the identified shock in the productivity forecast 

error variance at ten years. In this way, the contribution of the identified shock to the future 

uncertainty of productivity at the selected horizon is not necessarily 100%, but the maximum 

admissible in the SVAR at this horizon. DiCecio and Owyang (2010) develop a frequency-

domain alternative of the previous identification method in which the authors maximize the 

contribution of the technology shock to the fluctuations of productivity at low-frequencies. 

Overall, these existent schemes still impose large shares for the contribution of the technology 

shock to productivity fluctuations; therefore, they have to be employed at relatively long 

horizons so as not to incur a significant identification bias. As a result, although all of them 

outperform the LR restriction, they are still associated with substantial uncertainty, making it 

difficult to establish robust conclusions on the magnitude and sign of the response of hours.  

Likewise, our work is related to studies using theoretical models to identify the 

technology shock. Uhlig (2004), for example, selects the number of horizons at which to 

restrict the contribution of the technology shock based on a parametrized RBC model. Evans 

and Marshall (2009) employed an aggregate measure of technology borrowed from the Basu 

et al. (2001) model, which they modified after to ensure orthogonality with the other shocks 

in the system. More generally, the SV method is also linked to approaches using external 

information for the identification of the SVAR, such as Blanchard and Perotti (2002), Mertens 

and Ravn (2013), or Kilian and Lee (2014). For example, Kilian and Lee (2014) identify the 

oil shock, bringing the oil-price elasticity in the SVAR close to an external estimate. 
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The remainder of this paper is organized as follows: Section 2 contains the 

econometric framework. In this section, we define our proposed method and place it in the 

literature. In Section 3, we assess our identification scheme on simulated data jointly with 

other identification methods proposed in the literature. The empirical implementation is 

carried out in Section 4, where we recover the response of hours in U.S. data, generalize the 

empirical findings, and show how the SV method can be employed to study the compatibility 

between the model and the data. Section 5 discusses some extensions of the empirical section. 

Finally, Section 6 offers some concluding remarks. There is also a separate Supplement 

containing additional results. 

2. ECONOMETRIC FRAMEWORK 

2.1 The Structural VAR 

Consider productivity growth as the first variable of the model, followed by the logarithm of 

hours worked and other possible variables summarized by the vector tZ . This specification is 

standard across the literature and is consistent with the persistence of productivity and hours 

in theoretical models [Christiano et al. (2004); Chari et al. (2008)].
2
  

Let the 1N  vector  ln , ln ,t t t tX p l Z   collect all the model variables. If 2N  , 

the model includes productivity growth and (log-) hours only. This simple specification, 

which is very popular in the literature, is considered as a baseline in our paper. A reduced-

form VAR(p) for tX  can be written in MA(∞) form as: 

    
1

t t tX I F L u C L u


     . (1) 
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where I is the identity matrix,  F L  is a lag-polynomial matrix of order p, and tu  is a zero-

mean error vector with u  variance-covariance matrix. The structural MA representation is 

given by: 

  t tX C L A , (2) 

where t  is a vector of uncorrelated structural errors with identity variance-covariance matrix. 

We further assume the normality of these shocks to ensure their statistical independence 

[Lanne et al. (2017)].  

The elements of the matrix  C L A  in (2) are infinite order polynomials whose 

coefficients are the impulse responses (IRF) of the variables to the structural shocks. The 

matrix A, which maps structural shocks into reduced form shocks, satisfies: 

 'u AA  . 

Since u  is symmetric, the previous system is undetermined and requires 

 1 2N N   additional restrictions.
3
 Often, just the first column of A is of interest, as it is the 

only component needed to compute the responses of the variables to the technology shock 

given the assumed ordering. However, the system as a whole would remain just partially 

identified. 

2.1.1 Set for candidate solutions  

Let t tu H  , where H  is the lower-triangular Cholesky decomposition of u . By 

construction, the Cholesky shocks t  have unit variance and are mutually uncorrelated, but 

they rarely correspond to the shocks of interest. However, one may find t  from a large set of 

candidates resulting from linear combinations of the Cholesky shocks as: 
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 t tP  , 

where tP  is an orthonormal squared matrix satisfying P P PP I   . Therefore, 

t t tu HPP HP    , implying that the structural matrix is identified as A HP . 

For 2N  , orthonormal matrices can be derived from the Givens rotation matrix: 

  
cos sin

sin cos
P

 


 

 
  

 
, 

for  2, 2    . Thus, one can obtain a broad set of candidates by randomly drawing   

from its interval (or using a finite-dimensional grid). Givens rotation matrices can be extended 

to 3N  ; however, for larger dimensions, computationally more efficient methods are 

recommended, such as in Rubio-Ramirez et al. (2010). 

2.1.2 The Decomposition of the Variance in the Frequency Domain 

The spectral decomposition of the variance measures the shares of the structural disturbances 

in the fluctuations of the variables at a given frequency or range of frequencies. It is preferred 

here over the popular forecast error variance decomposition because the business cycle is 

naturally defined in frequency-domain concepts (usually cycles with a periodicity between 

eight to 32 quarters). On the contrary, each h-step-ahead forecast error contributes to the 

variance at all frequencies, albeit with different proportions. 

Consider the structural MA representation of the model in (2). The spectral density 

matrix of tX  at a given frequency  is given by: 

      
1

2

i i

X uf C e C e 


 
  , (3) 
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where i denotes the imaginary unit and  iC e 
 the complex conjugate of  iC e 

. The main 

diagonal of the spectral density matrix contains the univariate spectrums of the variables in tX

; the off-diagonal elements are the cross-spectral densities. Given that the spectrum of a 

process can be interpreted as the decomposition of the variance into a set of uncorrelated 

components at each frequency, the share of the k-th shock in the fluctuations of the n-th 

variable at the frequency   is given by: 

 
   

   

i i

n k k n

nk
i i

n u n

s C e A A C e s
w

s C e C e s

 



 





 


 

, (4) 

where kA  is the k-th column of the structural matrix A  and ns  is a selector vector with an n-

th element equal to one and other elements equal to zero. The expression (4) has to be 

integrated over the range of interest to assess the shares of structural shocks in fluctuations at 

a range of frequencies. Let  1 2
,R  

 
be the selected range. The percentage of the k-th 

disturbance in the fluctuations of the nth variable at the range R  is given by:  

 

   

   

i i

n k k n

RR

nk

i i

n n

R

s C e A A C e d s

w

s C e C e d s

 

 









   
 
   
 





, (5) 

where the definite integrals can be approximated by summations for the Fourier frequencies 

2j j T  for 1,2,... 2j T  belonging to the selected range (Sargent, 1987). As can be 

deduced from the last expression, the contribution of the different structural shocks critically 

depends on the entries of A . 
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2.2 The Spectral Variance Method (SV)  

In this section, we define our proposed identification method. After that, we briefly review the 

other identification strategies employed in the literature, comparing our approach with the 

existing methods.
4 

2.2.1 Definition of the SV method 

The Spectral Variance (SV) method brings the contributions at business cycle frequencies of 

the shock identified in the SVAR as close as possible to a given set of targets. Like with the 

other schemes in the literature, the method identifies the technology shock only (the first 

column of the matrix A given the assumed ordering), but the system as a whole remains 

partially identified if 2N  . 

