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Many complex networks are built up from empirical data prone to experimental error. Thus, the determination of the
specific weights of the links is a noisy measure. Noise propagates to those macroscopic variables researchers are in-
terested in, such as the critical threshold for synchronization of coupled oscillators or for the spreading of a disease.
Here, we apply error propagation to estimate the macroscopic uncertainty in the critical threshold for some dynamical
processes in networks with noisy links. We obtain closed form expressions for the mean and standard deviation of the
critical threshold depending on the properties of the noise and the moments of the degree distribution of the network.
The analysis provides confidence intervals for critical predictions when dealing with uncertain measurements or in-
trinsic fluctuations in empirical networked systems. Furthermore, our results unveil a non-monotonous behavior of the
uncertainty of the critical threshold that depends on the specific network structure.

The critical point (or threshold) refers to the minimum
value of a tuning parameter that triggers a phase transi-
tion in a dynamical process. This value becomes an uncer-
tain quantity when noise is present in the underlying net-
work of interactions. For the class of processes where the
threshold is determined by the inverse of the largest eigen-
value of the adjacency matrix, we apply error propagation
to estimate the critical uncertainty induced by uncorre-
lated noise on the network weights. We obtain closed form
expressions for the mean and standard deviation of the
threshold depending on the properties of the noise and the
moments of the network degree distribution. Our results
can be used in practical situations, to provide confidence
intervals for the predictions of the critical threshold when
dealing with uncertain measurements or intrinsic fluctua-
tions in a networked system. Furthermore, the results un-
veil several noise-amplifying properties of the networks,
including a non-monotonous behavior of the uncertainty
of the threshold depending on the heterogeneity and den-
sity of the network. Accordingly, our analysis predicts the
existence of particular structures that maximize the un-
certainty of the threshold only due to small noise in the
weights, without altering the underlying structure of the
links.

I. INTRODUCTION

The study of critical phenomena has been, and still is,
a fruitful area of research in network science1. Crit-
ical phenomena in networks include a wide set of as-
pects, from structural changes in networks, or percolation
phenomena2, to epidemic3 or synchronization4 thresholds and
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many other phase transitions in dynamical processes defined
on networks1,5. The estimation of the critical threshold is of
upmost importance to predict the onset of the phase transi-
tion, and hence a major concern in several applications, such
as the containment of an infectious disease6 or the control of
synchronization in the power grid7,8. However, an accurate
estimation of the threshold is often elusive and costly because
it depends on the particular details of the whole network struc-
ture, usually through its eigenvalues.

As network science becomes more and more extended, its
potential applications grow fuelled by the necessity of analyz-
ing data produced in diverse fields of research, such as soci-
ology, biology, experimental physics, etc. However, the data
collected in any of the former fields is not free from experi-
mental error, induced for example by sampling biases, device
accuracy, or mistakes in data entry. Nevertheless, the litera-
ture on network science usually dismisses these error sources,
and produces results that are only valid if data is error free.
Some authors have concentrated their attention on inference
of missing data in networks9–12 , however, to the best of our
knowledge, no similar attention has been paid to the propa-
gation of uncertainty from the structure to the properties of
dynamical processes running on it.

The lack of works devoted to the analysis of error propaga-
tion in networks is probably due to the fact that many studies
consider networks unweighted, where a link is a binary vari-
able denoting its existence or not. However, the vast majority
of networks are weighted, i.e. the existence or not is valued by
its intensity. The accurate determination of the weight is un-
likely, and therefore, the error in their numerical values will
influence any particular measurement of the network proper-
ties.

Here, we present a study of error propagation in networks
where links are subject to uncertainty in their weights, and
wonder about the effect that this uncertainty will have in the
determination of the critical threshold. In particular, we fo-
cus on those dynamical processes in which the critical point
is known to be inversely proportional to the largest eigenvalue
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of the connectivity matrix. In section II, we present the par-
ticularities of our analysis and derive our main results, in sec-
tion III we study the range of uncertainty in the critical point
for different network structures, and finally, in section IV we
discuss the implications and limitations of the current study,
paving the way for new analysis to come.

