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Untargeted metabolomics identifies a plasma sphingolipid-related signature associated 1 

with lifestyle intervention in prepubertal children with obesity 2 
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Abstract  27 

Objective:  Childhood obesity is a strong risk factor for adult obesity and metabolic diseases, 28 

including type 2 diabetes and cardiovascular disease.  Early lifestyle intervention in children with 29 

obesity reduces future disease risk.  The objective of this study is to identify metabolic signatures 30 

associated with lifestyle intervention in prepubertal children with obesity. 31 

Methods:  Thirty-five prepubertal children (7-10 years) with obesity (BMI>2 standard deviations) 32 

were enrolled in the study and participated in a 6-month-long lifestyle intervention program.  33 

Physiological and biochemical data and blood samples were collected both at baseline and after 34 

the intervention.  A liquid chromatography-mass spectrometry (LC-MS)-based metabolomics 35 

approach was applied to obtain a comprehensive profiling of plasma samples, identifying 2581 36 

distinct metabolite.  Principal component analysis (PCA) was performed to consolidate all features 37 

into 8 principal components.  Associations between metabolites and physiological and biochemical 38 

variables were investigated. 39 

Results:  The intervention program significantly decreased mean (95% CI) BMI standard deviation 40 

score from 3.56 (3.29-3.84) to 3.11 (2.88-3.34) (p<0.001).  PCA identified one component (PC1) 41 

significantly altered by the intervention (Bonferroni adjusted p=0.008).  A sphingolipid metabolism-42 

related signature was identified as the major contributor to PC1.  Sphingolipid metabolites were 43 

decreased by the intervention, and included multiple sphingomyelin, ceramide, 44 

glycosylsphingosine, and sulfatide species.  Changes in several sphingolipid metabolites were 45 

associated with intervention-induced improvements in HbA1c levels. 46 

Conclusions:  Decreased circulating sphingolipid-related metabolites were associated with 47 

lifestyle intervention in prepubertal children with obesity, and correlated to improvements in HbA1c.   48 
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Introduction  49 

Despite vast efforts devoted to treatment and prevention, the worldwide prevalence of obesity has 50 

increased exponentially during the last decades.1  Obesity and overweight lead to adverse effects 51 

on blood pressure, cholesterol, lipids, and insulin sensitivity, all of which are major risk factors for 52 

other metabolic disorders including type 2 diabetes and cardiovascular disease.  Lifestyle 53 

intervention programs focusing on diet and exercise are currently the main strategy for prevention 54 

and treatment of these diseases.  However, the implementation of these intervention programs at a 55 

population level has proven challenging.2-4  Obesity in children is of particular concern, as 56 

excessive weight gained during childhood can be tracked into later life.5-7  Notably, prepubertal 57 

children show a distinct metabolic profile than pubertal or adolescent subjects, and respond 58 

differently to metabolic challenges.8-10  For instance, oral glucose loading results in lower insulin 59 

secretion in prepubertal compared to pubertal children.10  Furthermore, pubertal development 60 

physiologically decreases insulin sensitivity impacting a number of metabolic pathways, including 61 

proteolysis, lipid metabolism, and glucose homeostasis.8  Thus, a deeper understanding of the 62 

pathophysiology of obesity specifically in prepubertal children is needed in order to design more 63 

efficient therapeutic and preventive strategies.  64 

 65 

The advent of metabolomic technologies during the last decade has provided very valuables tools 66 

to study metabolic diseases.11  Metabolomics can be divided into untargeted and targeted 67 

methodologies.  Untargeted metabolomics aims to obtain a comprehensive profiling of all 68 

measurable small molecules in a given sample, including unknown analytes; targeted 69 

metabolomics is a hypothesis-driven approach that focuses on measuring specific groups of 70 

known metabolites.  Taking advantage of these tools, several studies have identified biomarkers 71 

associated with obesity, insulin resistance, type 2 diabetes, and cardiovascular disease risk in 72 

adult subjects, including branched-chain amino acids (leucine, isoleucine, and valine), 73 

phenylalanine, tyrosine, betaine, acylcarnitines, and lysophosphatidylcholines.12-17  Fewer 74 

metabolomic studies have been performed in children.  Untargeted metabolomic approaches to 75 

study prepubertal and pubertal mixed populations revealed a branched-chain amino acid 76 

metabolism pattern, an androgen hormone signature, and altered acylcarnitine levels present in 77 
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subjects with obesity compared to normal weight controls.18, 19  Other studies using targeted 78 

