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Abstract: Worldwide, the penetrations of photovoltaic (PV) and energy storage systems are increased
in power systems. Due to the intermittent nature of PVs, these sustainable power systems require
efficient managing and prediction techniques to ensure economic and secure operations. In this
paper, a comprehensive dynamic economic dispatch (DED) framework is proposed that includes
fuel-based generators, PV, and energy storage devices in sustainable power systems, considering
various profiles of PV (clear and cloudy). The DED model aims at minimizing the total fuel cost of
power generation stations while considering various constraints of generation stations, the power
system, PV, and energy storage systems. An improved optimization algorithm is proposed to solve
the DED optimization problem for a sustainable power system. In particular, a mutation mechanism
is combined with a salp–swarm algorithm (SSA) to enhance the exploitation of the search space
so that it provides a better population to get the optimal global solution. In addition, we propose
a DED handling strategy that involves the use of PV power and load forecasting models based on
deep learning techniques. The improved SSA algorithm is validated by ten benchmark problems
and applied to the DED optimization problem for a hybrid power system that includes 40 thermal
generators and PV and energy storage systems. The experimental results demonstrate the efficiency
of the proposed framework with different penetrations of PV.

Keywords: dynamic economic dispatch; sustainable power systems; improved salp–swarm
optimizer; forecasting; deep learning

1. Introduction

Economic dispatch (ED) methods aim to schedule generating units and allocate the demand power
among them to determine the best-generating scenarios. ED can benefit power utilities in various ways
by systematically minimizing the cost of energy production consistent with the load demand. For this
purpose, ED typically increases the usage of the most efficient generators, which can yield lower
fuel costs and reduced carbon emissions. A complex mathematical model is solved through multiple
computations to satisfy the demand while achieving the minimum generating costs of fuel-based
generation stations. These computations are restricted by various constraints of power systems [1,2].
The typical constraints of the ED problem are the capacity of generators, the ramp-rate of generating
units, and the power balance.

Sustainability 2020, 12, 576; doi:10.3390/su12020576 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-6729-6809
https://orcid.org/0000-0002-1074-2441
https://orcid.org/0000-0002-9558-0217
https://orcid.org/0000-0002-6959-9686
http://dx.doi.org/10.3390/su12020576
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/12/2/576?type=check_update&version=2


Sustainability 2020, 12, 576 2 of 21

Conventionally, an approximate quadratic function is employed to mathematically formulate
the ED problem in order to reduce the computational complexity. Nevertheless, in practice,
the input–output curves of generators have nonlinear characteristic due to the multi-valve steam
turbines (so-called valve-point effects). In addition, various faults in the machines prohibit some
generators from operating in some zones (i.e., prohibited zones). The existence of the valve-point
effects and prohibited zones make the solution space of the ED problem highly nonlinear, and thus
increasing the complexity of the optimization process [3].

The static economic dispatch (SED) provides an economical solution to the power of generation
stations at a certain load level. Differently, dynamic economic dispatch (DED) optimizes power
generation for multiple load levels over a period of time (e.g., one day) [4]. Notably, DED is a more
realistic procedure compared with SED because of considering the variation in the demand load and
the variation of power generation over the studied period.

After formulating the DED problem mathematically, an optimization method is required to
concurrently the fuel cost and carbon emission while handling all constraints. Although the traditional
power systems have satisfied the demand loads for a long time, they will not be able to meet the
current challenges alone, knowing that the fossil fuel is predicted to run out [5]. The integration of
renewable energy sources (RES) into power systems can be attributed to environmental, economic,
and social benefits. Driven by these benefits, the future power systems are predicted to be fed by
energy sources that are totally renewable. Therefore, modern power systems combine non-conventional
resources, such as RES and energy storage systems in order to provide sustainable power systems
capable of meeting the significant increase in demand [6–11]. For a realistic DED framework and
sustainable power systems, there is an essential need to incorporate RES and energy storage systems
in the optimization model. The declining trend of the costs of battery energy storage with enhanced
efficiency, along with an increasing need to alleviate the intermittent RES generation increased the
penetrations of such energy storage systems in the transmission levels. A benefits of the storage
systems is to curtail some of the variability challenges related to the RES power, and so smooth the
fluctuated generation while providing further charging/discharging control options. Indeed, the DED
optimization process can allow the optimal scheduling of the power outputs of generating units and
RES according to the load demands over predefined time intervals. Concretely, RES contributes to
reducing fuel costs and providing sustainable power and clean energy. Examples of RES are solar
energy, wind energy, and tidal energy [12–14]. Indeed, solar energy is a necessary form of renewable
energy. The earth receives a massive amount of energy from the sun that can be converted into clean
electricity directly through photovoltaics (PVs) [15,16] or indirectly through concentrating solar power
(CSP) [17]. Although the capital cost of PV farms is high, they are a preferable choice for generating
clean electricity [18]. The integration of PV to power systems guarantees efficient power delivery and
reduces the amount of CO2 emissions, thus protecting the surrounding environment.

In the last years, several heuristic optimization algorithms have been proposed for solving
engineering problems in general due to their high performance and simplicity. These heuristic
algorithms are mimicking natural phenomena or the social behaviors of creatures. For instance,
particle swarm optimization (PSO) [19], genetic algorithm (GA) [20], ant–lion optimization (ALO) [21],
ant colony optimization (ACO) [22], and grey wolf optimization (GWO) [23] are applied to solve the
SED problem. The authors of [24] evaluated the performance of moth–flame optimization (MFO),
moth swarm algorithm (MSA), GWO, ALO, sine cosine algorithm (SCA), and multi-verse optimization
(MVO) with applying mutation operators in solving the SED problem.

