On synchronization of life cycles by collective transport and emergence of supercycles
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A model of physiological age, accompanied by non-linear diffusion in space, is studied analytically
and numerically, and is shown to develop non-stationary traveling population waves. A window of
intermediate growth rates is found where collective supercycles are formed from individual (stochas-
tic) life cycles. Supercycle periods can be considerably different (larger or smaller) than the average
longevities of contributing individuals, while the time-averaged spatial expansion rate has a local
maximum in the supercycling mode. A method of adiabatic similarity solutions is used to derive
dependencies of the solution parameters on source and sink inhomogeneities, and obtain closed cou-
pled dynamic equations for the age structure, leading and trailing fronts. Analytical results are
compared with numerically computed similarity and full solutions for several types of population
waves. We discuss possible model applications to development of lichen thallus, multi-year patterns
of agricultural crop yields and autocorrelation of locust swarming.

PACS numbers: 87.10.Ed, 87.18.Hf, 87.23.Cc, 05.65.+b, 05.40.-a

I. INTRODUCTION

Spontaneously synchronized oscillations in mixtures of
organic molecules are currently hypothesized to be a pre-
cursor of life [1, 2]. At different levels of biological aggre-
gation, be it cells, cellular organisms, or groups of organ-
isms, one finds examples of recurrent cycles —which are
not necessarily strictly periodic but exhibit considerable
cycle elasticity. Historical data exist in the literature for
some of these cycles. We will confine ourselves with three
examples below. Lichen colonies of Parmelia conspersa
may display periodic thallus growth with a period of sev-
eral weeks [3]. Many agricultural yields display striking
multi-year patterns [4, 5]. Swarming of locusts in Eastern
Australia [6], although not at all periodic, displays sig-
nificant autocorrelation with peak-to-peak lags of several
years, despite all the control efforts.

In the absence of any obvious external drivers or in-
ternal “dedicated clocks”, these cycles suggest flexible
inter-organism regulation, and the key question is - how
does a recurrent behavior emerge from the lower scale
life-cycles of the involved organisms or cells, a behavior
which is clearly robust while being different from these
lower-level variable life-cycles?

We use the term “cells” here to refer to individual live
agents, which could literally be independent motile cells,
such as bacteria, but could also entirely depend on hosts
for transport as viruses do [20, 21], or to be multicellular
organisms, such as swarming insects [22] or plants and
their fruits, exhibiting cycles [4]. Synchronization by col-
lective transport is characteristic of relatively early stages
of collective organization, when cell density is small as
compared to close packing.

Here we analyze theoretically a model of collective cell
behavior and pattern formation on time scales not re-
ducible to the duration of individual life cycles. There
are, in principle, several approaches at hand. First, col-
lective and self-organized motion of interacting agents

in swarms, and flocking mechanisms are often described
micro- and mesoscopically by means of particle or agent-
based models [7]. These models can satisfactorily ac-
count for different aspects of the aggregated motion of
elementary agents, but none of them, to our knowl-
edge, contemplates the emergence of temporal supercy-
cles from steady-moving waves. Periodic traveling popu-
lation waves can be modeled via two-species reaction-
diffusion systems of equations [8], which are capable,
as in chemically reactive species, to account for cyclic
spatio-temporal patterns characterized by population
synchronicities across the spatial domain. However, there
is no net propagation of individuals in these waves, lim-
iting their biological applications. A different class of
models is based on the generalization of the Kolmogorov-
Petrovsky-Piskunov-Fisher (KPPF) equation [9, 10], a
type of reaction-diffusion equation which produces steady
state patterns after inclusion of non-local competition
terms, both with linear and non-linear diffusion [11, 12].
Beyond pure random motion, the chosen form of non-
linear diffusion may boost (superdiffusion), or hinder
(subdiffusion) individual displacements depending on the
local population density, favoring the mobility of some co-
horts with respect to others, to avoid or enhance crowd-
ing. Non-linear diffusion plays an important role in spa-
tially inhomogeneous population dynamics [13] and has
been used to model insect dispersal [14] and bacterial
chemotaxis [15]. Here we will show theoretically how,
combined with a non-local functional dependence plus
physiological aging variability, non-linear diffusion may
give rise to a rich phenomenology, which includes self-
organized swarming aging structures.