metabolomics identified alterations in plasma levels of several amino acids, 79 

lysophosphatidylcholines, and short- and medium-chain acylcarnitines in populations of 80 

prepubertal, pubertal, and adolescent subjects with obesity compared to lean controls.20, 21  Some 81 

of these metabolic alterations, including glutamine, methionine, and lysophosphatidylcholines were 82 

reversed after weight-loss interventions, suggesting that metabolite levels were associated with 83 

overweight status or changes in lifestyle.22, 23  Here, we report data from an observational 84 

longitudinal study exclusively in prepubertal children with obesity, in which we applied an 85 

untargeted metabolomic approach to obtain a comprehensive metabolomic profiling of plasma 86 

samples before and after a lifestyle intervention program. 87 
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Subjects and Methods 88 

Study participants 89 

This is an observational study of the effects of lifestyle intervention in prepubertal children with 90 

obesity.  The study was approved by the Hospital’s Ethic Committee (Comité Ètic d’Investigació 91 

Clínica – CEIC).  Pediatric patients with obesity and non-responsive to primary care protocols for 92 

treatment are usually referred from the primary care centers to the Obesity Unit at the Hospital 93 

Sant Joan de Déu, Barcelona (Spain).  The routine therapeutic protocol applied at the Hospital is a 94 

family-based lifestyle intervention program.  The study initially included 53 children with obesity, 95 

defined as BMI standard deviation score (BMI-SDS) greater than two standard deviations for a 96 

given age and sex, following the World Health Organization (WHO) standards.  Patients were 97 

recruited at the Obesity Unit at the Hospital between the months of January 2013 and December 98 

2014.  All parents signed an informed consent document.  Inclusion criteria were children a) age 99 

from 7 to 10-year-old; b) with obesity, defined as BMI-SDS>2; c) prepubertal, defined as Tanner 100 

stage I breast development for girls and testicular volume less than 4 ml in boys.  Exclusion criteria 101 

included any form of endogen obesity, major congenital or chronic disease, drug-induced obesity, 102 

use of drugs for weight loss, involvement in another weight-loss program, as well as subjects 103 

without a signed informed consent.  Finally, subjects with pubertal signs at the 6-month visit were 104 

also excluded from the study. 105 

 106 

Lifestyle intervention program 107 

Subjects were recruited at the Obesity Unit by the pediatric endocrine physician.  At the first visit, 108 

parents signed the informed consent and all relevant clinical and anthropometric data was 109 

obtained.  Blood sampling and first interview with the nutritionist (with at least one of the parents 110 

present) was performed within the next 10 days (baseline time point).  We used motivational 111 

interviewing primarily focused on behavioral changes to improve lifestyle of the child and all family 112 

members.  In order to achieve sustainable results, counseling by the dieticians was individualized 113 

according to patient and family needs.  Counseling followed the recommendations of the 114 

Department of Health of the autonomous government of Catalonia (Spain), based on the 115 

Mediterranean diet and in agreement with the WHO.  Such diet consists in 55% of kcal from 116 
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carbohydrates (less than 10% of sugars), 15% of kcal from protein, and 30% of kcal from lipids 117 

(less than 10% saturated fat).  We used visual laminated support material, including food models 118 

and plates, to educate on portion size.  We helped patients and families designing food menus 119 

emphasizing the importance of variety and quality, as well as the cooking method.  Additionally, 120 

participants were encouraged to choose healthy nutrition options and to incorporate a minimum of 121 

30 min of physical exercise per day into their lives.  Subjects had follow-up interviews with the 122 

nutritionist 2 weeks and 3 months after the initial interview, to review changes made and set new 123 

goals.  The 6-month visit, which included blood sampling, was scheduled with the pediatric 124 

endocrinologist who gave feed-back to the family on clinical outcomes (6m time point).  Finally, 125 

participants came to a follow-up visit 1 year after the end of the intervention program (18-month 126 

time point) when anthropometric data was collected.  127 

 128 

Physiological and biochemical analysis 129 

All data and samples were obtained at baseline and after the intervention program (6-month time 130 

point).  We measured weight (kg) and height (mt) with light clothing in a calibrated scale and rigid 131 

stadiometer.  Body mass index (BMI) was calculated, and BMI-SDS for a given age and sex was 132 

obtained by using “Anthro Plus” software (WHO).  Blood pressure was measure in the right arm 133 

using an automated system with the appropriate sleeve size for the arm diameter.  Waist 134 

circumference was determined as middle point between the last rib and iliac crest.  Blood samples 135 

were taken after 8 to 10 hours of overnight fast in tubes containing EDTA, and plasma was 136 

immediately separated, aliquoted, and stored at -80ºC until further use.  Glucose, insulin, glycated 137 

hemoglobin (HbA1c), lipid profile (total cholesterol, LDL-cholesterol, HDL-cholesterol, 138 

triglycerides), and liver enzymes (AST, ALT) were measured using standard protocols at the 139 