Let an orthogonal matrix P defines an alternative representation of the SVAR model in 

terms of the structural errors: 

 t tu HP ,  

where H is the lower-triangular Cholesky decomposition of the variance-covariance matrix of 

the reduced-form errors u .  

Denote the k-th column of the matrix P by  , and let 
R

nkT   be the targeted percentage 

for the contribution of the n-th shock to the fluctuations of the k-th variable at the frequency 

range  1 2,R   . The SV method solves the following optimization problem: 

     
2

min R R R

k nk nk

n

D w T


   . (6) 

The term  R

nk
w   in (6) is the contribution of the k-th shock to the fluctuations of the n-th 

variable at R in the SVAR, which can be computed for kA H
 
from Equation (5). 
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Therefore, the SV method minimizes the Euclidian distance between the contributions of the 

k-th shock to the fluctuations of all variables in the system at the selected frequency range and 

the given targets. Since productivity growth is ordered first, the technology shock is identified 

at business cycle frequencies by setting 1k   and defining R  as being formed by cycles with 

periodicity ranging from eight to 32 quarters, which is the standard definition of the business 

cycle in the literature.
5
   

In empirical applications, the proposed scheme may target shares derived from 

parametrized DSGE models. Targeting the contribution of the technology shock in a 

theoretical model makes the identification of the technology shock model-based. However, 

the complete structure of the DSGE model is not imposed in the SVAR; for example, the 

dynamic relationships between the variables are estimated from the data. As a result, the 

targeted percentages are generally not feasible and cannot be matched exactly, and the 

response of hours in the SVAR does not coincide with the response of this variable in the 

DSGE. The two responses may differ substantially in some cases, not only in magnitude but 

in sign as well. 

Nevertheless, we propose to generalize the empirical findings targeting a large set of 

contributions based on many credible parameterizations of the theoretical model. To do so, 

we assume all the parameters in the DSGE to be uniformly and independently distributed over 

sufficiently wide intervals, like in Dedola and Neri (2007), Pappa (2009), or Canova and 

Paustian (2011). More specifically, we employ the following procedure to generalize the 

empirical findings of the SV method:
 
 

1. Select ranges for all parameters in the DSGE, chosen to be large enough to include all 

theoretically reasonable values in the literature. The intervals for the model parameters 

can be alternatively estimated via Bayesian methods (Herbst & Schorfheide, 2016). The 
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advantage of specifying sufficiently wide intervals is that the range of outcomes the 

model can produce is obtained without relying on any particular dataset. 

2. Draw values for all DSGE parameters within their credible intervals from independent 

uniform distributions to generate a credible parameterization.
 
 

3. Compute the business cycle contributions of technology shock in the DSGE model using 

this parameterization.  

4. Use the resulting contributions as targets for the SV method to identify the estimated 

SVAR, and find the empirical response of hours.  

5. Return to step 2 until the desired number “P” of credible parameterizations of the DSGE 

has been obtained. After that, selected percentiles can be used to construct robust ranges 

for the impulse response of hours in the SVAR.  

2.2.2 Relationship with other identification methods  

The long-run (LR) identification [Shapiro and Watson (1988); Blanchard and Quah (1989)] is 

the most popular scheme for identifying the technology shock in the SVAR. It restricts the 

(log-)productivity variance to be driven in the long-run by the technology shock only. This 

condition is equivalent to setting the shock contribution to productivity growth (i.e., log-

productivity difference) to 100% at zero frequency. Therefore, to impose the restriction, the 

estimate of the spectral matrix of the VAR process at zero frequency is usually decomposed 

as the product of a triangular matrix by its transpose: 

      0 1 1Y uS C C DD    , (7) 

where  
1

(1) (1)C I F


  , being (1)F  the sum of autoregressive matrices. Therefore, the 

matrix A is determined by solving  1C A D . 
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Christiano et al. (2003) and Erceg et al. (2005) assess the LR restriction showing that 

the response of hours to a shock identified with this method is recovered with significant bias 

and substantial uncertainty. The underlying reason is that the application of the LR scheme 

requires a precise estimate of the spectrum at zero frequency, which is not feasible in small 

samples. As can be seen from Equation (7), the bias and uncertainty of the estimate of (1)F  

percolate into the spectrum estimated at zero frequency magnified by the non-linear 

transformation  
1

(1) (1)C I F


  , and thus to the structural matrix as well.   

Difficulties in estimating the long-run variance have been used to justify identification 

restrictions at finite horizons, such as in the methodologies in Uhlig (2004), DiCeccio and 

Owyang (2010), and Francis et al. (2014). The separate Supplement contains a simple 

example showing this asymmetric pass-through.  

Uhlig’s (2004) medium-run (MR) scheme restricts the shock to explain all the 

variance of the forecast revision of productivity at a finite horizon 0 .h   The author 

selects a horizon of four years ( 16h  for quarterly data) based on the inspection of a 

parameterized RBC model acknowledging, however, that other shocks may contribute to 

moving productivity at this horizon as well. Notice that the LR restriction can be obtained as 

the limit of the MR when h , as this scheme imposes a 100% contribution in the long-run. 

The Max-Share (MS) method (Francis et al., 2014) restricts the contribution of the 

technology shock to the forecast error variance of (log-)productivity at a finite horizon h . 

Thus, the MS method is related to Uhlig’s MR identification, as the forecast error variance is 

the sum of the variance of the forecast revision up to (and including) h . Also, given that a 

100% contribution of the technology shock to the forecast error variance of productivity may 

not be feasible in the SVAR at the selected horizon, the authors employ a maximization 

routine that identifies the shock with the maximum contribution possible. In this way, the MS 

imposes a 100% contribution only if it is feasible in the SVAR. As for the selected horizon, 
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Francis et al. (2014) fix it to 10 years ( 40h   quarters), moving the restriction further into the 

long-run than the MR method. Thomet and Wegmueller (in press) recently use the MS 

scheme to assess the response of hours worked in a set of 14 OECD countries. 