Regarding DED, many optimization algorithms have been applied to solve the DED problem,
such as symbiotic organisms search (SOS) algorithm, which combines GA, PSO, and SOS in a tri-base
population [25]. In [26], the GA algorithm is implemented to optimize the demand side management
and the DED as a complementary stage. An accelerated approach is proposed in [27] to solve the DED
problem with high computational speed. A hybrid PSO algorithm called BBPSO is presented in [28]
for solving the DED problem. In addition, chaotic differential bee colony optimization algorithm



Sustainability 2020, 12, 576 3 of 21

(CDBCO) [29], optimality condition decomposition (OCD) technique [30], biogeography-based
optimization [31], differential evolution algorithm (DEA) [32,33], and hybrid flower pollination
algorithm (HFPA) [34] are implemented to solve the DED problem. Furthermore, hybrid genetic
algorithm and bacterial foraging (HGABF) approach [35], weighted probabilistic neural network and
biogeography based optimization (WPNN–BBO) [36], multidisciplinary collaborative optimization
(MCO) [37], quasi-oppositional group search optimization (QOGSO) [38], and improved real coded
genetic algorithm (IRCGA) [39] are also applied to solve the DED problem. In [40], the MILP-IPM
approach is applied to solve the DED, and it combines the mixed-integer linear programming (MILP)
with the interior point method (IPM).

Indeed, the DED optimization problem is still a challenging issue because of the nonlinear
and non-convex characteristics of DED objective functions. The DED optimization process also
involves massive calculations to find the optimal values of tens of variables and parameters
(high dimensionality) while satisfying the constraints of the power system. The nonlinear, non-convex,
and non-differentiable characteristics of the DED, as well as the constraints, may squeeze the solution
space. In addition, the intermittent nature of PV increases the difficulty of the DED optimization
problem as it adds fluctuations to the power system. These aspects might push the search agents to
deviate from the global optima and yield diverse local optima. To cope with these challenges, a robust
optimizer is required to provide an accurate solution with low computational complexity.

To cope with the issues above, in this paper, we propose a comprehensive DED framework,
deep learning-based forecasting models, and an improved optimizer. Specifically, these major three
contributions can be summarized as follows:

• Comprehensive DED framework: A comprehensive DED framework is formulated that includes
fuel-based generators, PV, and storage devices in a sustainable power system, considering clear
and cloudy profiles of PV.

• Improved optimizer: We propose an improved salp–swarm optimizer that helps manage
the global exploration of the DED algorithm and reach reasonable DED solutions.
Specifically, we apply a mutation operator to the salp swarm optimizer to increase the exploitation
of the search space for improved solutions. The proposed algorithm is validated with ten benchmark
problems and then used to optimize the DED problem for a sustainable power system with PV
within the studied period.

• Deep learning-based forecasting models: We propose a DED handling strategy that involves
the use of PV power and load forecasting models based on deep learning techniques.

The rest of this paper is organized as follows. Section 2 presents the DED framework. Section 3
explains the proposed DED solution algorithm and the deep learning-based forecasting models.
Section 4 provides the results. Section 5 concludes the paper and gives some lines of future work.

2. Comprehensive DED Framework

The main objective of the DED problem is to minimize the costs of the fuel consumed by
generator units. This optimization problem is heavily restricted by various practical considerations,
e.g., generation constraints of units, ramp-rate constraints of generating units, and power mismatches
constraints. Unlike the basic SED problems, DED aims to optimally dispatch the output power of all
generators in a number of time instants. Furthermore, we have here considered the PV generation
units and energy storage systems, complying with the global policy for establishing sustainable power
systems. Figure 1 presents a general structure of sustainable power systems in which renewable energy
sources and energy storage systems are interconnected, besides the fuel-based generation stations,
to feed various loads.
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Figure 1. An overview of the structure of sustainable power systems.

To address the DED problem, most approaches published in the literature can be itemized into
(1) meta-heuristic based optimization methods and (2) conventional optimization-based methods.
Examples of meta-heuristic based optimization methods are [25–40]. Conventional optimization based
methods involve: linear programming algorithm [41], lambda iteration method [42], and the interior
algorithm [43]. These later methods are usually computationally efficient; however, they are suitable
mainly with convex functions [44].

The optimal dispatch can be achieved through maximizing the total fuel-cost savings (TFS) of
the fuel-based generator units, or in other words minimizing the total fuel-cost (TFC). During time
intervals t ∈ {1, 2, ..., T}, the corresponding demand power at these occasions must be optimally
allocated among the generating units. The TFC is proportional to the number of thermal generators,
and TFS can be formulated as follows:

max TFS = TFC1 − TFC2, (1)

in which

TFC =
T

∑
t=1

n

∑
i=1

(
ai(Pt

i )
2 + biPt

i + ci + |ei| sin( fi(Pmin
i − Pt

i ))
)

, (2)

where TFC1 is the total fuel cost of all generator units to supply Pd without PV and energy storage
systems, and TFC2 is the total fuel cost of all generator units to supply (Pd + PAv,t

pv − Pcurt,t
pv ± Ps) with

PV and energy storage systems. Pd, PAv,t
pv , Pcurt,t

pv , and ±Pt
s are, respectively, the total predicted load

power, available active power generation of PV based on the predicted environmental conditions
(i.e., solar radiation), active power curtailment of PV, and the charging/discharging power of the energy
storage systems at time instant t ∈ {1, 2, ..., T}. For generator ith, ai, bi, and ci are its cost coefficients,
and ei, and fi are the coefficients of valve-point effects, n is the number of thermal generators to
be scheduled, t represents the current time, T is the total time of the studied period, and Pt

i is the
thermal power generated from the ith generator at time t. The valve-point effect can be considered
as a practical operation constraint of thermal generators. This effect introduces a ripple in the heat
rate function, yielding a discontinuous nonlinear fuel cost function that has multiple local minima.
In Equation (2), a second order quadratic cost function is formulated with a rectified sinusoidal term
for precise modeling of the cost function of generators considering the valve-point effect.
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The DED is mathematically formulated as:

DED:


max TFS

(
Pi, Pcurt,t

pv , Ps

)
,

s.t. system constraints ,
s.t. PV constraints ,

s.t. Energy storage constraints .