In what follows we will use the notion of physiological
age of individual cells or organisms as a measure of the
phase or stage of the individual life cycle. This age was
introduced by VanSickle as “some measure of maturity
or physiological development of individuals in a popula-
tion ... [such as| chronological age, body size, chemical



composition or any other physiological feature which is
an accurate indicator of an individuals reproductive sta-
tus and potential for survival” [16]. VanSickle considered
a deterministic physiological age which had its own accu-
mulation rate. The chronological age was recovered if the
growth rate is 1. In VanSickle’s approach, a distribution
of deterministic physiological rates encounters a problem
with multiple stages or development: with a determinis-
tic rate one can predict the timing of the future stages,
including death, based upon the time it took to achieve
past stages.

We have previously studied the variability of physio-
logical age in a stochastic setting. An age-resolved pop-
ulation dynamics in space and time was introduced for
Proteus mirabilis [17]. This paper contained analysis of
a model where variable age-resolved population is de-
scribed by an integro-differential equation. The model
bore mathematical similarities to the Boltzmann kinetic
equation in the theory of ideal gases, and was termed “ki-
netic”. A corresponding minimal model without integral
terms, and with potentially broader applicability, was
presented in [18], where the diffusion (Fokker-Planck) ap-
proximation was introduced along the age axis for age-
structured populations. The present paper contains a
quantitative study of pulsating waves or “supercycles”
in the diffusion approximation along the age axis, and
discusses its potential applications.

To aid with the analytical study, we use a method of
parametrically driven similarity solutions, based on their
stability [19]. In this method, the evolution under the
influence of slow external changes in the population is
projected on similarity solutions with adiabatically up-
dated parameters.

II. THE MODEL

A multicellular organism controls birth, development
and apoptosis of individual cells. This is a flexible control
which, to some extent, has to tolerate individual advances
and delays of cell development. Groups of cells forming
internal structural elements may pass through different
development phases at different times. For modeling pur-
poses we assume that each element, be it a cell, or a group
of cells (we call these elements cells until noted other-
wise), has a life trajectory which can be parameterized
quantitatively by the physiological age #. The proper-
ties of this variable are as follows. When an observer is
presented with a group of individuals born at the same
time, she may conclude that the individuals appear to
be at somewhat different physiological stages, and con-
tinue to mature differently at any chronological age. For
example, the onset of flowering in a grove may vary by
several days [23] depending on the tree, or even vary by
several weeks, depending on the species [24].

A. Physiological stages

In discrete time setting, t/At = 0,1,2..., the physio-
logical age 0; advances as

Otrnt = 0t + ag + ar 2, (1)

where ag, a; > 0 are constants and z is a Bernoulli vari-
able, having values 1 and 0 with probabilities p and 1 —p,
respectively. If time step At is sufficiently small for a
given time ¢, the limit of this process, is a sum of drift and
diffusion, 6; = (ag+a1p)(t/At)+a1 Z [p(1 — p)(t/At)]Y?,
where Z is a standard normal random variable. Since the
scale of physiological age 6 is arbitrary at this point, we
may adjust it by dividing over (ag + a1p)/At so that the
average advance of the parameter is the same as that of
the chronological time. As for the adjusted variability, in
the continuous limit, it comes from a diffusion term with
diffusivity a = a3p(1 — p)/[2At(ap + a1p)?].

The variability of physiological aging grows here as a
square-root of time, based on linear diffusion of 6. This
is closer to observations than VanSickle’s distributed de-
terministic physiological aging where deviations grow lin-
early in time, see e.g. Figure 1 and Table 1 (for age
groups less than 60 years old) in [25]. The diffusivity,
a, has units of time. For example, in olive orchards, the
physiological age diffusion “length”, (2at)'/? | reaches
about a week, over 250 days (to account for winter dor-
mancy), v/2 X a x 250 = 7 gives a of about one tenth of
a day.