II. ERROR PROPAGATION OF UNCERTAINTY IN THE
CRITICAL THRESHOLD

We consider a dynamical process running on top of a com-
plex network with N units. We restrict the study to the class of
dynamical models in which a phase transition occurs at a crit-
ical value of the coupling intensity (the threshold), and where
this value is given in terms of the largest eigenvalue λmax of
the network connectivity matrix C whose values represent the
weighted structure of the network13

Kc =
K0

λmax(C)
, (1)

where K0 is a constant that depends on the specific details
of the particular process. Without loss of generality, we fix
K0 = 1. Eq.(1) estimates the threshold for a wide variety of dy-
namical processes, including the synchronization of heteroge-
neous phase-oscillators4, the onset of endemicity of a disease
in epidemic models3,14, and the phase transition in the Ising
model in networks, to name a few1,2,5. The aim of this work
is to understand how small noise in the entries of C affects
the statistical properties of the macroscopic threshold given
by Eq.(1), without looking into the details of a specific dy-
namical model. For the sake of simplicity, we assume that
the noise in the entries is gaussian and uncorrelated (white
gaussian noise) where each weight is drawn from a normal
distribution N(µ,σ2), being µ > 0 the average weight and
σ2 its variance. Nevertheless, the proposed analysis can be
extended other distributions of noise, either theoretical or ob-
tained through empirical measurements.

To study the exact statistics of Kc in Eq.(1) induced by the
presence of noise, one could use in principle the available
tools from Random Matrix Theory15,16 and Spectral Graph
Theory17,18. However, it becomes very challenging to study
noisy sparse networks with arbitrary degree distributions in
these frameworks. Here, we use an alternative approach,
based on applying error propagation to the mean-field approx-
imation of Eq.(1). This approximation obviously restricts the
validity range of the analysis, however, the results are found
to be very accurate in some scenarios and, more importantly,
they provide clear analytical insight on how the uncertainty in
the structure affects the determination of the critical threshold.

Our derivation starts assuming a mean–field approach. For
simplicity, we restrict to the case of undirected (symmetric)
networks. Under the aforementioned conditions, the critical
threshold in Eq.(1) can be approximated19–21 by

Kc =
〈s〉
〈s2〉

, (2)

where 〈sn〉 is the n-moment of the strength distribution (the
strength of a node is the sum of in-coming/out-going weights).
Eq.(2) can also be obtained directly from the equations of mo-
tion of the dynamical process (for instance in the Kuramoto
Model20) by assuming that the local field in a node is pro-
portional to the global field weighted by the in-strength of the
node4. For the rest of the article, we will refer to Eq.(2) as the
Mean-Field approximation (MFA).

First we test the accuracy of the critical threshold in the
MFA, Eq.(2), compared to the exact result, Eq.(1), in Erdös-
Rényi networks with uncertainty in the weights. In Fig.(1)
we plot the threshold distribution for two different values of
the intensity of the uncertainty σ . We observe that the MFA
accurately determines the distribution, and that the values of
the expected critical threshold Kc and its variance are clearly
dependent on σ . In general, we expect our results to be accu-
rate in the cases in which the approximation of Eq.(2) remains
valid.
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FIG. 1. Empirical distribution of the critical point Kc governed by
Eq.(1) (boxes) and MFA (solid lines) in an Erdös-Rényi network with
N = 200, p = 0.3, K0 = 1, µ = 1 for two different noise intensities
(σ = 0.2 grey and σ = 0.5 red). The distribution corresponds to 104

independent realizations of the noise.

Using Eq.(2), we can express Kc in terms of the moments
of the degree distribution and noise parameters. The detailed
calculations are shown in Appendix A. We obtain

Kc =
∑

N
i=1 µiki

∑
N
i=1 µ2

i (k
2
i − ki)+∑

N
i=1〈w2〉iki

, (3)

where µi is the average weight of node i, and 〈w2〉i the aver-
age second moment of the weight distribution for node i. In
random homogeneous networks, for sufficiently large degree
(ki � 1), we can approximate µi = µ , and 〈w2〉i = σ2 + µ2

in Eq.(3). This approximation allows to write down a sim-
ple relation between the mean of the critical threshold and the
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uncertainty of the network as

〈Kc〉 ≈
µ〈k〉

µ2〈k2〉+σ2〈k〉
. (4)

Interestingly, the naïve approximation in Eq.(4) already in-
forms that the critical threshold decreases as the noise inten-
sity σ increases. This can be understood because the noise
increases the structural heterogeneity of the network, and het-
erogeneity tends to make the epidemic threshold to vanish.
Note that for µ = 1 and σ = 0, we recover the usual thresh-
old for unweighted, undirected networks21 and for σ � 1,
〈Kc〉 ≈ 〈k〉/µ〈k2〉.