Hospital’s clinical laboratory.  Nutritional data was evaluated at baseline and 6-month time point by 140 

using the qualitative KidMed questionnaire that measures adherence to Mediterranean Diet.24  The 141 

KidMed test is a 15-item scale scored as following: 0-3 points is considered poor adherence, 4-7 142 

points medium adherence, and ≥ 8 points high adherence to Mediterranean diet. 143 

  144 
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Plasma metabolomic analysis 145 

Plasma aliquots (25 µL) were thawed at 4ºC and briefly vortex-mixed.  Proteins were precipitated 146 

by the addition of 475 µL cold methanol/water (8:1 vol/vol) followed by 3 min of ultrasonication and 147 

10 s of vortex-mixing.  Samples were subsequently maintained on ice for 10 min.  After 148 

centrifugation (10 min, 19.000 g, 4ºC), 100 µL of supernatant were transferred to a LC autosampler 149 

vial.  Samples were then injected into an UHPLC system (1290 Agilent) coupled to a quadrupole 150 

time of flight (QTOF) mass spectrometer (6550 Agilent Technologies) operated in positive 151 

electrospray ionization (ESI+) mode.  Metabolites were separated using HILIC (ACQUITY UPLC 152 

BEH 1.7 μm, Waters) chromatography at a flow rate of 0.4 mL/min.  The solvent system was A = 50 153 

mM NH4OAc in water, and B = ACN.  The linear gradient elution started at 95% B (time 0–2 min) 154 

and finished at 55% B (6 min).  The injection volume was 2 μL.  ESI conditions were gas 155 

temperature, 225ºC; drying gas, 13 L/min; nebulizer, 20 psig; fragmentor, 125 V; and skimmer, 156 

65 V.  The instrument was set to acquire over the m/z range 80–1200 with an acquisition rate of 4 157 

spectra per second.  Quality control samples (QC), consisting of pooled plasma samples from all 158 

patients, were injected before the first study sample, and then periodically after five study samples.  159 

Samples were randomized to reduce systematic error associated with instrumental drift.  LC-MS 160 

(HILIC ESI+ mode) data were processed using the XCMS software (version 1.38.0) to detect and 161 

align features.25  A feature is defined as a molecular entity with a unique m/z and a specific 162 

retention time.  XCMS analysis of these data provided a matrix containing the retention time, m/z 163 

value, and integrated peak area of greater than 7400 features.  Only the integrated areas of those 164 

metabolite features above 5,000 spectral counts in at least one of the groups were considered for 165 

quantification.  The tab-separated text files containing LC-MS data were imported into Rstudio 166 

(version 3.0.2) where QC samples were used to filter analytical variation as previously described26  167 

From the resulting 2647 features, 66 showed below detectable level readings in at least one 168 

sample, and were eliminated from the analysis.  The resulting matrix of 2581 features was used for 169 

principal component analysis (PCA).  Metabolic features selected by the PCA model were 170 

identified using the HMDB27 and Metlin database.  Identified metabolites were then used as input in 171 

MBRole 2.0 (ref. 28) to perform pathway enrichment (KEGG pathways).  To validate metabolic 172 

features, MS/MS was performed in targeted mode, with the instrument set to acquire over the m/z 173 
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range 40–950, with a default iso width of 1.4 m/z.  Collision energy was fixed at 20 V.  Metabolites 174 

were identified conforming to Level 2, as specified by the Metabolomics Standards Initiative29 (i.e., 175 

putatively annotated compound) since their accurate mass and experimental MS/MS spectra 176 

coincide with the expected fragmentation pattern of lipid families or by comparison with chemical 177 

standards from the METLIN database.  All spectra data have been deposited at the EMBL-EBI 178 

MetaboLights database (https://www.ebi.ac.uk/metabolights/, accession number MTBLS423). 179 

 180 

Statistical analysis 181 

Unless otherwise stated, normally distributed variables are described by mean and standard 182 

deviation (SD), and non-normally distributed variables by median and interquantile range (IQR).  183 