With insects, such as the South American locust Schis-
tocerca cancellata, in controlled laboratory conditions,
the duration of adult female and male stages were mea-
sured to be 87 + 35 and 90 + 27 days, respectively [26].
This gives much larger age diffusivity values of a ~ 7
days for female and a ~ 4 days for male stages.

In the continuous setting, a modeled cell with physio-
logical age 6 and spatial coordinate x will proceed as

df =dt + /2a dWy, (2)
dr = 2D dWs, (3)

where D is spatial diffusivity, and W 5 are corresponding
Wiener processes. The Fokker-Planck equation for the
probability of a cell having a given age 6 at x is [27]
oP 0P _ 0 [ 0P 0 [0P]
ot 00 Oz ox a0 " a0 |
The 2D-density of cells in (z,6) is obtained by multiply-
ing this probability P by the total number of cells.

B. Model equations

For modeling the propagating population front we have
considered the following ingredients,



i.

ii.

iii.

iv.

vi.

The underlying organization, at the cell level, is the
cell cycle expectancy, 6., which comprises two alter-
nating stages. These are the motile phase, and the
non motile phase. They can also be named individ-
ual phase and collective phase. In this analysis, both
phases are of equal duration, although other choices
are possible.

Physiological maturity is not a deterministic process
but can be accelerated or delayed, according to the
physiological age diffusivity a.

The motile phase is characterized by nonzero spatial
diffusivity. At age 0 cells are not motile. As they
grow older and reach 6y, they acquire the ability to
spatially diffuse. The diffusion coefficient will depend
non-linearly on cell density and its form fosters col-
lective migration. If the total “cell” density is too
high (cutoff ng) cells freeze. When we speak about
“rebirth”, we mean a simple clock reset to 8 = 0, at
which individual motility ceases. These choices are
discussed more in detail below.

Whether the individual cell dies physically or not af-
ter the motile, collective phase, is not the key issue.
The key is that mobility ceases for these cells, their
clock is reset, and we say that they “regain individ-
uality”. An example of this behavior at the cell level
of organization is the Proteus mirabilis swarmers. At
the ecological level, the locust outbreaks. Please note
that neither cells nor insects die after their respective
motile (or collective) phase ceases.

. At any time, cells reproduce with Malthusian rate

and their offspring inherit their age, which mostly
implies their state, either individual or collective.
While offspring born with the age of their parents
may seem an awkward arctifact, think only that the
age of offspring when unicellular organisms replicate
is undefined. Moreover, in the Proteus mirabilis bac-
terial system, it has been shown that cell aggregates
(swarmers), consisting of several nuclei, continue ex-
ponential growth of their bodies without septating.
Locusts do not replicate like unicellular organisms
either, but following instead a complex developmen-
tal process. However, insects born within a gre-
garious phase group together as soon as they start
to feed. That means, they are not first isolated,
randomly moving and feeding individuals (immobile
phase) and later they become mobile locusts. Con-
trarily, nymphs born in the band stay and march
within [30]. We may assume then, that locusts’ off-
spring are born “locusts”, because they move with
the band as soon as eggs hatch, and need to feed
themselves.

We will be focusing on the properties of the popu-
lation in the vicinity of a leading front, where abun-
dance of “nutrient” is assumed. This is the case for
early growth mechanisms, well represented by means

of a Malthusian parameter, a simple but appropri-
ate model which we will consider here. In standard
microbiological tests for instance, many generations
of cells can be supported before nutrients are ex-
hausted. With this in mind, presently we will not
account for cell mortality. Other growth dynamics,
like the logistic model, might be considered, but un-
der certain range of parameters the dynamics pre-
sented here will be recovered.

vii. Models in the literature sometimes require that a
gradient in nutrient concentration (chemotaxis) pro-
motes faster growth of the fronts [15] where cells have
easier access to the nutrients, following the Keller-
Segel model [31]. Under the assumption of unlimited
access to nutrients at the propagating front, here we
do not consider these effects.

viii. Last, we must bear in mind that this is a population
model: none of the individual lives is represented by
the model equation any better than the trajectory
of one single water molecule is represented by the
Navier Stokes equations.