DiCecio and Owyang (2010) propose a version of the MS method in which the 

identification is produced in the frequency domain. Their Frequency-Domain (FD) 

identification is based on maximizing the contribution of the identified shock in the 

fluctuations of productivity over a low-frequency range. The authors employ two different 

frequency ranges, “low” frequencies (cycles from eight to 20 years) and “very low” 

frequencies (frequencies with a period longer than 20 years, excluding the zero frequency). 

Like the MS identification, the FD method does not necessarily impose the shock to explain 

all productivity fluctuations at the selected range (which may not be feasible), but the 

maximum admissible in the SVAR.  

A detailed description of the MR, MS, and FD schemes is provided in the Supplement. 

These schemes may perform better than the LR restriction in small samples, mostly because 

the bias and uncertainty transmitted to the estimate of the productivity variance at a finite 

horizon are smaller than in the long-run. However, they still impose the identified shock to 

explain a large share of productivity fluctuations at the selected horizon (either 100% or the 

maximum possible in the SVAR). As shocks other than technology may contribute to moving 

productivity at short horizons, a large misidentification bias may appear using these methods 

if the horizon is set too short. 

The proposed SV approach is related to the MR, MS, and FD schemes, as all try to 

move the restrictions away from the long-run to improve the small-sample performance of the 

SVAR. However, it departs from these three schemes in many important aspects. Unlike the 

MR and MS, the SV is defined in the frequency domain, which allows for a precise 

characterization of the business cycle. It uses a complete frequency range for setting the 
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restriction instead of a single frequency (or specific horizon, as the MR), thus not generating 

undesirable kinks in the spectrum, as noted in Francis et al. (2014). In this sense, our scheme 

is closely related to the FD identification of DiCecio and Owyang (2010). However, the SV 

method is aimed to identify the shock at the business cycle. Consequently, it does not impose 

the shock in the SVAR to explain all productivity fluctuations at this range, nor the scheme 

selects the maximum possible contribution in the SVAR either, as these conditions, although 

palatable at low-frequencies, are not expected to be satisfied at the business cycle.  

In this sense, the SV identification generalizes the MR, MS, and FD schemes allowing 

for any possible contribution to productivity growth fluctuations. However, as it is shown in 

Section 4, targeting only the shock share in productivity growth fluctuations does not 

generally lead to a unique solution to the problem in (6). Although set identification may be 

valuable, especially in combination with other schemes, the penalty function in Equation (6) 

includes the contribution to the fluctuations of all variables, not just productivity growth, 

which helps to discriminate between candidate solutions.  

Finally, note that the SV is defined in terms of productivity growth (productivity log 

difference), while the FD is defined in terms of (log-) productivity. Targeting productivity 

growth fluctuations places the method closer to the LR restriction. As explained above, the 

LR identification can be alternatively defined in the frequency domain by restricting the 

shock contribution to productivity growth to be 100% at zero frequency. Thus, the FD 

identification does not nest the LR restriction when the maximization is produced at zero 

frequency. However, the LR can be obtained in the SV method defining the frequency range 

as to be formed by the zero frequency and using 100% for the contribution to productivity 

growth fluctuations as a sole target (it is, leaving the targets for the other variables free in the 

minimization algorithm). Besides, defining the scheme in terms of productivity growth is 

computationally more convenient, as it is how the variable enters the VAR.  
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3. THE SIMULATION STUDY 

Before recovering the response of hours in the data, we assess the SV identification in a 

simulation study, together with the other existing identification approaches. The objective 

here is to compare the different methods in a common framework, investigating whether they 

offer actual advantages over the LR in small samples. Concerning this, notice from Equation 

(2) that any difference in performance must come from the identified structural matrix A , as 

 C L  is the same for all methods. 

To do this, we follow Sims (1984) and evaluate the schemes in recovering the 

response of hours from data simulated from an RBC, which has become the standard 

benchmark for SVAR assessment [Christiano et al. (2003, 2007); Erceg et al. (2005); Uhlig 

(2005); Chari et al (2008); Francis et al. (2014)]. As noted in Chari et al. (2008), simulating 

data from an RBC may generate an additional bias in the response of hours recovered in the 

SVAR, as the true RBC model’s VAR has an infinite number of lags. 

3.1. The RBC Model 

We employ the two-shock RBC of Christiano et al. (2007) to simulate the data, which 

provides a good fit to the data compared to other RBC specifications. Details on the 

transformation of variables, log-linearization, model solution, and state-space representation 

can be found in the Supplement to Lovcha and Perez-Laborda (2015). 

3.1.1 RBC description 

The representative agent maximizes the expected utility of consumption per capita tc  and 

hours worked tl :  

   
 

1

0
,

0

1 1
max 1 ln

1t t

t t

t
c l

t

l
E c



  







  
  

  
 ,  
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subject to the household budget constraint:    ,1 1t x t l t t t t t tc i w l r k T       . Here, tw  and 

tr are the wage and the rental rate on capital, x  and ,l t are investment and labor income tax 

rates, and tT  is a lump-sum tax. The parameter   controls the curvature of the utility 

function,   is the time allocation parameter,   is the growth rate of the population, and   is 

the discount factor. Capital accumulation is given by:    11 1t t ti k k     , where tk  is 

the per capita capital stock at the beginning of the period and   is the depreciation rate. 

Finally, the total resource constraint is given by: t t tc i y  . 

The representative firm's production function is: 

 
 

1

t t t ty k Z l
 


. 

tZ  in the previous function is the state of technology and  0,1  . The technology process 

is represented by a random walk: 1ln ln z

t z t z tZ Z     , and the process for the labor tax 

shock by stationary but persistent AR(1):  , , 1

l

l t l l l t l l t          . The shocks z

t  and l

t  

are i.i.d. random variables, orthogonal to each other, with zero mean and unit variance. The 

constants z  and l  are the mean growth rate of technology and the mean labor tax rate, 

respectively. The magnitude of the autoregressive coefficient l  is restricted to be less than 

one to guarantee stationarity.   

As standard in the literature, time t decisions are made after the realization of the 

shocks. In this way, the technology shock alone moves productivity in the long-run. 

Therefore, the model satisfies the LR restriction.  
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3.1.2 Baseline parametrization  

The baseline parameterization of the RBC model is the same employed by Christiano et al. 

(2007), which is summarized in Table 1.  

[Table 1 around here] 

The contributions of the technology shock to the business cycle fluctuations of the 

variables implied by this parameterization are 80.36% and 7.48%, for productivity growth and 

hours worked, respectively where, as standard in the literature, we have defined the business 

cycle as being formed by frequency components with periodicities from eight to 32 quarters. 

These percentages can be assessed by applying Equation (5) to the state-space representation 

of the RBC, and thus, are intrinsic characteristics of the parameterized model. See the 

Appendix of Lovcha and Perez-Laborda (2015) for details.  