Data were compared between baseline and 6-month time point by two-tail paired t-test for normal 184 

distribution, or Wilcoxon matched pairs signed-rank test for non-normal distribution.  Principal 185 

component analysis with minimum residuals as factoring method was performed on the log2-186 

transformed metabolomic matrix, assessed on each subject at baseline and 6-month time point.  187 

Eight factors, accounting for a cumulative variance of 58%, were extracted with the Varimax 188 

rotation method to produce interpretable components.  Wilcoxon matched pairs signed-rank test 189 

was used to compare baseline and 6-month factor scores, and Bonferroni correction was applied 190 

to adjust for multiple comparisons.  Metabolic features with loadings > |0.75| were considered to 191 

significantly contribute to a given factor.  To assess differences in individual metabolites between 192 

baseline and 6-month, concentrations were evaluated as z scores (centered at 0 and 193 

standardized) after log2 transformation.  Partial Spearman correlations adjusted for sex, age, and 194 

baseline BMI-SDS were used to measure the dependence between numerical variables.  R 3.3.2 195 

(2016, R Foundation for Statistical Computing, Vienna, Austria) was used for all statistical 196 

calculations.  P-values less than 0.05 were considered significant. 197 
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Results 198 

Physiological and biochemical effects of the lifestyle intervention program 199 

Fifty-three subjects with obesity (BMI-SDS>2) were initially enrolled in the intervention program.  200 

Among participants, five voluntarily withdraw from the program, six showed pubertal status at the 201 

6-month time point, and two refused to provide a blood sample at the post-intervention visit.  202 

Furthermore, two showed altered C-reactive protein levels suggesting concomitant infection and 203 

were therefore excluded from the metabolomics analysis.  Finally, three samples could not be 204 

analyzed in the metabolomics platform for technical reasons resulting in subject exclusion from the 205 

analysis.  Thus, we analyzed paired samples (baseline and 6-month) from 35 exclusively 206 

prepubertal subjects with obesity.  Baseline and post-intervention anthropometric and biochemical 207 

characteristics of all subjects are reported in Table 1.  Lifestyle intervention significantly decreased 208 

BMI-SDS by 0.45 units (p<0.001, Table 1), and reduced waist circumference by 1.8 cm (p<0.001, 209 

Table 1).  Notably, improvements in BMI-SDS levels were maintained one year after the end of the 210 

intervention program (Table S1).  Subjects showed a modest increase in fasting glucose, 211 

triglyceride, and cholesterol levels after the intervention, while insulin levels and HOMA-IR were 212 

not modified (Table 1).  However, HbA1c levels were significantly lowered by lifestyle intervention 213 

(p<0.001, Table 1).  To assess the impact of the intervention program on participants’ diet, we 214 

performed a qualitative dietary study before and after the intervention by applying the KidMed test.  215 

The lifestyle intervention program increased the adherence to the Mediterranean diet, as shown by 216 

the increase in the number of subjects with a higher score after the intervention (Table S2). 217 

 218 

Effects of lifestyle intervention on the plasma metabolome 219 

We applied an unbiased approach using LC-MS to obtain a comprehensive metabolic profiling 220 

from fasting plasma samples at baseline and at the 6-month time point.  This untargeted 221 

metabolomics approach identified a total of 2581 distinct metabolite features.  Peak intensity 222 

values, mass, and retention times for all features are included in Table S3.  We applied 223 

unsupervised principal component analysis (PCA) to consolidate metabolite features into 8 factors, 224 

which explained 58% of total variance.  Figure 1A shows the score plot of the first 2 components, 225 

accounting for 26.1% of cumulative variance; Figure 1B shows the loadings for the 2581 metabolic 226 
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features in PC1 and PC2.  We then performed a paired analysis of the principal components 227 

between baseline and the 6-month time point, and observed a decrease in principal component 1 228 

(PC1) after adjusting for multiple comparisons (adj. p=0.008, Figure 1C).  None of the other 229 

components significantly differed among groups (Figure 1C).  Metabolic features highly 230 

contributing to PC1 (those with loadings > |0.75|) are shown in Table S4.  These selected features 231 

were then identified using the HMDB27 and Metlin databases.  Notably, PC1 was mostly comprised 232 

of a combination of sphingomyelin, ceramide, and glycosphingolipid species, and to a lesser extent 233 

phosphatidylcholine, phosphatidylethanolamine, diacylglycerol, and triacylglycerol molecules 234 