Growth and diffusion are very elementary mechanisms.
Growth is related to the need of expansion and colonizing
new spaces, and isotropic diffusion —however non-linear
and non-local, is the most general mechanism at hand to
explore the new surroundings for whatever purpose: mat-
ing, feeding, dispersing seeds, or maturing and growing,
that is, occupying previously empty spaces.

Consider Malthusian growth of a population in pres-
ence of variable physiological stages, “rebirth” (as a
switching mechanism between them) and non-linear spa-
tial diffusivity. Topologically, the physiological age 6,
0 <0 <6, is a transport process on a circle, S, with
average drift of aging accompanied by a natural vari-
ability around it [32]. The age 6-axis here is therefore
proportional to the angle of cylindrical coordinates, the
proportionality coefficient being the constant radius of
the cylinder, 6./27. The collective transport in space is
a process defined in R%, so in a one-dimensional setting,
—00 < & < 00, the model is posed on a cylinder, S x R!,
with time ¢ > 0.

The model equation for the time evolution of the pop-
ulation density, n(z,0,t) reads as follows,

@_Fainfé D()al+@+
ot " o0 oz | Wox| Yo T

The field n describes cells of a multicellular organism
(such as a plant) whose parts have average life expectancy
cell-cycle expectancy, 6. and physiological variability a.
Unless explicitly stated to the contrary, we will be work-
ing with a non-linear spatial diffusivity,

D(n’ 9) = DOf(TI)H(9 - 90)7
with H being the Heaviside step function, and

1 06 ,]7771
= — ndo, = ’
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(5)
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n=1’

(7)



which favors collective migration or “quorum sensing”.
Here m > 0 and 6 is the age when cells acquire motility,
0 < 6y < B.. The lower limit of the integral (7) may
be set to a different value within the interval [0, 6], the
results being qualitatively similar.

Our choice of spatial diffusion D(n) priories two essen-
tial modeling elements,

1. The case where a density increase enhances diffu-
sion, as in models of insect dispersal [14], where
D(n) = Do(n/ng)™ for an age-independent density
n. Migration of insects is generally contingent on
crowding [28]. Such nonlinear diffusion coefficient
assumes that without insects there is no diffusion,
implying a front profile that goes steeply to zero,
with a divergent slope for m > 1, supported by ex-
perimental observations in bacterial colonies. Stud-
ies of locust swarms [29, 30] reveal that individuals
at the leading front (where density is smaller than
in the bulk) slow down and turn more often to-
wards those behind. This behavior reduces their
net displacement in comparison to the rest of the
marching band (i.e. smaller diffusivity), serves to
maintain cohesion, and creates a dense front.

2. The diffusivity cutoff in Eq. (6) set at a concentra-
tion ng, is consistent with the objective of the non-
linear or collective transport to occupy new areas
which are challenging for individuals. When this
goal is accomplished, reproduction is attempted
and spatial mobility is no longer favored. In other
words, slowing down is associated with density and
reproduction. Indeed, the internal regions of Pro-
teus mirabilis colonies are immobile, while their
concentration of cells is the highest [33]. Growth in-
side the central part of lichen colonies is arrested,
see Sec.VIA. Mosquitoes, locusts, etc aggregate
for ovipositioning, during which they do not mi-
grate. Migratory birds move in flocks, which re-
quire a certain density. They have specialized habi-
tats for breeding where they form dense colonies,
and cease migration while breeding [34]. Notwith-
standing the above, inside the colony, away from
the leading front, at yet higher densities one might
expect a density-dependent decline of reproduction
[9, 10, 14] due to nutrient shortages, build-up of
byproducts, etc. These processes are not consid-
ered here. Due to the diffusivity cutoff, the popu-
lation beyond ny does not contribute to the spatial
dynamics of the colony. We thus expect an ac-
tive band of cells, contained in the spatial region
where the diffusivity is nonzero: between the lead-
ing front, z((t), defined by absence of cells ahead,
and the trailing front, x; (), where mobility ceases
due to the diffusivity cutoff at n = ny.