(3)

The equality and inequality constraints of the power system, PV, and energy storage systems are
listed below:

• Equality constraints

n

∑
i=1

Pt
i + Pt

pv ± Pt
s = Pt

d + Pt
loss, ∀t ∈ {1, 2, ..., T}, (4)

Pt
pv = PAv,t

pv − Pcurt,t
pv , ∀t ∈ {1, 2, ..., T}, (5)

Pt
loss =

n

∑
i=1

n

∑
j=1

BijPt
j Pt

i , ∀t ∈ {1, 2, ..., T}. (6)

• Inequality constraints

Pmin
i ≤ Pt

i ≤ Pmax
i , ∀i, t ∈ {1, 2, ..., T}, (7)

Pt
i − Pt−1

i ≤ URi, ∀i, t ∈ {1, 2, ..., T}, (8)

Pt−1
i − Pt

i ≤ DRi, ∀i, t ∈ {1, 2, ..., T}, (9)

Pcurt,t
pv ≤ Fcurt,t

pv ∗ PAv,t
pv , ∀t ∈ {1, 2, ..., T}, (10)

Pmin
s ≤ Pt

s ≤ Pmax
s , ∀t ∈ {1, 2, ..., T}, (11)

SOCmin
s ≤ SOCt

s ≤ SOCmax
s , ∀t ∈ {1, 2, ..., T}. (12)

Constraint (4) represents the balance between the active powers of all thermal generators, the PV
system, and the energy storage systems with respect to the total load demand and active power
losses in the power system at each time instant t. Pt

PV is the output power from the PV unit at time t
expressed by Label (5), −Pt

s and +Pt
s are the charging and discharging power of the storage device at

time t, respectively, Pt
d is the total demand power at time t, and Ploss represents the transmission losses

computed by Label (6) in which Bij represents B-coefficients.
Constraints (7), (8), and (9) represent the upper and lower operational boundaries, the ramp-up

limit, and the ramp-down limit of each ith thermal generator at each time instant t, respectively. Pmin
i

and Pmax
i are the minimum and maximum limits of the output power from the ith thermal generator,

respectively. URi and DRi represent the ramp-up and ramp-down boundaries of the ith thermal
generator, respectively.

Constraints (10) can set the maximum allowed curtailed power of PV according to the regulations
of utilities. Fcurt,t

pv is a factor where its value ranges from 0 to 1. In this work, this latter factor is set
to zero to prevent the active power curtailment. Regarding the energy storage device, it has two
operational constraints represented by (11) and (12). Pmin

s and Pmax
s are the minimum and maximum

charging rate limits of the storage energy devices, respectively. SOCmin
s and SOCmax

s are the minimum
and maximum state of charge limits of the storage energy devices, respectively. Note that the decision
variables in the DED optimization problem are: the output power from each ith thermal generator
(Pt

i ), curtailed active PV power (Pcurt,t
PV ), charging rate of the storage energy devices (Pt

s ), and state of
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charge of the storage energy devices (SOCt
s) for all time instants during the dispatching period, which

is the next day in this work.
Besides the consideration of valve point effects, the prohibited operating zones of generators can

model their persistent physical operation boundaries (e.g., generator faults, excessive vibrations,
turbine constraints). Therefore, the feasible zones for the ith generator can be mathematically
formulated as follows: 

Pmin
i ≤ Pt

i ≤ PL
i,1,

...
PU

i,z−1 ≤ Pt
i ≤ PL

i,z,
PU

i,z ≤ Pt
i ≤ Pmax

i ,

(13)

where z is the number of the prohibited operating zones for the ith generator. PL
i,z and PU

i,z represent
the lower and upper (MW) power boundaries of zth prohibited operating zone for the ith generator,
respectively. Figure 2 illustrates the basic generator costs curve, the costs considering valve point
effect, and the impacts of the prohibited operating zones on the two curves. Figure 2 implies that, if
a generator has z prohibited zones, its operating region will be split into isolated feasible sub-regions,
yielding multiple decision spaces for the DED problem. As noticed, by considering both valve-point
effects and the prohibited operating zones of generators, the optimization model became more complex
and non-convex, and so required robust optimization algorithms to be accurately solved.
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Figure 2. Structure of sustainable power systems.

The output power of a PV module depends on the ambient temperature and solar irradiation.
It can be modeled as follows [45,46]:

Tt
c = Tt

a +
NT − 20

0.8
· R, (14)

It = Isc = αi(Tt
c − Ts), (15)

Vt = Voc − αv(Tt
c), (16)

FF =
VMPP IMPP

Voc ISC
, (17)

PAv,t
pv = mc ∗ FF ∗Vt ∗ It, (18)

where Tt
c is the cell temperature and Tt

a is the ambient temperature at time t, NT refers to the nominal
operating cell temperature, R is the solar irradiation, Isc is the short circuit current, αi is the temperature
coefficient of current, Ts is the temperature of the standard test conditions, Voc is the open-circuit
voltage, αv is the temperature coefficient of voltage, FF is the fill factor, mc is the number of cells in the
module, and VMPP and IMPP are the voltage and current at the maximum power point, respectively.
In this paper, one hour resolution of the data and the dispatch cycle have been considered. However,
the proposed model is general, and can be applied to other resolutions.
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3. Proposed DED Algorithm

The step-by-step procedure for the proposed method can be summarized as follows:

• Step 1: Read system data, including cost coefficients of generation stations, power limits of
generation stations, ramp rate limits for each generation station, and B-loss coefficients. Read the
historical datasets of load and PV solar radiation, and data of energy storage systems.