Now, we estimate confidence intervals for the uncertainty
of Kc, that is the standard deviation named here δKc (or the
variance (δKc)

2). For this purpose, we use the method of er-
ror propagation22,23, that quantifies how the error in the micro-
scopic variables of a system (the 2N random variables in our
nodal description) propagate through a macroscopic quantity
(the critical threshold Kc). In a first-order expansion, we have

(δKc)
2 ≈ JT

0 VJ0, (5)

with J ∈ R2N the Jacobian of the system evaluated at the mean
values of the random variables ~µ and ~〈w2〉 and V ∈ R2N×2N

the covariance matrix, which depends on the full connectivity
matrix C. The details of these calculations (for white gaussian
noise and fixing K0 = 1) are shown in Appendix B. Finally, we
obtain the following closed form expression

(δKc)
2 ≈ a[µ4(2〈k〉〈k3〉 (6)

− 〈k2〉2)−2µ
2
σ

2(〈k〉〈k2〉−〈k〉2)+σ
4〈k〉2]

with a = 2σ2〈k〉/[N(µ2〈k2〉+σ2〈k〉)4].

Eq.(6) shows that, beyond the non-linear dependence on the
network and noise parameters, the uncertainty in the threshold
is a finite-size effect, and decays with N−1/2. To compare
networks of different sizes, we will scale the threshold by the
size N in the current analysis.

FIG. 2. Numerics (Eq.(1)) vs theory (Eqs.(4,6)): mean and standard
deviation of the threshold Kc depending on the noise intensity σ for
an Erdös-Rényi network with N = 200, p = 0.3, µ = 1, and 5000
independent realizations for each value of the noise intensity σ .

In Fig.(2), we show the accuracy of the theoretical expres-
sions for an Erdös-Rényi network, confirming the validity of
the approach, at least for small noise and homogeneous struc-
tures. Note that the linear approximation used in Eq.(5) is
valid as fas as23

JT
0 VJ0�

1
2

Tr[(H0V)2] (7)

where H0 ∈ R2N×2N is the Hessian matrix of the system eval-
uated at the mean values of the random variables. The de-
tailed calculations of H0 are shown in Appendix B. Both
terms in Eq.(7) depend implicitly on the value of the noise,
so their scaling with σ will determine the range of validity
of Eq.(6). We numerically examine the goodness of both the
linear, Eq.(5) and the second-order approximation for the un-
certainty δKc

(δKc)
2 ≈ JT

0 VJ0 +
1
2

Tr[(H0V)2] (8)

against the numerical results obtained for the Erdös-Rényi
network analyzed so far, and also for a real world network
with large size and heterogeneous connectivity patterns (the
worldwide air transportation network). The air transporta-
tion network was constructed using data from the website
openflights.org, which has information about the traffic be-
tween airports updated to 2012, data available from6. This
network accounts for the largest connected component, with
3154 nodes and 18,592 edges.
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FIG. 3. Numerics vs theory: standard deviation of the critical thresh-
old δKc depending on the noise intensity σ with µ = 1 for a (left)
fixed Erdös-Rényi network (N = 200, 〈k〉= 60, p = 0.3) and (right)
the empirical network of airports (N = 3154, 〈k〉 ≈ 6) for 2000 inde-
pendent realizations for each value of the noise. Results have been
rescaled by N.