(Table S4).  Indeed, pathway enrichment analysis of the PC1-contributing features identified the 235 

sphingolipid metabolism pathway as the main contributor to this component (FDR q=2.19E-11, 236 

Table S5).  Multiple metabolic features from PC1 were further identified using LC-MS/MS (Table 237 

S4).  Validated metabolites from the sphingolipid metabolism pathway included a number of 238 

sphingomyelin, ceramide, monoglycosylceramide (glucosyl- or galactosylceramide), 239 

diglycosylceramide (galabiosyl- or lactosylceramide), and sufatide (3-o-sulfogalactosylceramide) 240 

species.  All these metabolites were significantly decreased after the intervention compared to 241 

baseline levels (Figures 2A-2D). 242 

 243 

Associations between sphingolipid-related metabolites and physiological parameters 244 

Sphingolipids have been consistently associated with obesity, insulin resistance, and type 2 245 

diabetes in human subjects.30-32  Thus, we next analyzed whether lifestyle intervention-induced 246 

differences in sphingolipid levels were associated with changes in physiological parameters, 247 

including BMI-SDS, HOMA-IR, and HbA1c.  The decrease in sphingolipid levels induced by the 248 

intervention was not associated with changes from baseline to the 6-month time point in BMI-SDS 249 

or HOMA-IR (Table 2).  Remarkably, the improvement in HbA1c levels from baseline to the 6-250 

month time point was directly associated with the decrease in several sphingolipids, including 251 

sphingomyelin, ceramide, glycosphingolipid, and sulfatide species, even after adjusting for gender, 252 

age, and baseline BMI-SDS (Table 2).  253 
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Discussion 254 

Prepubertal children are metabolically distinct than pubertal or adolescent subjects, with pubertal 255 

development physiologically decreasing insulin sensitivity8 and accelerating metabolic 256 

dysregulation in patients with obesity.9  Thus, early interventions in prepubertal individuals are 257 

crucial to decrease future risk of disease.  Lifestyle interventions mainly based on a healthy diet 258 

and physical activity are the current strategy for childhood obesity treatment.33  However, such 259 

interventions in young children are complex, often achieving only a temporary and modest 260 

reduction in BMI.  A decrease of 0.25 units in BMI-SDS is considered sufficient to improve 261 

metabolic health parameters in children and adolescents.34  The lifestyle intervention program 262 

resulted in a mean decrease of 0.45 units in BMI-SDS and of 1.8 cm in waist circumference in our 263 

cohort of prepubertal children.  Importantly, the improvement in BMI-SDS was maintained up to 264 

one year after the end of the intervention. 265 

 266 

Despite the significant decrease in BMI-SDS and waist circumference, we observed no 267 

improvements in several metabolic parameters, including fasting glucose, triglyceride, or 268 

cholesterol levels.  Successful interventions in adult individuals with obesity frequently lead to 269 

improvements in these variables.  However, adult subjects with obesity often show impaired 270 

baseline metabolic characteristics, while in our prepubertal population these variables were mostly 271 

in the normal clinical reference range for their age, and not overtly impaired.  These data are in line 272 

with a report by Reinher et al. describing that the prepubertal stage is associated with a more 273 

“metabolic healthy obese” phenotype.9  This report and other studies have found only minor or no 274 

effects of lifestyle intervention on glucose, HOMA-IR, triglyceride, and cholesterol levels in children 275 

with obesity.9, 35, 36  Despite the lack of effect on fasting glucose and insulin levels in our study, 276 

HbA1c levels were significantly reduced after the intervention (from 5.4% to 5.2%).  Interestingly, 277 

Blüher et al. reported a similar decrease in HbA1c (from 5.47% to 5.22%) associated with 278 

improved glucose tolerance after a 1-year lifestyle intervention program in children and 279 

adolescents, while fasting glucose and insulin levels remained stable throughout the study.35  280 

Based on these data, our results suggest that the intervention in prepubertal children improved 281 

glycemic control.  Finally, the prepubertal patients enrolled in our study showed a high degree of 282 
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obesity at baseline (BMI-SDS of 3.56), and despite the significant reduction in BMI-SDS, still had a 283 

notable level of obesity after the intervention (6-month BMI-SDS of 3.11).  Thus, we cannot 284 

exclude the possibility that a much further decrease in BMI-SDS would have a bigger impact on 285 

glucose and lipid systemic metabolism in this prepubertal population.   286 

 287 

Our untargeted metabolic profiling identified a strong sphingolipid metabolism-related signature 288 

associated with lifestyle intervention in prepubertal children with obesity.  Sphingolipids, which 289 

include sphingomyelins, ceramides, and glycosphingolipids,37 are basic constituents of the plasma 290 

membrane lipid bilayer, where they help maintain a stable structure to protect the cellular 291 

membrane from environmental factors.  In addition to their important role in plasma membrane 292 

structure, sphingolipids also function as crucial signaling molecules in a wide array of biological 293 

processes, including apoptosis, proliferation, inflammation, autophagy, and differentiation.  294 