• Step 2: Set the population of the improved SSA algorithm, number of agents, and the maximum
number of iterations.

• Step 3: Forecast the PV radiation and load for the period in which the system is required to be
optimally dispatched.

• Step 4: Run the improved SSA algorithm considering the mutation operator and the handling
strategy of the various constraints.

• Step 5: Save and print the calculated results, including the scheduling of the generation stations,
and energy storage systems, and the total costs.

3.1. Improved Salp–Swarm Algorithm (ISSA)

Swarm intelligence algorithms are widely used for solving complex optimization problems.
Salp swarm algorithm (SSA) is a bio-inspired optimization algorithm where it mimics the swarming
behavior of salps that belong to the family Salpidae [47]. Salps have a transparent body and look like
jellyfishes, and they have a similar movement behavior in water. Salps almost form swarms called
salp chains in deep oceans. The salp chain population consists of leaders and followers; the leader is
the first salp in the swarm, where it tracks the food source and guides the remainder of the swarm
followers. The position of all salps are saved in a two-dimensional matrix labeled S. The SSA algorithm
assumes that there is a food source called FS in the search space as the swarm target. The positions of
salps can be represented as:

S =


s1,1 s1,2 . . . s1,m
s2,1 s2,2 . . . s2,m

...
...

...
...

sn,1 sn,2 . . . sn,m

 , (19)

where n is the number of salps, and m is the number of variables. The leader’s position is updated
according to the following formula:

S1
m =

{
FSm + x1 ∗ ((ubm − lbm) ∗ x2 + lbm) x3 ≥ 0,

FSm − x1 ∗ ((ubm − lbm) ∗ x2 + lbm) x3 < 0,
(20)

where, in the mth dimension, S1
m is the 1st salp, while FSm represents the food source, ubm and lbm are

the upper and lower boundaries, respectively. X2 and X3 dictate if the next position in jth dimension
should be towards positive infinity or negative infinity as well as the step size.

In SSA, x1 is responsible for balancing exploration and exploitation. It can be calculated as
follows:

x1 = 2 exp−(
4l
L )2

. (21)

In this equation, l represents the current iteration, and L represents the total number of iterations, x2,
and x3 are random numbers uniformly generated in the interval [0,1]. They control the step size and
the next position in the mth dimension.

The position of the followers is updated according to Newton’s law of motion as follows:

Sn
m =

1
2

at2 + v0t, n ≥ 2, (22)
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where n ≥ 2, Sn
m is the nth salp in the mth dimension, t is time, v0 is the initial velocity, and a = vfinal

v0

where v = x−x0
t . Since the time in the optimization problem represents iteration, the discrepancy

between iterations equals 1, and assuming v0 = 0, Equation (22) can be reformulated as follows:

Sn
m =

1
2
(Sn

m + Sn−1
m ), n ≥ 2, (23)

where Sn
m is the nth salp in the mth dimension.

The SSA optimization method can be trapped into local minima, which can lead to inaccurate
results, especially with non-convex complex optimization problems, such as DED. To precisely solve
the DED problem, we improve the performance of SSA by adopting a mutation operator. The improved
SSA with the mutation operator is able to improve the convergence ability of the basic SSA algorithm
by adjusting the searching direction in space in an adaptive way. Specifically, the mutation operator
utilized in this paper is expressed as follows:

Pi
mut = (Pi

r1 + Pi
r2 + Pi

r3)/3 + (η2 − η1)(Pi
r1 − Pi

r2)+

(η3 − η2)(Pi
r2 − Pi

r3) + (η1 − η3)(Pi
r3 − Pi

r1),
(24)

η1 =
| f (Pi

r1)|
η∗

, η2 =
| f (Pi

r2)|
η∗

, η3 =
| f (Pi

r3)|
η∗

, (25)

where Pi
r1, Pi

r2, Pi
r3 are the best three positions in the current population (i.e., the positions that have the

top fitness values), η∗ = | f (Pi
r1) + f (Pi

r2) + f (Pi
r3)|, and f (P) is the fitness value.

3.2. Satisfying Various Constraints

When employing the improved SSA algorithm employed for solving the DED model, many
updated solutions may be infeasible, especially in the early stage of the optimizer. To solve this issue,
we utilize a reforming algorithm to enforce the updated solutions to be within their allowed limits, i.e.,
getting into the feasible search space. Consider S = [Pi PCurt

PV Ps] as an updated set of all candidate
solutions, and it is formulated as:

Pi = [P1
1 , . . . , P1

n︸ ︷︷ ︸
n

, · · · , Pt
1, . . . , Pt

n︸ ︷︷ ︸
n

, · · · , PT
1 , . . . , PT

n︸ ︷︷ ︸
n

], (26)

Pcurt
PV = [Pcurt,1

PV , . . . , PCurt,T
PV︸ ︷︷ ︸

T

], (27)

Ps = [P1
s , . . . , PT

s︸ ︷︷ ︸
T

], (28)

where Pi, Pcurt
PV , and Ps represent, respectively, the set of power values of thermal generators, PV, and

energy storage systems at all time periods t ∈ {1, 2, ..., T}. First, the reforming algorithm enforces all
variables with respected to their upper and lower boundaries for the variables at first time instant,
i.e., t = 1. For instance, the upper and lower boundaries (PLow,t

i , PUP,t
i ) for the ith generator at time

period t can be formulated as follows:

PLow,t
i =

{
Pmin

i , if t = 1,

max
{

Pmin
i , Pt−1

i − DRi

}
, otherwise ,

(29)

PUp,t
i =

{
Pmax

i , if t = 1,

min
{

Pmax
i , Pt−1

i − DRi

}
, otherwise .

