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ECOLOGY

Can spatial distribution of ungulates be predicted by modeling 
camera trap data related to landscape indices? A case study in a 
fragmented mediterranean landscape
¿Se puede predecir la distribución espacial de ungulados mediante la modelización de 
imágenes de fototrampeo relacionadas con índices del paisaje? Un estudio de caso en 
un paisaje mediterráneo fragmentado
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ABSTRACT
Camera trap applications range from studying wildlife habits to detecting rare species, which are  
difficult to capture by more traditional techniques. In this work, we aimed at finding the best model 
to predict the distribution pattern of wildlife and to explain the relationship between environmental 
conditions with the species detected by camera traps. We applied two types of statistical models in 
a specific Mediterranean landscape case. The results of both models shown adjustments over 80 %. 
First, we ran a Principal Components Analysis (PCA). Discriminant, and logistic analyses were per-
formed for ungulates in general, and three species in particular: Barbary sheep, mouflon, and wild 
boar. The same environmental conditions explained the presence of these species in all the proposed 
models. Hence, we proved the generally positive influence of patch size on the presence of ungulates 
and negative influence of the fractal dimension and density edge. We quantified the relationships 
between a suite of landscape metrics measured in different grids to test whether spatial heterogeneity 
plays a major role in determining the distribution of ungulates. We explained much of the variation 
in distribution with metrics, specifically related to habitat heterogeneity. That outcome highlighted 
the potential importance of spatial heterogeneity in determining the distribution of large herbivores. 
We discussed our results in the forestry conservation practices context and discuss potential ways to 
integrate ungulate management and forestry practices better.
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RESUMEN
Las aplicaciones del fototrampeo van desde el estudio de hábitos de la vida silvestre hasta la detección 
de especies raras, que son difíciles de capturar mediante técnicas tradicionales. El objetivo de este 
trabajo es proponer modelos predictivos para el comportamiento de la vida silvestre, explicando las 
relaciones entre las condiciones ambientales y las diferentes especies detectadas mediante cámaras 
trampa. Finalmente, proponemos dos tipos de modelos predictivos adaptados a un caso específico del 
paisaje mediterráneo. Los resultados de ambos modelos muestran ajustes superiores al 80 %. En pri-
mer lugar, se realizó un Análisis de Componentes Principales (ACP). Se emplearon análisis  discrimi-
nantes y logísticos con ungulados en general, y para tres especies en particular: arruí, muflón y jabalí. 
Las condiciones ambientales explicaron la presencia de estas especies en todos los modelos propuestos. 
Probamos la influencia positiva general del tamaño de los parches sobre la presencia de ungulados. 
También detectamos una influencia negativa de la dimensión fractal y el borde de densidad. Cuantifi-
camos las relaciones entre un conjunto de métricas de paisaje medidas en diferentes cuadrículas para 
probar si la heterogeneidad espacial juega un papel importante en la determinación de la distribución 
de los ungulados. Explicamos parte de la variación en la distribución con métricas específicamente rela-
cionadas con la heterogeneidad del hábitat. Ese resultado destacó la importancia de la heterogeneidad 
espacial para determinar la distribución de los grandes herbívoros. Colocamos nuestros resultados en 
el contexto de las prácticas de conservación forestal y discutimos posibles formas de integrar mejor las 
prácticas de manejo y silvicultura.

Palabras clave. Análisis discriminante, análisis logístico, análisis multivariado, fototrampeo, métri-
cas del paisaje