3.2 Simulation Set-Up 

We simulate 1,000 quarterly artificial bivariate datasets of T=240 observations each (60 years 

of data) from the baseline parameterization of the RBC. For each simulated dataset, we 

estimate a VAR(4), which is the standard lag-length in the literature, and identify the 

technology shock using our and the other referenced schemes.
6
 We then compute the response 

of hours and compare this response with that in the model. 

For the MR and MS methods, the horizon required for their implementation is set at 

four ( 16h  ) and ten ( 40h  ) years, respectively, as in Uhlig (2004) and Francis et al. 

(2014). For the FD, we maximize the shock contribution to the productivity fluctuations with 

a period longer than 32 quarters, excluding the zero frequency.
7
 Finally, for the proposed SV 

scheme, we target the contributions in the baseline RBC, making the targets satisfied in the 

model used as DGP.  
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3.3 Monte-Carlo Results 

Selected simulation results are provided in Figure 1 and Table 2. Figure 1 collects the mean of 

the estimated responses of hours across simulations (solid line). The dashed lines and the 

shadowed area highlight the 16
th

 and 84
th 

percentiles and the 5
th

 and 95
th

 percentiles, 

respectively (i.e., the 68
th

 and 90
th

 percentile bands). We also include the response in the RBC 

(red line with dots)  to assess the bias visually. Table 2 reports the mean contribution of the 

identified shock at business cycle frequencies together with their 68
th

 percentile intervals 

across simulations. The results in Table 2 allow us to investigate if, regardless of the horizon 

at which the restriction is placed, the shock identified in the SVAR and the true shock in the 

RBC have similar business cycle properties, as this range is usually the horizon of interest. 

[Figure 1 around here] 

As Figure 1 shows, the results of the LR method in our simulations reproduce the 

findings of Christiano et al. (2003) and Erceg et al. (2005). The LR returns a significantly 

upward biased response of hours recovered with huge uncertainty, with the percentile bands 

containing the zero-response at all lags. Also, results in Table 2 indicate that, although the 

shock in the SVAR explains the same share of the productivity growth fluctuations at zero 

frequency as in the RBC (100%), it severely underestimates the percentage at business cycle 

frequencies. The contribution to hours worked at this range is also biased, with a mean value 

across simulations larger than the actual percentage in the theoretical model.  

[Table 2 around here] 

The MR, MS, and FD schemes improve over the LR restriction, especially in terms of 

the bias. As Figure 1 shows, there is no apparent bias in the response of hours recovered with 

the MR and FD schemes. The response estimated with the MS method presents some small 
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upward bias. Note, however, that the MS sets the identification at a slightly longer horizon 

than the other two methods, and the bias can be reduced by setting the restriction a tad closer 

(for example, at the eight-year horizon). In any case, the bias found using the MS method is 

very small, with the mean response across simulations being very close to the actual response 

in the RBC. Overall, although these methods impose a large contribution of the shock 

identified in the SVAR to the productivity fluctuations, there is no evidence of significant 

misidentification bias in the estimated response of hours. The absence of bias is mostly 

explained by the fact that the actual contribution of the technology shock in the RBC at the 

horizons selected by the authors is also large; therefore, the restrictions imposed by these 

methods are satisfied in the theoretical model to a great extent.
8
 Furthermore, results in Table 

2 show that, on average, the shock identified by these schemes explains percentages of the 

business cycle fluctuations of the variables that are close to the actual shares in the RBC, 

especially for productivity growth. Overall, our simulation exercise shows that the MR, MS, 

and FD methods overcome the problem of the magnification of the bias in the long-term 

variance using the LR restriction. 

However, the results of the simulation exercise also reveal that the uncertainty 

associated with these methods is still huge, making it difficult to establish robust conclusions 

on the magnitude and sign of the response of hours. As Figure 1 shows, the percentile bands 

for this response recovered with the MR, MS, and FD methods are wide. In particular, none of 

these methods yield a significant response of hours in the short-run, as even the 68
th

 percentile 

bands include the zero response at all horizons. Results in Table 2 also reflect the uncertainty 

associated with these methods, as the percentile intervals for the recovered contributions are 

wide. Thus,  the business cycle properties of the shock identified in the SVAR very often 

differ substantially from the actual properties the technology shock has in the RBC. 



 

22 

 

Can the uncertainty associated with these methods be reduced by setting the 

identification of the technology shock at shorter horizons, such as the business cycle?
 9 

The 

answer is that uncertainty can be reduced but at the cost of introducing a significant 

misidentification bias. The reason is that the contribution of the technology shock in RBC 

models falls substantially at shorter horizons, as it is expected that other shocks move 

productivity at these ranges. Consequently, restricting the SVAR to deliver the maximum 

share possible (or even 100%, for the MR) induces a significant bias in the estimate of the 

response of hours to the technology shock. 

To see this result more clearly, let us study the FD method further. As noted above, if 

one employs low frequencies for identification, the response of hours is recovered without 

bias but with high uncertainty. For illustrative purposes, we move the restriction to the 

business cycle and use the same FD method to identify the shock (from now on called FD-BC 

method). The simulation results obtained with the FD-BC method are also reported in Figure 

1 and Table 2.  

Moving the restriction to the business cycle reduces the uncertainty associated with the 

FD method; the percentile bands for the response of hours recovered with the FD-BC are 

significantly narrower than with the standard FD. However, the estimated response is strongly 

biased, with the actual response in the theoretical model lying outside the percentile bands. 

The reason is that the contribution of the technology shock to productivity fluctuations in the 

RBC is significantly smaller at business cycle frequencies (80.1%) and the maximum 

admissible in the SVAR at this range becomes too large.
10

Notice that the differences between the FD and the FD-BC can only be attributed to the 

selected horizon, as the imposed restriction is the same.  

Finally, the first panel in Figure 1 reports the simulation results obtained with the SV 

method, which also sets the restriction at the business cycle. As with the MR, MS, and FD 
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methods, there is no evidence of bias in the response recovered with the proposed SV scheme. 

However, the identification is set at a shorter horizon than with these methods; therefore, the 

percentile bands are narrow enough to return a positive and significant response of hours in 

the short-run, close to the response in the RBC.  

We cannot judge the SV based on the percentages recovered in Table 2, as the scheme 

tries to minimize their distance to the percentages in the RBC. Notice, however, that the 

actual values in the RBC are not matched exactly in the SVAR across simulations. The reason 

is that the estimated VAR is different from the RBC model’s VAR used to simulate the data 

due to both sampling uncertainty and model misspecification, making the actual percentages 

in the RBC generally unfeasible.  