(30)
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Similar formulations are considered to enforce the control variables of PV and storage energy
systems with respect to their upper and lower boundaries for the variables at first time instant (t = 1).
Then, for each time intervals t ∈ {2, ..., T}, all the feasible search space of the upper and the lower
boundaries t + 1 at are explored. If the corresponding variables violate the explored feasible search
space boundaries, their values are corrected to these upper/lower boundaries; otherwise, their values
are kept the same.

3.3. Forecasting Models

Indeed, PV power forecasting is complex due to the fluctuating profiles of the weather (e.g.,
solar irradiance and temperature). Recurrent neural networks have been used in many applications,
such as the optimal PV planning (i.e., determining the optimal sizes of PV plants with considering
their intermittent generation), the optimal scheduling of thermal generators considering the predicted
values of the PV generation for reducing operational costs of the grid, and the optimal management of
PV plants while mitigating the operational problems, such as voltage violations and reverse power flow.
Specifically, a deep long-short term memory (LSTM) recurrent neural network has been employed in
the literature to forecast the intermittent PV power [48–50] and solar irradiance [51–53]. The merit of
the LSTM is that it can model the temporal changes in the data due to their recurrent architecture and
memory units. Unlike the traditional recurrent neural networks, LSTMs were designed to avoid the
long-term dependency problem. LSTM can capture abstract concepts in the time-series forecasting
problems.

Here, a DED handling strategy is introduced that involves the use of solar radiation (R) and
load forecasting models. To build a solar radiation forecasting model, we propose the use of LSTM.
Here, solar radiation forecasting is formulated as a regression problem. To train the solar radiation
forecasting models, year-long solar radiation datasets with time resolution 1 h are used. The solar
radiation dataset is restructured as follows: input and target. The input is the solar radiation at time
steps {ti−LB, ti−2, ti−1, ti}, and the target is the solar radiation at time step ti+1, where LB is the width
of the lag window. The load dataset is restructured in the same way.

it

ct

ft

ot

xt
ht

ft Forget Gate

it

ot Output Gate

Input Gate

Gate Activation 

Function

LegendBasic Block

Figure 3. The block diagram of LSTM.

Figure 3 shows the block diagram of LSTM, where it receives an input sequence in which the
activation units are used to trigger the gates. Each LSTM block has a cell with a state ct at time step
t. The input gate it, forget gate ft, and output gate ot are used to manage the reading or updating
processes of this cell. The LSTM operation is expressed as follows:

it = σ(WxiXt + Whiht−1 + Wcict−1 + bi), (31)

ft = σ(Wx f Xt + Wh f ht−1 + Wc f ct−1 + b f ), (32)

ct = ftct−1 + it tanh(WxcXt + Whcht−1 + bc), (33)
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ot = σ(WxoXt + Whoht−1 + Wcoct + bo), (34)

ht = ot tanh(ct), (35)

where W are weights of the LSTM model that can be learned in the training stage. In this paper,
we adopt our LSTM model proposed in [48] to construct a solar radiation forecasting model and load
forecasting model, separately. The two LSTM models have a visible layer with one input, a hidden
layer with four LSTM blocks, and an output layer that gives the target (solar radiation or load). The
sigmoid activation function is used. The LSTM models are trained with the mean-squared error loss
function, ADAM optimizer, and 100 epochs with a batch size of 1.

We use an adaptive moment estimation (ADAM) optimizer, a method for efficient stochastic
optimization that only requires first-order gradients with little memory requirements. ADAM
computes separate learning rates for each weight from estimates of first and second moments of
the gradients as well as an exponentially decaying average of previous gradients. It is memory
efficient since it does not keep a history of anything (just the rolling averages). We use an ADAM
optimizer because it is computationally efficient (small memory requirements), has straightforward
implementation, invariant to diagonally rescale the gradients, and suitable for optimizing the problems
that are large in terms of data and for solving problems with dense noisy (or sparse gradients). The
hyper-parameters of ADAM need little tuning. ADAM is also suitable for non-stationary objectives,
which is the case of solar radiation forecasting.

4. Results and Discussion

To verify the effectiveness of the proposed method, we evaluate it using ten benchmark
problems [47] (see Table 1) and the DED problem. In this study, we simulate a sustainable power system
containing 40 thermal generators, PV, and energy storage systems. We provide the data of thermal
generators in Table 2. We compare the results of the improved SSA (ISSA) with other optimization
algorithms: SSA, MFO [54], and MVO [55]. The main inspiration for MFO is the navigation method
of moths. In short, moths fly at night by keeping a fixed angle concerning the moon. The MFO
mathematically models the navigation behaviour of moths to perform optimization. In turn, the main
inspiration for the MVO algorithm relies on some concepts in cosmology: (1) white hole, (2) black
hole, and (3) wormhole. The mathematical models of these concepts are implemented to perform
optimization. It is a fact that there is no meta-heuristic best suited for treating all optimization models,
complying with the No Free Lunch (NFL) theorem [56]. Therefore, we can conclude that each method
of the three algorithms (SSA, MFO and MVO) gives a supervisor performance for specified types of
functions, not all of them. In this work, we have developed an improved version of SSA to specifically
solve the DED model. The parameters of the ISSA optimizer are set as follows: the population size
is 30, the dimension is 10, and the maximum iterations number is 1000. All experiments have been
carried out in MATLAB 2019a.