INTRODUCTION

Camera traps, and the images they generate are becoming 
an essential tool for field biologist studies and for moni-
toring terrestrial animals (Fegraus et al. 2011). These tools 
were used to study birds nest predation (Holloran and An-
derson 2003), feeding ecology, nesting behavior, with addi-
tional applications such as activity patterns, presence-ab-
sence monitoring and estimating population parameters 
(Cutler and Swann 1999). Track surveys are efficient and 
are usually low-cost but rely on suitable field conditions 
and trained personnel. In comparison, camera-trapping 
is more costly at the beginning but does not rely so much 
on the environmental conditions, intensive fieldwork, or 
highly experienced field staff (Silveira et al. 2003). Camera 
traps are also very convenient for detecting cryptic and rare 
species, which are difficult to capture by more traditional 
techniques. Also, this method is particularly important to 
study endangered species, when capture or collection is re-
stricted or prohibited (Botello et al. 2007). Because of the 

extensive data collection, camera-trapping studies usually 
record abundant information about non-targeted species, 
but, that data has been marginalized and rarely published. 
However, those extra stored images may provide critical 
information for certain types of research, for example: (1) 
measuring biodiversity, (2) finding new evidence about 
the efficacy of management actions taken in different 
protected areas, and (3) studying species thought to be 
locally extinct (Can and Togan 2009). Camera-trapping 
data usefulness can be determined from indirect methods  
(Rowcliffe et al. 2008), for example, underlying detection 
probabilities from camera-trapping data can be estimated 
by combining occupancy models (Mackenzie et al. 2002) 
and population size measurements (Royle and Nichols 
2003, Stanley and Royle 2005). 

Systematization of the images captured by camera traps 
allows them to be easily included in scientific collec-
tions, increasing the information available from any sites 
being monitored by this method. This can contribute  
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significantly to global biodiversity assessments and help 
with key management decisions to be made (Botello et al. 
2007). However, the rapid increase in camera traps usage 
has not been accompanied by appropriate software solu-
tions to manage and analyze the images captured (Harris 
et al. 2010, Zaragozí et al. 2015).

Not many studies have analyzed the effects of land use 
changes on the past, present, and/or future distribution of 
mammals in Europe (Acevedo et al. 2011). Predictive habitat  
distribution models are a relevant tool to assess the im-
pact of global change on species distributions (Thuiller 
et al. 2008). Although many studies have explored land 
use change dynamics (Agarwal et al. 2002), very few have 
used habitat distribution models to address the impact 
of land use changes on animal populations (Lütolf et al. 
2009). A variety of statistical models can be used to as-
sess the impact of land use changes on ecosystems, and 
to predict the potential ecological consequences of future 
land-use changes (Millington et al. 2007). For example, 
hunting datasets have been analyzed using GIS in order 
to determine the primary relationships between landscape 
structure and game species populations in Mediterranean 
environments (Belda et al. 2011).

In this work, we quantified the relationships between a set 
of landscape metrics –measured in different resolution 
grids – to test whether spatial heterogeneity plays a sig-
nificant role in determining the distribution of ungulates – 
in a Mediterranean landscape. We explained much of the 
variation in distribution with metrics, specifically related 
to habitat heterogeneity. That outcome highlighted the po-
tential importance of spatial heterogeneity in determining 
the distribution of large herbivores. We place our results 
in the context of forestry conservation practices and dis-
cuss potential ways to integrate ungulate management and 
forestry practices better. We used discriminant and logis-
tic modeling to determine significant landscape properties 
factors with both the presence and absence of ungulates 
species. We also ran the corresponding validation tests of 
each calculated statistical model in order to make predic-
tions about wildlife behavior following landscape proper-
ties. To meet the aim of our work, we used a case study that 
was conducted in a specific area to demonstrate the ver-
satility and robustness of the proposed statistical models.

MATERIAL AND METHODS

Location
The Sierra de Mariola Natural Park, located in the southeast 
of the Iberian Peninsula, covers 17 500 ha of seven nearby  

municipalities (Fig. 1). The park is characterized by a 
very mountainous relief, crossed by river valleys, and ex-
hibiting a typical Mediterranean climate. Natural land 
cover predominates (67 %), followed by some areas with 
rain-fed crops (24 %), residential areas (5 %), abandoned 
crops (3 %), and irrigated crops (1 %) (Belda et al. 2016). 
Finally, this natural park also holds great biodiversity in 
plants and animals, highlighting a large variety of carniv-
orous mammals, ungulates, and game species (Belda et al. 
2012). In order to better understand the sustainability of 
this semi-natural environment, we have been observing 
and analyzing its composition for almost one decade.