III. NUMERICAL SIMULATION

We first integrate Egs. (5)-(6) numerically, in the
(z,0)—-domain, using centered finite differences and ex-
plicit integration in time. A fifth order WENO scheme
is used for the age advection term, to model sharp age
profiles at vanishing age diffusivity when needed (for
larger age diffusivities, a simple second order advection
scheme is sufficient). The Courant number is 0.8. Spatial
and age diffusion terms are handled by a second-order
scheme. The grid is uniform in both directions, with
step sizes Az, Af. To resolve cusps near the fronts one
need small spatial steps, hence small time steps. The
age axis, 0 < 0 < 0., is a ring, whereas the spatial do-
main has its upper limit set to a value well ahead of the
leading front xg so that in simulation time it never in-
teracts with the boundary. Due to the mobility cutoff
ng, the only portion of the population which is of inter-
est here is that contained between the leading and the
trailing fronts (see discussion in the previous section),
i.e. inside the interval z1(t) < a < zo(¢). Initially, Ny
cells are born at time ¢ = 0 uniformly in the interval,
21(0) = 0, 29(0) = wp and the initial distribution is
such that the trailing front is x;(0) = 0. With the ex-
plicit scheme, in addition to the CFL condition, both
age and spatial diffusion limit the time step for stability,
At < min [(Az)?/4Dy, (A6)?/4a]. Due to C° continu-
ity, tracking of the moving front requires rather small
step sizes Az. This turns Eq.(5) into a stiff problem.
Our MATLAB code is available to the reader as supple-
mental material [35].

Figure 1 shows representative trajectories of the lead-
ing and trailing fronts in time for two types of initial
conditions (peaked and uniform) and different values of
the growth parameter ~q.

Slower growth rates 7y are shown in the left panel of
Fig. 1, with the transition from linear growth (y9 = 1) to
supercycles. At v = 1 the long-term asymptotic is linear
growth. Oscillations of the peaked initial condition are
only a transient, albeit a persistent one; the cells will
eventually smooth out to a constant speed when peaked
cells diffuse over the entire age axis, at times t ~ 62/a =
800. At v9 = 5 the long-term asymptotic is supercycles,
regardless of the initial condition. Higher growth rates
~o are shown in the right panel (note the change of the
y-scale). In cases when supercycles are formed, one can
see by counting the number of oscillations, that the cycle
period depends on the growth rate, g, and it is not equal
to the life cycle span of individual cells (f, = 2 is the
same for all plots). The supercycle period may be lesser
(left panel) or greater (right panel) than 6., depending on
parameters. In particular, we show that for o = 85, the
period is T = 2.7516,, and for 79 = 102 is ~ 5.220.. One
can also see a systematic decrease of relative durations
of consolidation phases, although we chose the motility
threshold to be in the middle of the age interval, 26y = ..

These numerical results suggest that different types
of asymptotic solutions may be obtained, depending on
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FIG. 1. Evolution of the leading (solid lines) and trail-
ing (dashed lines) fronts depending on initial conditions and
growth rates, as obtained by numerical integration of Egs. (5)-
(6). Parameters: m =4, p =1, . = 2, Do = 1, a = 0.005,
wo = 1, np = 1. Blue lines correspond to a peaked ini-
tial condition n(6,z,0) = Nod(6 — 00/2) (& being the Dirac-§
function), with Ny = 10, and = < wo. Green lines corre-
spond to the uniform initial condition n(6,z,0) = No/6o,
with No = 0.3, and < wo. In all cases n(0,z,0) = 0 for
x > wo.

the parameters. In the case 7y = 1, the steady-moving
fronts are faster than pulsating fronts. In other cases,
the converse is true: even age-uniform initial conditions
develop supercycles, and pulsating fronts advance faster
than the steady-moving wave, in agreement with Saar-
loos marginal stability [36]. In the case 9 = 5 one can
see additional inflection points on the front trajectories,
hinting on different types of supercycles. Finally, if the
growth rate, vy, is further increased, the period of super-
cycles increases until a linear growth in space is appar-
ently recovered, see Sec. V.