Table 1. The benchmark problems.

Function Dimension Limits fmin

F1(x) = ∑n
i=1 x2

i 30 [−100,100] 0
F2(x) = ∑n

i=1 |xi|+ ∏n
i=1 ∑n

i=1 |xi| 10 [−10,10] 0
F3(x) = ∑n

i=1(∑
i
j=1 xj)

2 10 [−100,100] 0
F4(x) = max |xi|, 1 ≤ i ≤ n 10 [−100,100] 0
F5(x) = ∑n−1

i=1 [100(xi+1 − x2
i )

2] + (xi − 1)2 10 [−30,30] 0
F6(x) = ∑n

i=1([Xi + 0.5])2 10 [−100,100] 0
F7(x) = ∑n

i=1 ix4
i + random [0, 1) 10 [−1.28,1.28] 0

F8(x) = ∑n
i=1−xi sin(

√
|xi|) 10 [−500,500] 0

F9(x) = ∑n
i=1[x

2
i − 10 cos(2πxi) + 10] 10 [−5.12,5.12] 0

F10(x) = ∑n
i=1−20 exp(−0.2

√
1
n ∑n

i=1 x2
i )− exp(

1
n ∑n

i=1 cos(2πxi)) + 20 + e 100 [−32,32] 0
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Table 2. Characteristics of the 40 thermal generators [57].

Unit Cost Coefficients Power Limits

a ($/MW2 h) b ($/MWh) c ($/h) e ($/h) f (rad/MW) Pmin (MW) Pmax (MW)

1 0.00690 6.73 94.705 100 0.084 36 114
2 0.00690 6.73 94.705 100 0.084 36 114
3 0.02028 7.07 309.540 100 0.084 60 120
4 0.00942 8.18 369.030 150 0.063 80 190
5 0.01140 5.35 148.890 120 0.077 47 97
6 0.01142 8.05 222.330 100 0.084 68 140
7 0.00357 8.03 287.710 200 0.042 110 300
8 0.00492 6.99 391.980 200 0.042 135 300
9 0.00573 6.60 455.760 200 0.042 135 300
10 0.00605 12.9 722.820 200 0.042 130 300
11 0.00515 12.9 635.200 200 0.042 94 375
12 0.00569 12.8 654.690 200 0.042 94 375
13 0.00421 12.5 913.400 300 0.035 125 500
14 0.00752 8.84 1760.400 300 0.035 125 500
15 0.00752 8.84 1760.400 300 0.035 125 500
16 0.00752 8.84 1760.400 300 0.035 125 500
17 0.00313 7.97 647.850 300 0.035 220 500
18 0.00313 7.95 647.850 300 0.035 220 500
19 0.00313 7.97 647.850 300 0.035 242 550
20 0.00313 7.97 647.850 300 0.035 242 550
21 0.00298 6.63 785.960 300 0.035 254 550
22 0.00298 6.63 785.960 300 0.035 254 550
23 0.00284 6.66 794.530 300 0.035 254 550
24 0.00284 6.66 794.530 300 0.035 254 550
25 0.00277 7.10 801.320 300 0.035 254 550
26 0.00277 7.10 801.320 300 0.035 254 550
27 0.52124 3.33 1055.100 120 0.077 10 150
28 0.52124 3.33 1055.100 120 0.077 10 150
29 0.52124 3.33 1055.100 120 0.077 10 150
30 0.01140 5.35 148.890 120 0.077 47 97
31 0.00160 6.43 222.920 150 0.063 60 190
32 0.00160 6.43 222.920 150 0.063 60 190
33 0.00160 6.43 222.920 150 0.063 60 190
34 0.00010 8.95 107.870 200 0.042 90 200
35 0.00010 8.62 116.580 200 0.042 90 200
36 0.00010 8.62 116.580 200 0.042 90 200
37 0.01610 5.88 307.450 80 0.098 25 110
38 0.01610 5.88 307.450 80 0.098 25 110
39 0.01610 5.88 307.450 80 0.098 25 110
40 0.00313 7.97 647.830 300 0.035 242 550

4.1. Analyzing the Performance of ISSA with Ten Benchmark Problems

The proposed method is implemented on ten benchmark problems, which are shown in Table 1.
These problems have a challenging search space similar to the real complex search space. Indeed, they
can verify the performance of algorithms and check their balancing strategy between the exploration
and the exploitation phases. In Table 3, we show the average (Ave) and standard deviation (Std) values
of the fitness function for 10 runs. The dimension of F1 is 30, the dimension of F2, F3, F4, F5, F6, F7,
F8, and F9 is 30, and the dimension of F10 is 100. As shown, ISSA achieves results better than SSA
with the benchmark problems (F1, F5, F7, and F9) in terms of Ave and Std, thanks to the mutation
operator. Furthermore, ISSA outperforms MFO and MVO for the ten functions. In the case of F10,
which is a highly nonlinear with a dimension of 100. With such complex optimization problem, ISSA
achieves an Ave and Std values of 6.3844 and 1.3105, respectively. In turn, SSA and MVO achieves
higher Ave values. MFO gives the worst Ave value (19.849) compared to the other optimizer. Driven by
this superior performance, the proposed ISSA can be applied for the large scale optimization problems
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with several variables and wide search space, such as the DED problem. Note that the computational
time of these methods is within 5 s.

Table 3. Comparing the performance of the ISSA, SSA, MFO, and MVO with ten benchmark problems.