Camera models
The methodology used to determine the presence/ab-
sence and relative abundance of terrestrial vertebrate fau-
na, related mainly to ungulates, is based on the camera- 
trapping technique. We used 25 cameras with motion  
sensors –Moultrie Game Spy I-60 Infrared Flash Game 
Camera. This high-tech camera-trap uses infrared tech-
nology to pick up on any game that moves through its field 
of view. Not only does it capture wildlife with precise re-
sults in the daytime or at night, but it has a vast number of 
features to provide a complete information source: a built-
in 6.0 megapixel picture and video viewer, with displays 
barometric pressure, temperature, time, and moon phase 
readings. The I-60 also has 32 MB internal memory, 50’ 
flash, and 150 days of battery life. It can support external 
memory cards and add-on power packs to expand snap-
shot capabilities and battery life. Data is stored on a two 
GB SD memory card. Units are equipped with an external 
power system, which consists of a 12V battery and power 
cables. We selected this model for its usability, resolution, 
and adaptability with other Moultrie add-on accessories. 

Sampling process
In order to place the camera-traps, we divided the study 
area into a grid of 63 squares of 2x2 km. The sampling pe-
riod was from August 2008 to September 2009. During 
that period we installed two camera traps in each grid 
square, keeping a minimum separation distance of 200 m 
between them and 30–50 cm above the ground. As an at-
tractant, we used a mixture of corn, almonds, wheat, and 
salt, placed at 4–5 meters in front of the camera traps. 
Devices were scheduled to take three consecutive shots  
before a five minutes rest period. In this work, we de-
fine valid pictures as those were species identification, 
and counting can be performed. Any blurred images, e.g. 
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GIS layers, V-late 1.1® – an ArcGIS extension– and FRAG-
STATS® (Mcgarigal et al. c2002), to calculate landscape 
metrics. We calculated 16 landscape metrics including: 
Total Landscape Area (TLA), Number of Patches (NUMP), 
Mean Patch Size (MPS_ha), Median Patch Size (MEDPS), 
Patch Size Coefficient of Variance (PSCOV), patch size 
standard deviation (PSSD), Total edge (TE), Edge density 
(ED), Patch Edge (MPE), Shape Index (MSI), Area-weight-
ed Mean Shape Index (AWMSI), Perimeter-Area-Ratio 
(MPAR), Mean Patch Fractal Dimension (MPFD), Area 
Weighted Mean Patch Fractal Dimension (AWMPFD), 
Shannon’s Diversity Index (SDI), and Shannon’s Evenness 
Index (SEI). 

Statistical modeling
First, we studied the correlation between the initial vari-
ables using the Pearson correlation test. Since they are 
highly correlated, we performed a factorial analysis (PCA). 
In this way, we obtained new uncorrelated variables and 
the relationships between the calculated metrics which in-
cluded all the information. Using the PCA, we confirmed 
independence between the newly obtained variables  
(Korre 1999, Abdul-Wahab et al. 2005). Then we performed  
discriminant and logistical analyses to obtain predicting 
models for the ungulate wildlife in a general analysis, and 

captured in movement, were considered invalid. All the 
captured images were copied to a personal computer and 
analyzed with our software – namely CameraTrapMan-
ager. This software facilitates the creation of a GIS data-
base containing the metadata extracted from the captured 
images and an expert classification; then it can be used to 
prepare reports and maps (Zaragozí et al. 2015).

Landscape analysis
The landscape was characterized as a land-use GIS layer, 
photo-interpreted and manually digitized from publicly 
available ortophotographs at a 1:5000 scale (ICV c2005). 
We also identified and digitized all hunting areas. The re-
sulting land-use layer comprised 1213 polygons that were 
categorized into three classes of natural uses: pine forest, 
shrubland, and riparian, three classes of agricultural uses: 
rainfed, irrigated, or abandoned crops, and a unique class 
for representing urban areas (Fig. 1). Finally, we rasterized 
the resulting vector layer for facilitating further analyses 
(Zaragozi et al. 2015). These processes were performed us-
ing the ArcGIS 9.0 suite.