Fig.(3) shows that the first and second order solutions are
practically indistinguishable for small noise, therefore vali-
dating the result in Eq.(6) in this regime. The deviation of the
theory from the actual values in the empirical network (right
plot in Fig.(3)) points towards another direction: the good-
ness of the MFA itself. Basically, the theory is expected to
be accurate for networks that deviate from a random struc-
ture as long as the MFA in Eq.(2) holds. It is not the main
goal of this article to convey an exhaustive verification of the
theory for particular networks, and we refer the reader to the
literature19,21,24 for details on the validity of the MFA. More-
over, it is important to remark that even if the MFA holds, the
method of error propagation (at any order) can only be applied
in our problem when the mean of the signal µ is sufficiently
large compared to the noise.
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III. THE ROLE OF THE STRUCTURE IN THE ERROR
PROPAGATION

The network structure plays an important role in the uncer-
tainty range of Kc. After the finding of Eq.(6), some interest-
ing questions arise: does the heterogeneity induce an increase
of the critical fluctuations with respect to a homogeneous net-
work? Is the behavior of (δKc) monotonous with the moments
of the degree distribution of the network? If not, is there any
particular structure that maximizes the uncertainty of the crit-
ical point induced by noise in the weights?

To answer these questions, we consider the regime where
networks are sufficiently large and σ � µ . Then, we can ap-
proximate Eq.(6) by its leading term, neglecting terms in σ

larger than O(σ2)

(δKc)
2 ≈ 2σ

2 2〈k〉〈k3〉−〈k2〉2

N〈k〉3
〈Kc〉4. (9)

Note that δKc increases linearly with the noise intensity and
scales with 〈Kc〉2. We know that 〈Kc〉2 is reduced by the het-
erogeneity of the degree distribution, and therefore one would
expect δKc to follow the same trend. However, the nonlinear
dependence on the moments of the degree distribution could
change this intuition.

To understand this effect, we choose first as a reference the
most homogeneous network we can consider, a regular net-
work, i.e. ki = k,∀i. We compute Kc and δKc for a regular
network, obtaining

〈Kc〉reg ≈
1

µk
,

(δKc)
2
reg ≈

2σ2

Nµ4k3 . (10)

The role of the heterogeneity will be detected by comparing
(δKc)

2 with (δKc)
2
reg for networks with the same size and av-

erage degree, and for the same noise parameters µ and σ . Af-
ter some algebra, the condition for a given network to display
higher uncertainty in Kc than a random regular network reads

〈k3〉> 〈k
2〉2

2〈k〉

(
1+
〈k2〉2

〈k〉4

)
. (11)

Now, we can use Eq.(11) to evaluate the role of hetero-
geneity. Let us consider a power-law distribution p(k)≈ k−γ ,
where the exponent γ controls the tail of the distribution. For
the value γ = 3, one recovers the well-know scale-free net-
work that emerges from preferential attachment25. For lower
(higher) values of γ , the network becomes more (less) hetero-
geneous. For a finite power-law network, the moments of the
degree distribution are given by

〈kn〉= (−γ +1)(kn−γ+1
max − kn−γ+1

min )

(n− γ +1)(kγ+1
max − kγ+1

min )
. (12)

By fixing the value of kmin, we can explore the space of net-
works with a given (γ,kmax), thus revealing the effect of het-

erogeneity and size. To simplify the visualization, we define

q = log

 2〈k〉〈k3〉

〈k2〉2
(

1+ 〈k
2〉2
〈k〉4

)
 . (13)

This way, when q = 0, the uncertainty of the critical threshold
of a network is the same than that of the regular one, and for
positive (negative) values of q, we are measuring an increase
(decrease) of δK with respect to the homogeneous network.
In Fig.(4) we show the theoretical results obtained for the q
value of networks in the space (γ,kmax). We note that the three
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FIG. 4. Colormap showing the theoretical dependence of q on the
exponent γ and the maximum degree of the network kmax. The value
of kmin is fixed to kmin = 5 and the resolution of the map is 100x100.

horizontal lines correspond to the cases where the network has
an integer exponent of 2, 3 or 4. In these cases, the first, sec-
ond or third moments diverge. It is also important to remark
that below γ = 2, it is not feasible to generate networks with
a pure power-law distribution2. Besides these considerations,
we observe an interesting result. As expected, for large values
of the exponent γ , the networks show similar uncertainty to
that of a regular network. However, for γ < 4, uncertainty sig-
nificantly increases, reaching a maximum as the exponent ap-
proaches γ = 3, before decreasing again. When approaching
the value of γ = 3, the network maximizes the third moment of
the degree distribution, while minimizing its second moment,
and therefore emerges as the optimal uncorrelated structure
amplifying the uncertainty in the threshold. Conversely, un-
certainty is minimal for maximally heterogeneous networks,
corresponding to an exponent γ ≈ 2. Interestingly, the non
monotonous dependence on γ is amplified as we increase the
size of the system (in terms of its maximum degree).