In summary, the LR restriction has poor small sample properties. Schemes placing 

similar restrictions at finite, but relatively long horizons outperform the LR restriction but are 

still associated with considerable uncertainty. In particular, none of these methods recovers a 

significant response of hours from data simulated from an RBC, even using 68% percentile 

bands. Our results show that moving the identification of the technology shock to the business 

cycle improves the precision of the estimated response of hours, making it possible to derive 

robust conclusions on its magnitude and sign. However, it is necessary to resort to economic 

models, as it cannot be expected the contribution of the technology shock to be the maximum 

admissible in the SVAR at this range, and it is not like that in theoretical models either. 

4. EMPIRICAL IMPLEMENTATION 

After assessing the SV method in simulations, we recover the response of hours to a shock 

identified with this scheme in U.S. data. To start, we employ the contributions implied by the 

baseline parameterization of the RBC as targets for the method. After that, we generalize the 

empirical findings using a large set of targets, based on many credible parameterizations of 

the RBC model. Before discussing these issues, we will briefly describe the dataset employed. 
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4.1 Data Description 

We construct a bivariate quarterly dataset on hours worked and labor productivity collecting 

data from the Federal Reserve Bank of St. Louis (FRED). The dataset is similar to Gali (1999) 

except in the definition of hours. Gali (1999) employs the log of total employee hours in non-

agricultural establishments. Given that hours in RBC models are usually defined in per capita 

terms, we perform the analysis using hours per capita. More specifically, the “non-agricultural 

business sector productivity” is the natural logarithm of the OPHNFB series in the FRED 

dataset. The hours series was derived by subtracting the civilian non-institutional population 

over the age of 16 years (CNP16OV) from the non-farming business sector hours of all 

persons (HOANBS), both in natural logarithms. Except for population, all series were 

seasonally adjusted and ran from 1948:1 to 2009:4, covering a slightly more extended period 

than other datasets in the literature.
11 

4.2 The Response of Hours to Technology Shock  

We employ a four-order VAR for estimation, which is the standard lag-length in the literature. 

After reduced-form VAR estimation, we identify the technology shock with the SV method 

by targeting the shares implied by the baseline parameterization of the RBC (7.48% and 

80.36%, for hours and productivity growth, respectively). Finally, we compute the response 

of hours and the contributions of the identified shock at the business cycle in the SVAR.  

Figure 2 shows how the proposed SV scheme works. The gray curve is formed by the 

scatter plot of all contributions to the fluctuations of the variables at business cycle 

frequencies that can be reached by the shock identified in the SVAR. This admissible set is 

found by computing the contributions in 10,000 candidate SVAR identifications generated by 

Givens rotation matrices randomly drawing   from  2, 2   using a uniform 

distribution, as explained in Section 2. Consequently, any candidate identification of the 
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shock in the SVAR has a business cycle contribution to hours and productivity growth 

represented by a point in the curve.  

[Figure 2 around here] 

The SV method identifies the shock having contributions in the admissible set with the 

smaller distance (in modulus) from the point targeted. Point “A” signals the technology shock 

contributions in the baseline parameterization of the RBC. Since this point is not far from the 

set of admissible percentages, the resulting contributions in the SVAR do not differ much 

from the targeted values but do not match the RBC contributions. Specifically, the SV 

identifies a shock with a 74.34% and 10.76% contribution to productivity growth and hours 

worked fluctuations, respectively, signaled in the figure with a “B.”  

Finally, Figure 2 also shows why the method targets the contribution to both 

productivity growth and hours worked. Notice that any possible contribution to productivity 

growth in the SVAR is associated with two admissible percentages for hours; only the 

maximum (or minimum) admissible is associated with a single percentage. Therefore, if the 

method only targets the contribution to productivity growth fluctuations, the set of candidate 

identifications is not singleton unless the value targeted is the maximum the SVAR can admit 

(or exceeds this percentage).
 
The two solutions match the contribution aimed, but differ in the 

share in hours.  

By targeting the contributions to the fluctuations of the two variables (or in general, 

the contributions to all variables in the system), one forces the identification method to deliver 

a single solution for the vast majority of targets. Targeting only the contribution to 

productivity growth may still be an interesting option, especially if one selects the candidate 

identifications resulting from targeting a credible interval for this contribution instead of a 

single percentage. In any case, the technology shock contribution to productivity growth in 
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the baseline parameterization of the RBC is higher than the maximum possible in the SVAR 

in this dataset, and one obtains a single solution targeting productivity growth only. We have 

highlighted this alternative solution with a “C” in figure.
12 

[Figure 3 around here] 

The response of hours recovered by the SV method in the SVAR is depicted in the 

first panel of Figure 3, together with the 68
th

 and 90
th

 error bands computed by the 

nonparametric bootstrap method. As the figure shows, the SV scheme recovers a positive and 

statistically significant response in the short-run. The magnitude is similar to the response of 

hours in the RBC but differs substantially on impact. While the contemporaneous response is 

positive and strong in the RBC model (see Figure 1), it is virtually zero in the SVAR, 

statistically non-significant. The figure also reports the response of hours using the whole set 

of schemes assessed in the simulation study (i.e., the LR, MR, MS, FD, and FD-BC) to 

compare the empirical findings with those obtained with other identification methods.  As can 

be observed in the figure, the responses are, in general, not much different from those 

produced by the SV. Only the frequency-domain method of DiCecio and Owyang (2010) 

generates a different response when maximization is carried out at the business cycle (FD-

BC), which is negative on impact and non-significant at all other horizons. The responses 

returned by other methods are similar to the SV response but presenting wider error bands, 

consistent with the results of the Monte-Carlo simulation. Specifically, the responses 

recovered with the MR, MS, and FD schemes are only significant using 68
th

 bootstrapped 

error bands.  

[Table 3 around here] 
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Finally, Table 3 reports the contributions at the business cycle of the shocks identified 

with the different methods.  As this table shows, all schemes identify a shock with a similar 

contribution to productivity growth fluctuations, not far from the percentages in the baseline 

RBC. The exception is the FD-BC, where this percentage is smaller than in RBC. The 

estimated shares in hours are more heterogeneous, although none of the methods yield a large 

value, consistent with the consensus view that technology is not an essential driver of the 

fluctuations of hours worked at the business cycle [Christiano et al. (2007); Francis et al. 

(2014)]. The results in Table 3 reflect once more the uncertainty associated with identification 

methods other than the SV; the wide confidence intervals signal that the properties of the 

technology shock at business cycle frequencies are estimated with significant variance. 

4.3 Generalizing the Empirical Findings 

In our baseline parametrization of the RBC, the technology shock has a substantial 

contribution to productivity growth fluctuations at the business cycle but a small share in 

hours. One may question, however, if these contributions are robust implications of the 

model, and if not, how sensible our results are to the particular parametrization employed.  