Notably, obesity and insulin resistance have been consistently associated with altered sphingolipid 295 

metabolism and increased circulating ceramide levels in humans.30-32  In children and adolescents, 296 

targeted metabolomics identified altered sphingomyelin/phosphatidylcholine ratios associated with 297 

obesity (age range 6-15 year-old) compared to normal weight controls,20 suggesting impaired 298 

sphingolipid metabolism.  Experimental animal models have demonstrated that increased 299 

sphingolipid levels contribute to the development of obesity and related metabolic disorders, 300 

including insulin resistance and cardiovascular disease.38, 39  Thus, modulating sphingolipid 301 

metabolism is being actively investigated as a target for therapeutic strategies.  Indeed, targeted 302 

genetic deletions or pharmacological inhibition of ceramide, glycosphingolipid, or sphingomyelin 303 

synthesis in mouse models significantly improves glucose tolerance, insulin sensitivity, and 304 

atherosclerosis.40-44  Therefore, our data suggest that decreasing circulating ceramides in 305 

prepubertal children might be an important mechanism to reduce future metabolic and 306 

cardiovascular risk.  In this context, the decrease in multiple circulating sphingolipid species 307 

induced by the intervention was associated with improvements in HbA1c levels, suggesting that 308 

decreasing ceramide levels has a long-term effect on glycemic control.  Further studies will be 309 

required to determine whether targeting sphingolipid metabolism or ceramide levels during early 310 
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childhood improve HbA1c levels and can be beneficial to decrease future metabolic risk during 311 

adolescence and adulthood. 312 

 313 

A number of weight-loss intervention studies in adult subjects or adolescents have shown an 314 

impact in certain sphingolipid-related molecules.  To our knowledge, this is the first study reporting 315 

a global effect of lifestyle intervention on sphingolipid metabolism in a prepubertal population of 316 

children with obesity.  A study in adolescents showed a decrease in two sphingomyelin species 317 

(C26:0 and C26:1) after laparoscopic sleeve gastrectomy surgery.45  In adult subjects, gastric 318 

bypass surgery resulted in decreased ceramide levels correlating to the extent of weight loss.46  319 

These studies suggest obesity-related alterations in sphingolipid metabolism. However, changes in 320 

sphingolipid metabolites were not associated with the decrease in BMI-SDS in our study with 321 

prepubertal children.  On the other hand, dietary interventions aimed at decreasing risk of type 2 322 

diabetes and cardiovascular disease in adult subjects lowered plasma sphingolipid levels without 323 

modifying body weight.47, 48  Specifically, higher unsaturated fat content decreased ceramide levels 324 

compared to a saturated fat-rich diet in adult subjects.47  Also, a healthy “Nordic diet”, characterize 325 

by higher fiber and unsaturated fat content was shown to modulate ceramide levels compared to a 326 

control diet.48  Given that sphingolipid-related metabolite levels were not associated with the 327 

reduction in BMI-SDS in our cohort, these data suggest that dietary changes induced by the 328 

lifestyle intervention program contributed to the decrease in circulating sphingolipid levels 329 

independently of the effects on BMI-SDS.  330 

 331 

Metabolites from the BCAA pathway and acylcarnitine species have been consistently associated 332 

with obesity and insulin resistance in both adult and children subjects compared to normal weight 333 

controls.12, 15, 18, 20, 49  Weight-loss interventions in adults, including gastric by-pass and lifestyle 334 

interventions, reversed theses changes in BCAA and acylcarnitine levels.50-52  Notably, BCAA-335 

related metabolites and acyl-carnitines were measured in the untargeted metabolomics analysis, 336 

but not identified as modified by lifestyle intervention in our study with prepubertal children.  337 

Disturbances in these metabolites have been also linked to insulin resistance in prepubertal 338 

children with obesity.49  Furthermore, adjustment for clinical and biochemical measures attenuate 339 
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the associations between BCAA levels and diabetes risk in adult subjects,14 suggesting that 340 

increased BCAA levels may be the consequence of a combination of different factors, including 341 

obesity, fasting glucose levels, and insulin resistance.  Since participants in the present study did 342 

not show changes in HOMA-IR, these data suggest that alterations in BCAA metabolism might be 343 

more linked to insulin sensitivity rather than to BMI itself, at least in a prepubertal population.  344 