To validate the previous theoretical prediction, we gener-
ate synthetic power-law networks using the modified prefer-
ential attachment algorithm with an attractiveness parameter
that control the exponent26. Fixing the value of the minimum
degree kmin, and tuning the exponent and the size of the net-
work, we detect a maximum in the uncertainty δKc for the
exponent γ = 3, as shown in Fig.(5) thus confirming the pre-
diction of the theory. We observe good qualitative agreement
for the non monotonous dependency on the heterogeneity, and
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also that system size reinforces this dependency. The results
point towards the difficulty of accurately determine the crit-
ical threshold of scale-free networks, with exponent γ ≈ 3,
because δKc is maximized in the presence of noisy weights
for these networks.

2 3 4 5 6

γ

0.97

1

1.03

1.06

δ
K

c/
δ
K

c(
r)

theory

N = 500
N = 1000
N = 2000

2 3 4 5 6

γ

1

1.2

1.4

δ
K

c/
δ
K

c(
r)

numerics

N = 500
N = 1000
N = 2000

FIG. 5. Relative value of the theoretical (left) and numerical (right)
uncertainty δKc for scale-free networks in the range γ ∈ [2,6] for
sizes N = 500, 1000 and 2000, µ = 1, σ = 0.05 and minimum degree
fixed at kmin = 5 compared to regular networks with the same average
degree, and the same characteristics of the noise. The results are
obtained with 200 realizations of the noise for each network and then
averaging with 200 networks for each configuration of the modified
preferential attachment algorithm. The high variance at each point
shows that the results are very sensitive to the particular structure of
the network, although the general trend is captured.

IV. DISCUSSION AND CONCLUSIONS

The results found in section III are of theoretical and practi-
cal relevance for the field of network science and they should
be investigated further in detail. We have shown that particular
network structures, as power-law degree distribution networks
with exponent γ ≈ 3 maximize the uncertainty of the critical
threshold in the presence of noisy weights. This fact should
be taken into account in the prediction of the critical threshold
in empirical networks (which are usually heterogeneous) be-
cause, as proven, the accuracy in the estimation crucially de-
pends on the underlying structure of the network. Moreover,
the results might have a strong impact in the context of net-
work optimization and adaptation27–29, specially considering
the ubiquity and theoretical relevance2,25 of power-law net-
works with exponent γ ≈ 3 and the well-stablished hypothesis
that many biological networks are operating near the critical
point30,31. In particular, one could wonder to which extent
the existence of power-law networks with an exponent close
to 3, maximizing the range of critical values has been evolu-
tionary favourable. In this sense, the current results make a
natural connection with the previous work in32, where it was
shown that scale-free networks with exponent γ = 3 are able
to achieve a larger variety of macrostates with respect to ho-
mogeneous networks (specifically near the critical threshold)
by deterministically tuning the weights of the links.

From the methodological side, the formalism introduced in
section II represents a first step in the use of error propagation
methods to the analysis of complex networks with dynamical
processes on top of them. The formalism is flexible and it

can be applied to other network properties and in other sce-
narios, being of special importance the case of colored noise
obtained directly from empirical measurements. We conjec-
ture that this line of research will receive more attention in
the future due to the increasing amount of data (not free of
errors), that is being collected for a large variety of systems.
We remark also that the current method is based on a MFA
of the largest eigenvalue of the connectivity matrix, and this
approximation neglects strong correlations of the eigenvalues
in the presence of noise33,34. While definitely more results
are needed, the present formalism provides analytical insight
to the studied phenomena, and turns out to give very accurate
quantitative predictions if a few assumptions on the network
hold.