To generalize the empirical findings, and untighten them from the percentages in the baseline 

parametrization, we compute the technology shock contributions in many credible 

parametrizations of the RBC and use all these percentages to construct a robust interval for 

the response of hours in the SVAR recovered with the SV method.  

4.3.1 The contribution of the technology shock in a large set of RBC parametrizations  

Like in Dedola and Neri (2007), Pappa (2009) and Canova and Pausitan (2011), our first step 

consists of selecting intervals for all RBC parameters, chosen to be large enough to include all 

theoretically reasonable values.  
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Credible intervals for model parameters are provided in the last part of Table 1 and are 

constructed to include the values for the parameters given in the literature. After selecting 

these intervals, we generate P=10,000 different parameterizations of the RBC, drawing from 

independent uniforms for all parameters inside their corresponding intervals. For each 

resulting parameter vector, we compute the technology shock contributions at the business 

cycle and the response of hours in the RBC.  

[Figure 4 around here] 

A scatter plot of all (pairs of) RBC contributions implied by all credible 

parameterizations is depicted in gray in Figure 4. The technology shock contributions implied 

by all these parameterizations are concentrated in the upper left corner of the figure, 

suggesting the theoretical model robustly delivers a large percentage for productivity growth 

and a small percentage for hours. However, we find parameterizations implying different 

shares, but these unusual percentages never come together; that is, no parameterization 

simultaneously delivers a small contribution to productivity growth and large contribution to 

hours worked.  

In addition to technology shock contributions, we assess the response of hours at all 

parameterizations of the RBC model, which are summarized in Figure 5 (left panel). The total 

range at each horizon is shadowed in gray, while the mean response is signaled with a solid 

black line. We also delineate a robust interval for the response of hours in the RBC model, 

which contains the 16
th

 and 84
th

 percentile. This robust interval for RBC responses is marked 

with red dashed lines in the figure. 

[Figure 5 around here] 



 

29 

 

As expected, no matter the parameterization, the response of hours in the RBC is 

positive at all horizons and persistent, decaying to zero slowly in the long-run. Although the 

total range of responses obtained in all the parametrizations of the RBC is relatively wide, 

most of them are concentrated in a narrow interval around the mean, very close to the 

response implied by the baseline parameterization. 

4.3.2 Deriving a robust interval for the response of hours in the SVAR   

As a second step, we employ the contributions in all RBC parameterizations as targets for the 

SV, therefore producing 10,000 different identifications of technology shock in the data. In 

each, we compute the contribution of the identified shock at business cycle frequencies in the 

SVAR and the corresponding response of hours.  

The resulting set of SVAR contributions is also depicted in Figure 4. We have 

highlighted with blue circles those associated with a positive response of hours. The 

remaining contributions, associated with a non-positive response at least at one horizon, are 

represented with red squares.  

As Figure 4 shows, the resulting collection of circles and squares form a subset of all 

admissible shares (depicted in Figure 2). The contributions in the SVAR, taken as a whole, 

are not far from the percentages implied by all RBC parametrizations, although the share of 

the technology shock in productivity growth fluctuations in the theoretical model is often too 

large to be admissible in the SVAR. Given that the percentages in the RBC pool in the upper 

left corner of the figure, most of the resulting contributions in the SVAR are associated with a 

positive response at all horizons. Still, in around 20% of the identifications, the estimated 

response of hours is negative at some horizon. 

The left panel of Figure 5 collects the set of responses recovered in the SVAR. The 

shadowed area represents the full range of responses, and the solid line is the mean. As with 

the RBC, we derive a robust interval for the response of hours recovered by the SV method by 
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selecting the responses between the 16
th

 and 84
th

 percentiles. This robust interval for the 

empirical response is also depicted with a dashed red line in the figure.   

As can be observed in Figure 5, the total range of responses in the RBC and the SVAR 

are quite different. While responses in the RBC are always positive, no matter the 

parameterization, the SVAR sometimes returns a negative response in the data, even though 

the contributions targeted are implied by RBC parametrizations. Specifically, the 

contemporaneous response is negative (albeit not necessarily significant) when the percentage 

in productivity growth fluctuations falls below 70%. If this percentage is below 40%, the 

response of hours never turns positive. Negative responses are associated with RBC targets 

situated in the bottom left corner of Figure 5, characterized by low contributions to both 

productivity growth and hours.
13 

However, when we focus on where most of the responses are placed, the results are 

different. The robust sets in the RBC and the SVAR are similar, with an average response 

across the sets that are virtually identical in the short-run. Nonetheless, the responses in these 

sets still differ on impact. While in the RBC are always positive and strong, the responses in 

the robust set for the SVAR are concentrated on impact in a narrow interval around zero.  

Overall, the results of this exercise provide substantial support to empirical findings 

obtained with the baseline parameterization; the responses inside the robust set for the SVAR 

are positive in the short-run, departing from a near-zero contemporaneous value. 

4.3.3 Is the RBC compatible with the data? 

Results in Figures 4 and 5 can also be employed to study the consistency between the RBC 

and the data. Recall that the proposed identification method brings the SVAR as close as 

possible to the targeted shares. Thus, if the model and the data are compatible, the resulting 

contributions of the shock identified by the SV method should not be too far from the 

percentages in the RBC. Likewise, the responses of hours in the SVAR and the RBC are 
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expected to have a similar shape or, at least, the same sign. If not, the theoretical model and 

the data are just not compatible.  

It is important to stress that compatibility does not necessarily imply “validity,” as the 

procedure gives the RBC model from which the targets are taken the best chance. Finding no 

evidence of compatibility, however, does undermine the validity of the model.  

Overall, we find substantial compatibility between the RBC model and the data for 

most of the parameterizations of the model. This result, however, must be qualified. First, 

many parameterizations imply a contribution to productivity growth fluctuations too high to 

be admissible. Second, although the responses inside the robust interval for the SVAR are 

similar to the responses in the RBC in the short-run, their contemporaneous impact widely 

differs. Finally, there is still a non-negligible set of credible parameterizations of the RBC that 

are not compatible with a positive response in the SVAR.  

5. Extensions 

We extend our empirical section in several directions. First, we assess the response of hours 

in a different dataset, also popular in the literature. After that, we include the investment-

output ratio to determine the stability of the empirical findings to the inclusion of more 

variables. The third extension considers an alternative version of the SV method, which 

employs the forecast error variance. Finally, we use Sobol sequences to study whether 

uniformly and independently drawing P=10,000 different parametrizations of the RBC is 

enough to cover the entire parameter space. We briefly discuss the results of these extensions 

in the main text, but the corresponding figures and tables are reported in the Supplement to 

save space.  

As the first extension, we consider an alternative dataset similar to Christiano et al. 