In accordance with similar studies (Yamaura et al. 2005, 
Belda et al. 2011), we used two different programs for cal-
culating the landscape metrics from the previously created 

Figure 1. Study area (Serra Mariola Natural Park). The ungulates mouflon, Barbary sheep, and wild boar are indicated in the grids and land use infor-
mation is also provided.
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particularly for the mouflon (Ovis orientalis musimon 
Pallas, 1762), wild boar (Sus scrofa, Linnaeus, 1758) and  
Barbary sheep (Ammotragus lervia Pallas, 1777) species. 
The normality of the data within the groups was tested 
through the Kolmogorov-Smirnov test.

RESULTS

Finally, 72 347 images were collected (more than 93 GB), 
of which 29 941 showed some wildlife contacts; 4981 of 
these were ungulates – spotted in 45 of the 20 grid squares 
(71.43 %). The wild boar was present in 69.84 % of the grid 
squares (4408 images), mouflon in 14.29 % (546 images), 
and Barbary sheep in 11.11 % (27 images). 

The digitized land uses were used to calculate the land-
scape indices shown in Table 1. Moreover, we used 16 
landscape indices to perform a factorial analysis, ne- 
cessary to obtain the determinant value of the correlated  
matrix and ensure the existence of correlations among the 
selected variables. Total Landscape Area (TLA) and Num-
ber of Patches (NUMP) metrics were not significant, so 
they were excluded from the model.

We obtained a matrix determinant value of 1.96 10-8, 
which indicates a strong correlation among the landscape 
indices. This result meant that it was possible to apply the 
PCA analysis on these indices (Cuevas et al. 2013). After 
the viability test, we obtained the best result when we used 
Standardization rotation Oblimin with the Kaiser Method. 

We obtained five components capable of explaining 84.08 
% of the typical variability of the variables. The relevance 
and structure of the variables are listed in Table 2.

The interpretation of the obtained components was:

–	 Component 1 (C1): more influenced by indices Mean 
Patch Size (MPS), PSSD, MPE, MSI, and AWMSI, 
defined as Area size.

–	 Component 2 (C2): more influenced by indices TE, 
SDI, and SEI, defined as Diversity.

–	 Component 3 (C3): more influenced by indices ED and 
AWMPFD, defined as Edge density.

–	 Component 4 (C4): more influenced by indices MEDPS 
and PSCOV, defined as Size variance.

–	 Component 5 (C5): more influenced by indices MPAR 
and MPFD, defined as Fractal dimension.

We used the components of the PCA to run the discrimi-
nant and logistical analyses. First, we applied discriminant 
modeling, which included the five components above, as 
well as the presence and absence data of each species.  
Table 3 shows the four models obtained by the discrim-
inant analysis. In these models, we included only the  
significant components, although other components  
explain more variation compared to the previous ones. 
Their sign revealed their positive or negative influence on 
the presence of species, and the successes and failures per-
centages in the model fit.

To generally predict ungulate behavior, the components 
used were C1 and C5, which corresponded to Area size 
(MPS) and Fractal dimension (MPFD), respectively. The 
fractal dimension influenced the presence of ungulates 
was negative, while Area size was positive, which means 
that the whole group of ungulates preferred large and ho-
mogeneous areas. The model was very useful because it 
correctly discriminated 85.71 % of the measured data. 

With mouflon, the only significant component was C3 
more influenced by Edge density– with a negative influ-
ence on the presence of mouflon. The model was able to 
discriminate 71.40 % of the data. Size component (C1) 
had a positive influence on the presence of Barbary sheep, 
and the model discriminated 71.40 % of the studied data. 
Finally, wild boar behavior was explained with the same 
components as ungulates in general (C1 and C5) discrimi-
nating 84.10 % of the data. 

Table 1 The Landscape Indices of Sierra de Mariola.