Moreover, despite the notable reduction in BMI-SDS, participants in the present study still showed 345 

a high degree of obesity after the intervention.  Thus, it seems rather plausible that BCAA and 346 

acyl-carnitine levels still reflect the obesity status. 347 

 348 

Limitations of this study include the modest sample size.  Subjects showing signs of puberty at 349 

baseline or the 6-month visit were excluded from the study, substantially decreasing the potential 350 

sample size.  A main strength of this study, intimately linked to the limitation in sample size, is that 351 

participants are exclusively in a prepubertal stage, avoiding potential confounding factors related to 352 

entering puberty.9  Further strengths include the unbiased approach, both by the use of untargeted 353 

metabolomic techniques and unsupervised principal component analysis applied to identify 354 

metabolic signatures associated with lifestyle intervention. 355 

 356 

In summary, our data indicate that lifestyle intervention induced a sphingolipid metabolism-related 357 

signature in prepubertal children with obesity.  Since sphingolipid and ceramide levels are 358 

associated with risk for insulin resistance and cardiovascular disease, our data suggest that 359 

decreasing circulating ceramides in prepubertal children might be an important mechanism to 360 

reduce future metabolic and cardiovascular risk.  Further studies are warranted to determine 361 

whether targeting sphingolipid metabolism in prepubertal children with obesity can provide a valid 362 

strategy to decrease future risk of metabolic disease. 363 
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Figure Legends  578 

 579 

Figure 1.  Principal component analysis identifies PC1 as decreased after lifestyle 580 

intervention.  581 

A) Score plot of principal components 1 and 2 accounting for 15.4% and 10.7% of total variance.  582 

White and black circles represent baseline and the 6-month time point data, respectively.  B) 583 

Loading plot of the 2581 metabolic features in PC1 (x-axis) and PC2 (y-axis).  C) Comparison of 584 

PC scores between baseline and 6 months. Wilcoxon matched-pairs sign rank was applied to 585 

determine significance. 95% CIs and p values reflect Bonferroni’s multiple comparison correction.   586 

 587 

Figure 2.  Lifestyle intervention decreases circulating sphingolipid levels. 588 

Concentrations of validated sphingolipid-related metabolites contributing to PC1 were evaluated as 589 

z-scores.  Differences between baseline and the 6-month time point for A) N-acylsphigosines 590 

(ceramides), B) sphingomyelins, C) glycosyl-N-acylsphingosines, and D) sulfatides are reported in 591 

the box plots.  Top and bottom of the box represent the 75th and 25th percentile, respectively.  592 

Whiskers represent the entire spread of the data points, excluding extreme points (higher or lower 593 

than the median ± 1.5 times the interquartile range), which are indicated with circles.  GlcCer, 594 

glucosylceramide; GalCer, galactosylceramide; diGalCer, galabiosylceramide; LacCer, 595 

lactosylceramide.  Wilcoxon matched-pairs sign rank was applied to determine significance, and p 596 

values are reported.  aAlternative structures d18:1/20:1 or d18:2/20:0, unresolved by MS/MS. bAcyl 597 

chain unresolved by MS/MS.   598 
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Table legends 599 

 600 

Table 1.  Demographic and metabolic characteristics of subjects before and after the 601 

intervention program.   602 

Subjects were 76% (n=26) caucassian, 12% (n=4) hispanic, 9% (n=3), north African 3% (n=1), and 603 

Asian 3% (n=1), roughly representing the distribution of the resident population of the Hospital's 604 

influence area.  Normally distributed values are presented as mean (95% CI), and significance 605 

assessed by two-tail paired Student t test.  aNon-normal distributed variables are presented as 606 

median [IQR], and significance assessed by Wilcoxon matched paired signed-rank test.  Bold font 607 

indicates p < 0.05. 608 

 609 

Table 2.  Correlations of intervention-induced changes in sphingolipid levels to 610 

physiological measures.  Partial Spearman correlations between baseline to 6-month changes in 611 

validated sphingolipid metabolites to changes in BMI-SDS, HOMA-IR, and HbA1c.  Correlations 612 

are adjusted for child sex, age, and baseline BMI-SDS.  GlcCer, glucosylceramide; GalCer, 613 

galactosylceramide; diGalCer, galabiosylceramide; LacCer, lactosylceramide. aAlternative 614 

structures d18:1/20:1 or d18:2/20:0, unresolved by MS/MS.  bAcyl chain unresolved by MS/MS. 615 