Function
Optimization Method

ISSA SSA MFO MVO

Ave Std Ave Std Ave Std Ave Std

F1 0.00000 0.00000 0.00001 0.00000 0.00014 0.00017 1.1969 0.1407
F2 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.0357 0.0128
F3 0.00000 0.00000 0.0000 0.0000 0.00000 0.00001 0.1152 0.0771
F4 0.00002 0.00000 0.00002 0.00000 0.6032 1.3682 0.0927 0.035
F5 4.16500 3.1621 7.2112 2.4367 8.1502 7.7184 88.0909 125.6254
F6 0.00000 0.00000 0.0000 0.0000 0.00000 0.00000 0.0156 0.0043
F7 0.00130 0.0014 0.0048 0.00300 0.00490 0.00260 0.0035 0.0018
F8 −2955.8 184.4003 −2746.9 239.6771 −3305.9 243.2327 −3006 337.0665
F9 0.29850 0.6715 14.9244 4.5474 17.4118 6.7359 14.6334 4.7858
F10 6.3844 1.3105 7.4999 1.5513 19.8439 0.2259 7.1737 6.7536

4.2. Analyzing the Performance of an LSTM Forecasting Model

To evaluate the performance of the proposed method, two yearly PV datasets (dataset1 and
dataset2) are used in this paper. We divide each dataset into training and testing datasets. A total of
70% of the samples are used to train the forecasting model, while the remaining samples are used for
testing the model. We used the root mean square error (RMSE) to evaluate the performance of the
forecasting models. RMSE can be defined as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(D̂i − Di)2. (36)

In this equation, Di and D̂i are the ith predicted and actual values, respectively, and N is the size
of the testing dataset.

The performance of the LSTM forecasting method is compared with four PV forecasting methods:
multiple linear regression (MLR), bagged regression trees (BRT), and ANN methods. These methods
have been widely used in the literature for forecasting PV generation [58]. Thus, we used them in
this paper to demonstrate the effectiveness of the LSTM model. As we can see in Table 4, LSTM gives
small RMSE values with dataset1 and dataset2 (82.15 and 136.87). MLR and BRT give the highest
RMSE values. With dataset1, the RMSE values of MLR and BRT are 384.90 and 494.46, respectively,
while they are 329.11 and 416.212 with dataset2, respectively. Indeed, MLR and BRT were developed
for stationary time series forecasting and thus they are not suitable for forecasting solar radiation.
In the case of ANN, we have tried different configurations such as using one or two layers while
changing the number of neurons from 1 to 50 with a step of 1. We found that the ANN model gives its
best results with two layers and seven neurons. The RMSE values of ANN are 377.072 and 348.931
with dataset1 and dataset2, respectively. The forecasting RMSE values of LSTM are lower than MLR,
BRT, and ANN methods. Indeed, MLR, BRT, and ANN methods do not have memory units, and
thus they cannot handle the fluctuations in solar radiation. However, the architecture of the ANN
method is a similar to LSTM, but it does not contain memory units or a recurrent architecture. In turn,
LSTM uses the information learned in the previous time steps to estimate the current value, leading to
accurate forecasting results.

Figure 4 shows the predicted solar irradiance for one day using the LSTM model for the
dataset1 and dataset2. As shown, the LSTM can accurately predict the solar irradiance for the two
datasets where the actual and predicted values are highly correlated. Notably, this high accuracy
will have pronounced positive impacts on the DED problem since the decision variables will be
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properly computed considering accurate forecasting results. In this study, we demonstrate the
effectiveness of deep learning approaches against traditional machine learning algorithms. Therefore,
our recommendation is to utilize deep machine learning to accurately forecast PV power. In our paper,
we utilize deep LSTM as an example, but other deep methods can give similar accuracy rates, but we
do not investigate other deep learning, which is left as a future work.

Table 4. Comparison with related methods.

Method MLR BRT ANN LSTM

RMSE of dataset1 384.8951 494.4633 377.072 82.15

RMSE of dataset2 329.11 416.212 348.931 136.87
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Figure 4. The predicted solar irradiance using LSTM for one day.

4.3. Analyzing the Performance of ISSA with the DED Problem

Here, we simulate a sustainable power system containing 40 thermal generators, PV, and energy
storage systems. The studied period is 24 h in which PV and load profiles are predicted using LSTM.
The demand power is shown in Figure 5, and the output power of PV is shown in Figure 6 during clear
and cloudy days. Below, we present two test cases of the proposed method with different weather
conditions (clear and cloudy days). The capacity of the energy storage system (Sodium Sulfur Battery
system) is 128 MWh. The parameters of the energy storage system are assumed as follows [59]:
Pmin

s = 0, Pmax
s = 8MW, SOCmin

s = 50%, and SOCmax
s = 100%. The maximum allowed curtailed

power (Fcurt,t
pv ) is set to zero.
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Figure 5. Demand load during the day.
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Figure 6. PV output power during clear and cloudy days.

Case 1: the performance of the proposed method with clear weather. Table 5 demonstrates the
effectiveness of the proposed algorithm to minimize the total fuel costs with 0, 10, 20, 30, 40, and
50% penetrations of PV concerning the load. As we can see in this table, ISSA gives the lowest fuel
cost for the six PV penetrations compared to SSA, MFO, and MVO. With ISSA, the fuel cost at 0%
penetration of PV (i.e., without PV) is 2.7687*106 $ while it drops to 2.4228*106 $ at 50% penetration.
It is worth noting that higher penetration levels of the PV can lead to reduced fuel costs. In the case of
cloudy weather, it is expected that the output power of thermal generation units and energy storage
devices will compensate the decrease of the PV power to satisfy the load, and so the fuel cost will
be increased. Note that, if some clouds exist on a particular day, they will not affect the accuracy of
the LSTM prediction model since the model is trained using a data of one year containing different
weather conditions (clear, rainy, overcast, and cloudy).

Table 5. Total fuel cost for case 1 (clear weather).