We now introduce a method of parametrically driven
similarity solutions, to obtain a closed system of ODEs
for the propagating fronts. The reader not interested in
theory and methodology may entirely dismiss Section I'V.

In what follows, the 2D density n(x,0,t) is referred
to as “density”, the 1D density N(0,¢) = [n(z,0,t)dz
is called age-density, and the 1D density n(z,t) =
Jn(z,0,t)dd is called concentration. The quantity
N(t) = [n(x,0,t)dz denotes the total number of cells.

IV. PARAMETRICALLY DRIVEN SIMILARITY
SOLUTIONS

The method presented here is valid when spatial trans-
port is fast as compared to the source-sink terms.

A. Age-Independent Dynamics

Consider first the age-independent case, where there
is no concentration cutoff for cell motility, no motility
threshold, 6y = 0, and no age diffusion, a = 0, so that
the non-linear diffusivity Eq. (6) in this case is age-
independent. We introduce, however, time-dependent
growth rates (t) > 0. Integrating Eq. (5) over the 6-
axis, we obtain

on 0 on
ot~ 0z {D () 81:] T
(8)
With unrestricted non-linear diffusivity, this equation
may be integrated for an arbitrary growth rate (t) and
the concentration profile n(z, t), is given by a hull-shaped
even function of z, with finite support, |z| < zo(7), as
derived in Appendix A,

A e L/m
D= {1 xam] |

where A is an integration constant, and

0c
n(ac,t):/ n(x,t,0)do,
0

9)

t t
T :/ hm(tl)dt1, logh:/ ’y(tl)dtl. (10)
to to

Here, t( is an arbitrary initial time, when the initial con-
centration profile has been forgotten. The point in space
where n = 0 defines the leading front of the wave, z(7),
which satisfies the first order ODE (see Appendix for de-
tails)

X 2DgA™

=2 = 07m4_27 (11)

To  mng'T
giving the solution

2(m + 2)DgA™T 1/(m+2)

m
mng

xo(T) = , (12)

Since D(n) = Dy(n/ng)™, non-linear diffusion is faster
in dense regions than at lower concentrations, thus the
leading front becomes the bottleneck of expansion. As
a result, the solution is governed by the front motion,
and this regime is different from regular diffusion, which
propagates as the square root of time. Integrating this
profile from —x((7) to zo(7) we find 2Noh(t) = bAA(t)
(2N is the initial total number of particles — or Ny for
each half-axis), which fixes the integration constant,

2Ny
==
Here b is expressed through the beta-function,

bB<11+1) (14)

2’m

A (13)

Formulae (9), (12) and (13) define the intermediate
asymptotics or similarity solution. This solution forms



a two-parameter family, with the first parameter being
the initial total number of cells, 91(0) = 2Ny, and the
second parameter being an initial time, ¢y, which enters
through the integration limits in Eq. (10). Functions 7(¢)
and h(t) are expressed through the growth rate term and
for the simplest case of pure non-linear diffusion (y = 0),
one should set h =1, 7 =t.