To summarize, in this work we have studied how noise in
the weights of a complex network affects the critical thresh-
old of a dynamical process. We have restricted our study to
the wide family of processes where the threshold depends on
the largest eigenvalue of the connectivity matrix. In this sce-
nario, and using the well-known MFA, we have applied error
propagation to derive analytical expressions for the mean and
standard deviation of the threshold depending on the noise pa-
rameters and the moments of the degree distribution. We vali-
dated our results against numerical simulations, showing good
agreement when the initial MFA holds. Moreover, the formal-
ism allowed us to carefully examine the effect that the network
structure plays in the amplification of the noise at the critical
point. Surprisingly, we found a non-monotonous behavior of
the critical uncertainty with respect to the heterogeneity of the
underlying network. By considering the paradigmatic case
of uncorrelated power-law networks, we found that networks
with exponent γ ≈ 3 (γ ≈ 2) emerge as the structures that max-
imize (minimize) the uncertainty of the threshold, due to an
interplay between the second and third moment of the degree
distribution.
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Appendix A: Calculation of the mean

We can write the degrees and strengths in terms of the bi-
nary connections (ai j = 0 or 1) and weights (wi j ∈ R) of the
connectivity matrix C, i.e ki = ∑

N
j=1 ai j and si = ∑

N
j=1 ai jwi j.

For the average strength 〈s〉, we have

〈s〉= 1
N

N

∑
i=1

(
N

∑
j=1

ai jwi j). (A1)

Note that we can write Eq.(A1) equivalently as 〈s〉 =
(1/N)∑i µiki, where µi is the average weight of node i. For
sufficiently large degree (ki � 1), one can approximate µi =
µ , and therefore 〈s〉 = µ〈k〉. However, in general, it is im-
portant to keep the contribution of each node because each µi
has a specific uncertainty depending on the degree of node i,
and this affects the overall uncertainty on Kc. For the second
moment 〈s2〉, we have

〈s2〉= 1
N

N

∑
i=1

(
N

∑
j=1

ai jwi j)
2

=
1
N

N

∑
i=1

(
N

∑
j=1

ai jw2
i j +

N

∑
j 6=k

ai jaikwi jwik).

(A2)

Noticing that ∑ j 6=k ai jaik = k2
i − ki, we obtain

〈s2〉= 1
N
[

N

∑
i=1

µ
2
i (k

2
i − ki)+

N

∑
i=1
〈w2〉iki], (A3)

where 〈w2〉i is the average second moment of the i-node.
Plugging Eq.(A1) and Eq.(A3) into Eq.(2) in the main text,
we obtain

Kc =
∑

N
i=1 µiki

∑
N
i=1 µ2

i (k
2
i − ki)+∑

N
i=1〈w2〉iki

, (A4)

which correspond to Eq.(3) in the main text.

Appendix B: Calculation of the variance

The propagation of uncertainty of a non-linear function of
the random variables as Eq.(3) requires to use a truncated Tay-
lor expansion23. Up to second-order, and in the notation used
in the main text, the approximate variance of the function is
given by

(δKc)
2 ≈ JT

0 VJ0 +
1
2

Tr[(H0V)2] (B1)
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where the Jacobian vector and the Hessian matrix are evalu-
ated at the mean values of the random variables ~µ and ~〈w2〉.
The Jacobian of the system in Eq.(3) is

J = (
∂Kc

∂ µ1
, ...,

∂Kc

∂ µN
,

∂Kc

∂ 〈w2〉1
, ...,

∂Kc

∂ 〈w2〉N
). (B2)

First, we compute the partial derivatives in Eq.(B2) explicitly
from Eq.(3), obtaining

∂Kc

∂ µi
≈ 1

N
ki(µ

2〈k2〉+σ2〈k〉)−2µ2(k2
i − ki)〈k〉

(µ2〈k2〉+σ2〈k〉)2 ,

∂Kc

∂ 〈w2〉i
≈− 1

N
kiµ〈k〉

(µ2〈k2〉+σ2〈k〉)2 , (B3)

where the sign≈ stands for assuming, in good approximation,
that the input parameters µ and σ2 are the actual mean values
of the random variables ~µ and ~σ2 = ~〈w2〉−~µ2.