Penetration Fuel Cost*106 ($)

ISSA SSA MFO MVO

0% 2.7687 2.8451 3.0904 2.8945
10% 2.7017 2.8162 2.9153 2.8945
20% 2.6790 2.7783 2.8518 2.8945
30% 2.5714 2.7385 2.7949 2.7446
40% 2.5155 2.6131 2.7614 2.7446
50% 2.4228 2.5395 2.5892 2.7446

Indeed, with higher penetrations of PV, the power generated from the thermal generators is
less than the ones with lower penetrations. This power is optimally allocated among the thermal
generators by ISSA through various generating scenarios over the studied period. Figure 7 shows the
generated power of the 40 thermal generators over 24 h (see color bar) at the PV penetration of 50%.
The x-axis of this figure represents the 40 generations (1, 2, . . . , 40) where the corresponding generated
power values are shown. Each color on the color map represents the optimal generated power of the
40 thermal generators at each time interval (1, 2, . . . , 24). Note that each layer has a different color and
a width. The color represents the time instance while the width represents the MW generated power
of each generator. The width of each layer indicates the boundaries of the generated power of each
generator, which can be easily tracked in this figure. For instance, the widths of layers corresponding
to generators from 1 to 5 are narrow compared with generators from 15 to 20. This figure can quantify
the daily generation of the different generators. For example, we can notice that generator number 20
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has a very high production profile compared with generator 10. This can help the system operators to
specify the generators that will be expected to be heavily loaded among the other generators according
to the forecasting PV and load profiles as well as the solved DED problem.
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Figure 7. Generated power of the 40 thermal generators with case 1 at 50% penetration.

Figure 8 shows the charging and discharging of the storage device for the different penetration
cases. The ISSA algorithm can optimally schedule both the thermal generators and energy storage
systems simultaneously to minimize the fuel cost. Figure 9 shows the convergence characteristics of
ISSA. As we can see, the ISSA algorithm achieves better convergence characteristics, especially at 0%,
20%, and 30% penetration levels of the PV, where it converges rapidly compared to SSA.
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Figure 8. Charging and discharging of storage device with clear weather.

Case 2: the performance of the proposed method with cloudy weather. In the case of cloudy
weather, the output power of PV (Figure 6) is less than that of the clear weather as the output PV
generation mainly depends on the solar irradiation. Therefore, the required powers from the thermal
generators are increased causing higher fuel costs compared to case 1 (clear weather). Figure 10
shows the allocated load demand among the 40 thermal generators. Similar to Figure 7, the color map
shows that the generators are within their operating boundaries (represented by layer width). It is
clear that the scheduling of the 40 thermal generators with the cloudy weather profile is far different
compared to the scheduling of the clear weather. Figure 11 shows the charging and the discharging of
the storage device. Importantly, we notice higher storage rates with higher PV penetrations. Table 6
shows a comparison between the resulted fuel cost using ISSA, SSA, MFO, and MVO during cloudy
days. Similar to the results of case 1 (clear day), ISSA achieves the lowest fuel cost. Figure 12 shows
the convergence characteristics of ISSA, SSA, MFO, and MVO, in which ISSA has a stable and faster
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convergence. The improvement in performance when applying ISSA (with the mutation operator) is
more significant in the case of 20%, 30%, and 50% PV penetrations than the other levels.
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Figure 9. Convergence characteristics of the ISSA with case 1.
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Figure 10. Generated power of the 40 thermal generators with case 2 at 50% penetration.
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Table 6. Total fuel cost for case 2 (cloudy weather).

Penetration Fuel Cost*106 ($)

ISSA SSA MFO MVO

0 % 2.7687 2.8451 3.0904 2.8945
10% 2.7261 2.8298 2.8824 2.8824
20% 2.6849 2.7861 2.7945 2.7945
30% 2.6710 2.7861 2.7823 2.7823
40% 2.5244 2.6905 2.7171 2.7171
50% 2.4877 2.6495 2.6641 2.6641

In this work, the optimization process is solved once, not repeated for each hour. This process
aims to schedule the operations of generators day ahead considering daily forecast PV and load profiles.
Therefore, the optimizer will be run offline (i.e., computational speed is not a vital factor), and where
the computed optimal scheduling will be applied in the next day. However, the computational time of
the optimizer when solving the DED is less than 10 min. These simulations reveal the effectiveness of
the proposed algorithm to solve the DED problem with intermittent PV and energy storage systems.
This analysis demonstrates that the proposed DED model can guarantee a minimum operational cost
(total fuel costs) for sustainable power systems.

5. Conclusions and Future Work

Sustainable power systems provide the solution for satisfying the increased demand while
reducing the harmful impacts of fuel-based generation stations. In this paper, a comprehensive DED
framework has been proposed considering various profiles of PV (clear and cloudy) and energy storage
systems. The DED model aims at minimizing the total fuel cost of power generation stations while
considering various constraints of generation stations, PV, and energy storage systems. An improved
optimization algorithm has been proposed to solve this optimization model. In particular, a mutation
mechanism has been combined with SSA to produce to enhance the exploitation of the search space so
that it provides a better population to get the optimal global solution. In addition, we have proposed
a DED handling strategy that involves the use of PV power and load forecasting models based on
deep learning models. The proposed algorithm has been validated with ten benchmark problems and
then applied to the DED problem. A power system of forty thermal generators and PV is simulated
considering the storage device with various PV penetrations (0%, 10%, 20%, 30%, 40%, and 50%).
Two test cases have been analyzed: clear and cloudy weather conditions. ISSA obtains accurate results
compared to three other optimization algorithms (SSA, MFO, and MVO). In future work, the proposed
comprehensive DED model will be integrated with other sustainable energy resources (e.g., hydro
energy, wind energy).
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