Total area (TLA) m2 169 799 
917.5m2

Number of Patches (NUMP) 1213

Richness 16

Relativity richness (%) 100

Shannon’s Diversity Index (SDI) 1.93

Shannon’s Evenness Index (SEI) 0.696

Dominancy 0.843

Number of classes 16

Edge Density (ED) 151.03

Total Edge (TE) 2 564 548.57

Mean patch edge (MPE) 2114.22

Shape index (MSI) 1.904

Perimeter-area-ratio (MPAR) 0.068

Fractal dimension (MPFD) 1.37
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Table 2 Component Matrix of the Landscape Indices. Extraction Method: Principal Component Analysis. Rotation Method: Oblimin with Kaise Normalization.

Component
1 2 3 4 5

(35.10 %) (18.75 %) (13.95 %) (8.43%) (7.8 %)

MPS 0.867 -0.140 -0.320 -0.196 -0.269

MEDPS 0.438 0.316 -0.163 0.627 -0.267

PSCOV 0.565 0.095 -0.089 -0.861 -0.165

PSSD 0.788 -0.220 -0.302 -0.473 -0.229

TE 0.549 0.605 0.324 -0.409 -0.253

ED -0.532 -0.351 0.663 0.270 0.269

MPE 0.969 0.220 -0.060 -0.130 -0.320

MSI 0.767 0.427 0.253 -0.233 0.184

AWMSI 0.699 0.371 0.385 -0.585 -0.256

MPAR -0.116 0.050 0.005 0.105 0.833

MPFD -0.120 -0.257 0.227 -0.243 0.581

AWMPFD 0.040 0.189 0.972 -0.157 0.093

SDI 0.121 0.957 0.146 0.063 -0.074

SEI -0.005 0.881 0.009 0.159 -0.035

We employed logistical regression to model the same data 
with the five components calculated by PCA (Table 4). 
We use the same components employed in the discrimi-
nant models, which reinforced the obtained results. These 
components influenced ungulates and were the same as in 
the discriminant models in the three analyzed individual  
species. The only difference found was the adjustment per-
centage in each model. In this case, the logistical function 
adjustment for ungulates species was 82.5 %, 76.2 % for 
mouflon and wild boar, and the lowest of all the calculated 
models was 66.7 % for Barbary sheep. 

DISCUSSION

The application of landscape metrics provided excellent re-
sults when included in monitoring wildlife studies (Smith 
et al. 2004). Therefore, ecologists have often assumed the 
most important ecological processes to affect wildlife pop-
ulations and communities operate on local spatial scales. 
Vertebrate species richness and abundance are often  
considered to depend on variation in local resource avail-
ability, vegetation composition and structure, and on  
habitat patch sizes (Mcgarigal et al. c2002). 

In this work, we confirm that the advantages of using cam-
era-trapping include accurate species identification, little 

environmental disturbance, similar efficiency to detect 
nocturnal and diurnal species, as well as the possibility 
of studying activity patterns, easy handling by untrained 
personnel, the extent of the area that can be simultane-
ously sampled, and the possibility of being used in further  
population studies. This seems proved, despite that in 
previous studies; the track census was the most effec-
tive method for detecting richness, followed by camera- 
trapping and direct fauna surveys (Silveira et al. 2003). 
There is no doubt that camera traps have opened up new 
ways to study elusive species, but some substantial metho- 
dological issues are still to be overcome, and far too often, 
camera-trapping studies gave a little forethought to the 
study design and subsequent data analyses. This problem 
may be compounded as the methodology becomes out-
paced by technology (Kelly 2008).