(2003). It contains data from all sectors (including the farming) and has also been collected 

from the FRED database. The total business productivity is measured as the log-output per 
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hour of all persons (OPHPBS), and hours worked as the log-ratio of the business hours of all 

persons (HOABS) to the civilian non-institutional population over the age of 16 years 

(CNP16OV). The “Civilian non-institutional population over the age of 16” is converted to 

quarterly by taking simple averages of monthly observations.  

Overall, the SV method delivers similar results in the two datasets. The response of 

hours recovered by the SV method in the second dataset is also positive and significant in the 

short-run, departing from a small, non-significant, negative contemporaneous impact.  

The second extension investigates whether the results change in response to the 

specification of the empirical model. To do this, we expand the dataset with the investment-

output ratio. This variable is computed as the natural logarithm of the ratio of real gross 

private domestic investment (GPDIC96 in FRED) to the corresponding series of output. 

According to Chari et al. (2008), the inclusion of a capital-like variable may change the 

results of the empirical model, and the investment-output ratio is the only capital-like variable 

producing an invertible moving average representation of the RBC model in the state space 

form. The technology shock contribution to the business cycle variance in the three-shocks 

extension of the Christiano et al. (2007) RBC model is 73.34%, 5.34%, and 27.90% for 

productivity growth, hours, and the investment-output ratio, respectively. We employ these 

percentages as a target for the SV, finding a response of hours in the SVAR that is once more 

non-significant on impact, but turning positive and significant in the short-run, similar to the 

response obtained with a bivariate specification. 

We also study the response of hours obtained with an alternative definition of the 

identification method based on targeting the technology shock contribution to the forecast 

error variance. As noted before, our scheme employs the spectral decomposition of the 

variance since it permits a more precise characterization of the business cycle. The results are 

not expected to differ much if instead, one uses the forecast error variance at middle-run 
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horizons. The contributions of the technology shock to the forecast error variance at six years 

in RBC is 82% for productivity growth and 5% for hours, respectively. We employ this 

alternative version in actual data finding a similar, albeit slightly smaller response. However, 

the associated uncertainty is larger, with wider error everywhere. In particular, the response of 

hours to the shock recovered using the forecast error variance alternative is not significant at 

any horizon, not even using the 68th percentile bootstrapped error bands.  

As the last extension, we ensure covering the parameter space more evenly using 

Sobol sequences. In Section 4.3, we draw 10,000 times from independent uniforms for all 

parameters inside their interval to obtain a broad set of parametrizations of the RBC. 

Although the number of parametrizations of the model is large compared to other studies, we 

still could have left empty some parts of the parameter space. A Sobol sequence (Sobol, 1977) 

is a low-discrepancy, quasi-random sequence, which covers the unit hypercube with lower 

discrepancy than random sampling, filling the space of possibilities more evenly. The results 

obtained parametrizing the RBC with Sobol sequences are virtually identical to the results 

obtained by uniformly drawing, and are provided in the Supplement to conserve space.  

6. Conclusion 

In this work, we have identified technology shock at the business cycle to improve the small-

sample properties of the SVAR. To do so, we have proposed a novel identification scheme 

that brings the identified shock as close as possible to the contributions the technology shock 

has in DSGE models at this range of frequencies. The proposed scheme is model-based, 

midway placed between the parameterized DSGE model and a typical SVAR scheme. The 

loss of generality, however, is associated with a substantial improvement of the SVAR in 

small samples and offers an interesting view of the compatibility between the theoretical 

model and the data that cannot be obtained using other schemes. We have shown how to 
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generalize the empirical findings by establishing a robust interval for the estimated response 

of hours, based on a broad set of parameterizations of the theoretical model. 

Throughout this paper, we have employed the hours-productivity debate as a 

connecting thread. However, the SV method can also be applied to the study of other 

questions addressed with SVARs, such as in the analysis of monetary or fiscal policy issues. 

Besides, an attractive version of the SV method may select candidate identifications satisfying 

intervals for shock contributions instead of targeting specific values, thus providing set 

identification. Finally, a remaining open question is whether one can use the contributions at 

the business cycle (or other frequency range) of a shock identified in the SVAR to 

parameterize a DSGE model, similar as it is done with the impulse-responses (see, e.g., Hall 

et al. 2012). In this case, the shock of interest can be identified in the SVAR as the 

econometrician ponders the safest. We consider these subjects exciting avenues for future 

research.  

Notes 

1. Gali (1999) finds a negative response of hours, contrary to what RBC theory 

predicts. However, the sign of the response depends crucially on the treatment of hours in the 

SVAR. If the series is differenced, as in Gali (1999), the response is negative. However, if 

hours enter in levels, as in Christiano et al. (2003, 2004), the response is positive using the 

same LR restriction. Besides, see Fout and Francis (2014) for a modification of RBC models 

to accommodate the contractionary effect on hours, and Guiuli and Tancioni (2017), for 

SVAR evidence of contractionary effects on other variables, such as investment. 

2. Differencing hours is justified arguing that the series contains external fluctuations 

at low-frequencies [see, e.g., Francis and Ramey (2009)]. However, Christiano et al. (2003, 

2004) provide statistical arguments in favor of the level specification. Moreover, Gospodinov 

et al. (2011) and Lovcha and Perez-Laborda (in press) show that differencing (or filtering) 
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biases the response of hours, invalidating posterior inference. See also Pesavento and Rosi 

(2005) or Lovcha and Perez-Laborda (2015) for alternative treatments of hours worked in the 

SVAR. 

3. Restrictions to the signs of the responses of hours and productivity growth to own 

shocks are also required. As common in the literature, we assume both positive. 

4. Christiano et al. (2007) show that a zero restriction on the contemporaneous 

response hours to the technology shock works well if the condition is satisfied. However, this 

short-run restriction is not met in standard macroeconomic models and is rarely employed in 

practice. Consequently, we do not consider this scheme in the main text, but its description 

and some empirical results are available in the Supplement. 

5. The SV method cannot distinguish technology from another shock with the same 

contributions to all variables. Keeping the notation for the contribution of the kth shock to the 

fluctuations of the nth variable and the assumed order in the system, an additional condition to 

be met is that 1k  , n s.t.
1

R R

nk nT T . The concern disappears if the contribution of the 

technology shock to at least one variable exceeds 50%. Large contributions to productivity 

fluctuations at the business cycle (of around 75%) are consistent both with standard RBC 

parametrizations and other identification schemes, as shown in Section 4. 

6. Four lags are also the order typically selected by the Bayesian Information Criteria 

in actual data. 

7. DiCecio and Owyang (2010) consider a “low” band (between eight to 20 years 

period) and a “very low” band (periods longer than 20 years, excluding the zero frequency). 

However, with 60 years of quarterly data, the last band exists only on a couple of Fourier 

frequencies. Consequently, we merge the two bands into a single “low-frequency” band.  