The Hessian matrix, the square matrix of the second-order
partial derivatives of the function in Eq.(3) can be directly ob-
tained by taking derivates from Eq.(B3). After some algebra,
and defining Q = µ2〈k2〉+σ2〈k〉, we obtain

∂ 2Kc

∂ µi∂ µ j
≈ 1

N2Q3 [Q(2µ(k2
j − k j)ki− (2+2δi jµ(k2

i − ki)k j))

− (ki−8µ
3〈k〉(k2

i − ki)(k2
j − k j)).

(B4)

The Hessian matrix of our system is symmetric, such that
∂ 2Kc/∂ µi∂ 〈w2〉 j = ∂ 2Kc/∂ 〈w2〉i∂ µ j. We obtain

∂ 2Kc

∂ µi∂ 〈w2〉 j
≈ 1

N2Q3 [−Qkik j +4µ
2〈k〉k j(k2

i − ki)], (B5)

and for the last term we have

∂Kc

∂ 〈w2〉i∂ 〈w2〉 j
≈

2µkik j〈k〉
N2Q3 . (B6)

For the covariance matrix, we can obtain explicit expression
for the entries (V)i j when the noise in the weights is assumed
gaussian and uncorrelated. By assumption, the network is
symmetric and so it will be the covariance matrix, which can
be written in block form as

V =

(
vµ

2 v
µ,〈w2〉

v
µ,〈w2〉 v〈w2〉

2

)
,

where vµ
2, v

µ,〈w2〉 and v〈w2〉
2 are symmetric matrices in RN×N

that capture each covariance term between the two random

variables (µi,〈w2〉i) of all nodes. Explicitly

(vµ
2)i j =

σ2

ki
(δi j +

ai j

k j
), (B7)

(v
µ,〈w2〉)i j =

2µσ2

ki
(δi j +

ai j

k j
), (B8)

(v〈w2〉
2)i j =

2σ2(2µ2 +σ2)

ki
(δi j +

ai j

k j
). (B9)

The first term in the sums is the contribution of the diagonal
entries. The gaussian variances (σ2 and 2σ2(2µ2 + σ2))
and covariance (2µσ2) of a single weight wi j drawn from
(µ,σ2) are divided by the number of elements (the degree ki)
involved in computing the averages µi and 〈w2〉i. The second
term accounts for the non-diagonal entries. If two nodes (i, j)
are neighbours, i.e. ai j = 1, then we have to add an additional
correlation due to the presence of the shared weight, which is
divided by the product of their degrees (ki and k j).

For the first order expansion, we can compute explicitly
(δKc)

2 in terms of the noise parameters (µ,σ) and the mo-
ments of the degree distribution. We can write Eq.(5) as

(δKc)
2 ≈

N

∑
i=1

N

∑
j=1

[(
∂Kc

∂ µi
)(

∂Kc

∂ µ j
)(σµ

2)i j, (B10)

+ (
∂Kc

∂ 〈w2〉i
)(

∂Kc

∂ 〈w2〉 j
)(σ〈w2〉

2)i j, (B11)

+ 2(
∂Kc

∂ µi
)(

∂Kc

∂ 〈w2〉 j
)(σ

µ,〈w2〉)i j], (B12)

and after some algebra, we obtain

(δKc)
2 ≈ 2σ2〈k〉

NQ4 [Q2−4µ
2〈k2〉Q+2µ

2(2µ
2 +σ

2)〈k〉2

+2µ
4(〈k〉〈k3〉+ 〈k2〉(〈k2〉−4〈k〉)+2〈k〉2)

+8µ
4〈k〉(〈k2〉−〈k〉)], (B13)

where we have used that ∑i ∑ j ai jkik j = N〈k2〉2/〈k〉. Simpli-
fying further, we get the resulting Eq.(6) in the main text. Ex-
plicitly,

(δKc)
2 ≈ a[µ4(2〈k〉〈k3〉 (B14)

− 〈k2〉2)−2µ
2
σ

2(〈k〉〈k2〉−〈k〉2)+σ
4〈k〉2]

with a = 2σ2〈k〉/[N(µ2〈k2〉+σ2〈k〉)4].