In the Sierra de Mariola Natural Park, ungulates gener-
ally preferred large homogeneous areas with few vege-
tation types. Similarly, as in nearby areas, the ungulates 
correlated positively with homogeneous forest areas. More 
concretely, Barbary sheep density was positively related to 
dense pine forests, clear shrublands, old abandoned fields, 
and large homogeneous areas (Belda et al. 2011). These 
preferences seem to be very common in Spain, as in pre-
vious studies the aoudad preferred land forest, bare rock, 
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shrublands, and natural grasslands. However, when facing 
human disturbance, it is associated with less mountainous 
areas, forests, and rain-fed crop areas (Cassinello et al. 
2006). Similarly, wild boar selects dense pine forests with 
oak trees, seeking for shelter and refuge. These preferenc-
es have been favored in recent decades when old aban-
doned crops were reverted into natural areas, contribut-
ing to increase the presence of new populations in nearby 
areas. Cereal crops and dry groves seem to be preferred 
by wild boar in Mediterranean landscapes as feeding areas 
(Calenge et al. 2004). This species presence is positively 
correlated with the Total Core Area index (TCA) and the 
Number of Disjunct Core Areas (NDCA). Thus core area 
metrics seem to be better predictors for wild boar habitat 
quality than patch areas metrics. This could be taken into 
account by forest specialists (Belda et al. 2011).

Big-game species populations have expanded consider-
ably in recent decades, and it appears that environmental 
changes will occur in forthcoming years. Therefore, as nat-
ural predators that can regulate the size of their populations 
are lacking, hunting management and disease are the only 
possible regulatory options available (Acevedo et al. 2011).

This work provides important information on the relation-
ships between biodiversity and the landscape structure 
of the Sierra de Mariola Natural Park. Wildlife managers 
need to take the landscape structure into account for im-
proving the management of game species in their territory. 
Thus, local governments and associations of hunters should  

encourage the conservation of crops and water sources. Our 
results provide the territorial ordination of hunting yields in 
southern Spain and offer several potential applications for 
the strategic planning of hunting activities and biodiversity 
conservation. Finally, research into the effects of hunting, 
long-term monitoring, and regional-scale analyses of habi-
tat availability, should be future research priorities.

Since 2009, the camera-traps used in the Sierra de Mari-
ola study area have produced a large volume of informa-
tion that is difficult to manage. We consider that despite 
the high initial costs required by camera-trapping –devic-
es and human resources– this method is appropriate for 
making inventories of ungulates under different environ-
mental conditions, and allows the wildlife conservation 
status to be rapidly assessed. Hence it is useful to invest 
time in developing methods and tools such as those men-
tioned in this work. Moreover, camera traps combined 
with GIS tools have allowed the integration of simple 
wildlife information collected in the field with other data 
sources. Use of camera traps in research has vastly var-
ied and provided researchers with new insights into many 
aspects of wildlife behavior, which would not have been 
gained without this technology.

We successfully modeled ungulate behavior using the data 
collected from camera traps regardless of the multifacto-
rial statistical analyses. By following the proposed metho- 
dology –PCA combined with multifactorial analyses– we 
obtained new evidence to explain ungulates distribution. 

Table 3. Linear Discriminant Models and Accuracy.

Species Models % Global Accuracy % Absence Accuracy % Presence Accuracy

Mouflon Absence = – 0.700 + 0.121*C3
Presence = – 0.942 – 0.729*C3 71.40 % 70.40 % 77.80 %

Barbary sheep Absence = – 0.699 – 0.116*C1
Presence = – 1.090 + 0.927*C1 71.40 % 73.20 % 57.10 %

Wild boar Absence = – 1.273 – 0.935*C1 + 0.753*C5
Presence = – 0.801 + 0.404*C1 – 0.325*C5 84.10 % 73.70 % 88.60 %

Ungulates group Absence = – 1.438 – 1.174*C1 + 0.783*C5
Presence = – 0.812 + 0.469*C1 – 0.313*C5 85.71 % 77.77 % 88.88 %

Table 4. Logistical Regression Models and Accuracy.

Species Models % Global Accuracy % Absence Accuracy % Presence Accuracy

Mouflon f(x)= -2.115 – 1.081*C3 76.2 % 75.9 % 77.8 %

Barbary sheep f(x)= -2.484 + 1.111*C1 66.7 % 66.1 % 71.4 %

Wild Boar f(x)=1.164 + 1.481*C1 – 1.140*C5 76.2 % 73.7 % 77.3 %

Ungulates group f(x)=1.392 + 1.840*C1 – 1.157*C5 82.5 % 83.3 % 82.2 %
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