Bold font indicates p < 0.05.  616 
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Baseline 6-month p val

Subjects

Sex (F/M)

Age (years)

Weight (kg) 54.8 (50.1-59.4) 55.0 (50.4-59.7) 0.627

BMI-SDS 3.56 (3.29-3.84) 3.11 (2.88-3.34) <0.001

Waist circumference (cm) 83.4 (80.3-86.6) 81.7 (78.3-85.0) 0.001

Systolic Pressure (mmHg) 112 (109-115) 110 (107-113) 0.332

Diastolic Pressure (mmHg) 70 (67-72) 69 (67-71) 0.552

Fasting Glycemia (mg/dL) 85 (82-88) 89 (87-91) 0.003

Fasting Insulin (µU/mL) 13.2 (10.9-15.6) 13.4 (11-15.7) 0.838

HOMA-IR 2.80 (2.29-3.31) 2.96 (2.42-3.5) 0.657

HbA1c (%) 5.4 (5.3-5.4) 5.2 (5.2-5.3) <0.001

Total Cholesterol (mg/dL) 164 (155-174) 178 (169-188) <0.001

LDL-Cholesterol (mg/dL) 105 (96-114) 114 (105-122) 0.010

HDL-Cholesterol (mg/dL) 43 (40-47) 45 (42-48) 0.266

TAG (mg/dL)a 67 [60-95] 80 [65-119] 0.006

ALT (UI/L) 20.7 (18.4-23.1) 20.9 (18.5-23.4) 0.801

AST (UI/L) 22.1 (20.6-23.5) 22.7 (20.9-24.5) 0.358

n = 35

17/18

8.9 (8.6-9.3)

Table 1.  Demographic and metabolic characteristics of subjects before and 
after the intervention program.  



  Metabolite r p val r p val r p val
N-Acylsphingosines (Ceramides)
  d18:0/16:0 -0.09 0.617 0.15 0.418 0.24 0.200
  d18:1/14:0 -0.17 0.359 0.21 0.242 0.12 0.503
  d18:1/16:0 -0.09 0.635 0.16 0.377 0.27 0.139
  d18:1/18:1 -0.09 0.621 0.20 0.283 0.03 0.856
  d18:1/24:1 -0.01 0.962 0.06 0.745 0.41 0.022

Sphingomyelins

  d16:1/22:1a -0.08 0.673 0.17 0.362 0.03 0.887
  d18:0/16:1 -0.08 0.671 0.14 0.453 0.16 0.390
  d18:0/18:1 0.05 0.804 0.22 0.226 0.19 0.309
  d18:0/24:0 -0.19 0.300 0.08 0.677 0.07 0.717
  d18:1/20:0 -0.04 0.809 0.12 0.690 0.25 0.174
  d18:1/23:0 -0.04 0.808 0.05 0.773 0.40 0.027

  d18:2/21:0 -0.10 0.586 0.16 0.370 0.08 0.667
GlcCer / GalCer

  d15:2/18:0 -0.02 0.901 0.15 0.423 0.25 0.168
  d18:1/16:0 0.01 0.944 0.13 0.493 0.29 0.113
  d18:1/18:0 0.08 0.662 0.17 0.344 0.36 0.046

  d18:1/24:1 0.01 0.936 0.11 0.551 0.43 0.016

  d18:1/16:1 -0.06 0.744 0.07 0.713 0.20 0.277
  d18:1/XXb -0.13 0.462 -0.03 0.883 0.42 0.020

  d18:2/23:0 0.02 0.921 0.14 0.447 0.23 0.207
diGalCer / LacCer

  d18:1/16:0 0.04 0.810 0.17 0.355 0.29 0.114
  d18:1/18:0 0.05 0.794 0.11 0.539 0.38 0.036

  d18:1/24:1 0.01 0.952 0.01 0.970 0.54 0.002

Sulfatides

  d18:1/16:0 -0.11 0.545 0.09 0.608 0.29 0.115
  d18:1/22:0 0.01 0.946 0.16 0.395 0.26 0.153
  d18:1/24:1 -0.01 0.973 0.10 0.577 0.41 0.024

         BMI-SDS          HOMA-IR          HbA1c

Table 2.  Correlations of intervention-induced changes in sphingolipid 
levels to physiologic measures.
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