8. In particular, the MR imposes 100% contribution to the forecast revision of 

productivity at four years, and the true value in the RBC model is as close as 99.2%. The 
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possibility of misidentification bias is, in principle, less for the MS and FD, as these methods 

determine the maximum admissible in the SVAR. Besides, the contribution of the technology 

shock to the productivity forecast error variance at ten years in the RBC is also huge (97.9%), 

and the same applies to the contribution to productivity fluctuations at low frequencies 

(93.4%). As a result, the maximization procedures in the MS and FD methods identify a 

shock with a share in productivity fluctuations at the selected horizon that is virtually identical 

to those the technology shock has in the RBC.  

9. Recall that we define the business cycle as being formed by fluctuations between 

two and eight years period, as standard in the literature. Consequently, the range is largely 

dominated by relatively high Fourier frequencies with a period smaller than four years. Note 

that in T=240 quarterly observations, there are only seven Fourier frequencies between 

periods four and eight years, but 15 between periods two to four years. As a result, the MR, 

MS, and FD methods set the restriction at longer horizons than the business cycle. 

10. The contributions given in the text do not exactly coincide with those in Table 2, 

as the table shows the contribution to productivity growth, not to productivity log-level.  

11. We have not included the last years of the data to eliminate a big break associated 

with the post-2009 period. In this way, our results are directly comparable to Lovcha and 

Perez-Laborda (2015), who used the same dataset to assess the response of hours in a long-

memory SVAR. 

12. Although this solution achieves the maximum admissible, it does not coincide with 

the solution of the FD-BC, as this method is defined in terms of the productivity log-level. 

13. Shock contributions with small percentages in both hours and productivity growth 

fluctuations at the business cycle, although rare for the RBC, are normal in standard 

parameterizations of new Keynesian models, such as in Ireland (2004).  
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FIGURES AND TABLES 

 
 

  

  

  

FIGURE 1. Simulation results: response of hours to the identified shock. The solid line is the mean response 

across simulations. The dashed and shadowed areas correspond to the 68
th 

and 90
th

 percentile bands, 

respectively. The red line marked with circles is the response in the baseline RBC.  
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FIGURE 2. Set of shock contributions to the business cycle fluctuations of the variables that are admissible in 

the SVAR. The “A” point signals the contributions implied by the baseline RBC. The “B” point signals the 

contributions recovered by the SV method using “A” as a target. The “C” point signals the contributions that one 

would obtain targeting the RBC shock share in productivity growth only. 
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FIGURE 3. The response of hours worked to the identified technology shock in the SVAR. The dashed lines 

and shadowed area correspond to the 68th and 90th bootstrapped error bands, respectively.  
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FIGURE 4. Business cycle contributions of the technology shock across RBC parametrizations and 

corresponding percentages in the SVAR.  
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FIGURE 5. The left panel plots the response of hours across RBC parameterizations. The corresponding 

responses recovered by the SV method are depicted on the right. The shadowed grey area highlights the total 

range at each horizon. The solid line is the mean response. The dashed red lines highlight the robust interval 

formed by the responses within the 16
th

 and 84
th

 percentile (68
th

 percentile band). 
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TABLE 1. The RBC model 

The RBC:  

  
 

1

0

0

1 1
1 ln
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1

t t t ty k Z l
 

  

   ,1 1t x t l t t t t t tc i w l r k T         1ln ln ,    0,1z l

t t z z t tZ Z iidN       

   11 1t t ti k k         , , 1 ,    0,1l z

l t l l l t l l t t iidN            

t t tc i y     0l z

t tE     

Baseline  parameterization 

0.98    0.3x   
1/41.01 1    0.242l   

2.5   1/41 016z    

1    0.986
l

 

 
1/4

1 1 0.06     0.00953z   

0.33    0.0056l   

Credible intervals for RBC parameters 

 0.950;  0.995    0.2;  0.4x   

1/4 1/41.01 1;  1.02 1        0.2;  0.4l   

 1.6;  2.5   1/4 1/41.005 1;  1.03 1 z       

 0;  10    0.952;  0.9994l   

   
1/4 1/4

1 1 0.06 ;  1 1 0.01      
 

  0.00953;  0.0388z   

 0.3;  0.4   0.0050;  0.016l   

The credible intervals include the values in all the parameterizations considered in Christiano et al. (2007), Chari 

et al. (2008), Dedola and Neri (2007), and Canova and Paustian (2011). For the parameters governing the 

process of shocks, we have constructed the intervals based on Christiano et al. (2007), Chari et al. (2008), 

Prescott (1986), Erceg et al. (2005), and Canova and Pausitan (2011). The values in other RBCs in the literature 

generally fall in the reported intervals. 
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TABLE 2. Simulation results: contribution of the identified shock at the business cycle  

Share in: ln tl  
ln ty

 
DGP: Baseline RBC  7.48 80.36 

SV 7.78 [3.89; 12.53] 80.65 [78.97; 84.01] 

LR 30.18 [3.47; 67.73] 56.86 [18.40; 93.85] 

MR 7.72 [1.69; 21.45] 85.44 [65.00; 97.69] 

MS 16.96 [2.51; 40.69] 73.42 [40.20; 95.75] 

FD 11.80 [1.96; 44.95] 80.39 [37.48; 97.53] 

FD-BC 3.53 [0.77; 9.64] 98.57 [95.82; 99.58] 

The numbers in the table are the mean shares of identified technology shock in the fluctuations of (log) hours 

and productivity growth at business cycle frequencies across simulations. The numbers inside parentheses 

correspond to the 68% percentile interval. The DGP is the baseline two-shock RBC of Christiano et al. (2007).  
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TABLE 3. Empirical results: contribution of the identified shock at the business cycle  

% ln tl  
ln ty

 

SV 10.76 [7.18; 14.73] 74.34 [65.85; 80.31] 

LR 23.42 [8.46; 53.91] 78.02 [62.02; 82.48] 

MR 8.08 [3.88; 24.91] 72.60 [57.60; 8285] 

MS 17.62 [6.20; 39.92] 76.96 [62.13; 83.30] 

FD 12.63 [3.95; 38.87] 75.25 [59.20; 82.87] 

FD-BC 5.06 [3.04; 23.03] 69.61 [57.78; 82.47] 

The numbers in the table are the shock shares of the identified shock in the fluctuations of (log) hours and 

productivity growth at business cycle frequencies. The numbers inside parentheses correspond to the 68th 

percentile interval computed by the nonparametric bootstrap method. The SV targets the percentage business 

cycle contribution of technology shock in the baseline parameterization of the RBC at 7.48% and 80.36% for 

hours and productivity growth, respectively. 