B. Diffusion lengths and parametrically driven
similarity approximation

Consider the case of pure non-linear diffusion, v = 0,
7 = t. As one can see from Eq. (9) the local diffusiv-
ity (which is proportional to n™) has a parabolic profile
inside the domain —xy < z < xg,

2N 1™ 2
=0 L - | (15)
o (t)bno a5(t)

It is instructive to compare the diffusion length, L(z,t)
associated with this diffusivity and the population size,

xg. Taking the maximal value of the diffusivity at z =0
and using Eq. (12), we find

Da.t) = Do |

LO0,t) 22 [t Y2 m
xw>mw{mD““W4 VZ' (16)

For strong non-linearity, m > 1, the diffusion length
greatly exceeds the support of the distribution, zg(t).
Correspondingly, the concentration profile inside the oc-
cupied domain, Eq. (9), is almost uniform. If the diffu-
sion length exceeds the domain size many times over,
under conditions of decreasing diffusivity, D(0,t)
t=m/(m+2)  the equilibration of the similarity profile
should be quick. To get a time scale perspective on this,
let’s compute the time ¢, it takes for cells with diffusivity
D(0,t) to expand over the distance zo(t). Using Eq. (16),
with integration ending at L(0,t;) = xo(t), we obtain

(m+2)/2
tr 2

m

which displays a super-exponential m-dependence, and
implies that for large m the similarity solution, if per-
turbed, is quickly restored.

Close to the leading front, at any point inside, |z| <
xo(t), Az = xg — |x| < x0(t), the local diffusion length
L(z,t), although getting small, L(z,t) < L(0,t), still
greatly exceeds the distance to the front, L(z,t) > Awx.
Indeed, the diffusivity there may be approximated by
D(x,t) ~ 2D(0,t)(Ax/xg), and the ratio of the diffu-
sion length to the spatial scale is L(z,t)/Ax ~ m'/?. It
exceeds the right-hand side of Eq. (16) by a factor of v/2.

This has consequences for the stability of the simi-
larity solution, Eq. (9). Such stability has been stud-
ied in [19] and later in [38]. Corrections to the lead-
ing order, n ~ Ny/zo(t) o t=1/(m+2) were found to de-
cay slowly, bounded by estimates O[t~(3m+4)/(m+2)] and

O[t(m+3)/(m+2)] " yespectively, depending on the support
of the initial condition [37]. In our case, with large m
and compact support, the stability of the similarity solu-
tion significantly improves. Inside the main part of the
concentration hull, where n(0,t) — n(z,t) < n(0,t) and
D(0,t) — D(z,t) < D(0,t), the stability is bounded by
the first eigenmode of the linear diffusion problem with
diffusivity min, {D(z,t)}. This eigenmode has an expo-
nential decay, exp(—cL?/22) = e=“™, where c is some
number, and we used Eq. (16). Close to the boundary,
the same could be said about relaxation at small inter-
vals, Ax. These estimates support the stability of the
similarity solution and lead to a parametrically driven
similarity approximation where the parameters are slowly
affected by the inhomogeneous source/sink terms added
to the non-linear diffusion equation.

Consider the implications of a large diffusion length
(hence, short diffusion times), when the number of par-
ticles is slightly perturbed externally. When time makes
a step dt, M(t + dt) cells are mobile, and they occupy the
domain —zy < x < xg which was prepared for them prior
to this time step. For large non-linearity m, these cells
diffuse around to become almost uniformly distributed
with concentration (¢t + dt)/bxg. Note, that

) . 11
L A
From the similarity solution viewpoint, the cells consti-
tuting N(¢t + dt) are effectively plugged into a certain
evolution time frame, where the elapsed time is adjusted
to match a slightly modified similarity scenario. In this
scenario, the same size xo(t) is achieved with the number
of mobile cells N(t + dt). As a result, the elapsed time
t is adjusted by the value of a time offset, ¢t —t,;. The
width z( of the adjusted similarity solution can no longer
be given by Eq. (12) (with A ~ 0(¢)/b from Eq. (13)),
since zo(t) is dependent on the entire history of the time-
dependent concentration N(¢) and offset ¢,;. One has to
return to Eq. (11), which now reads
dzg 2 (t)  2(m+2)DyN™(t) 19

. m(bng)™ ' (19)
Note that this equation does not explicitly contain the
time ¢, nor the time offset ¢,f. Therefore, the region of
validity of Eq(19) should be larger: it should remain valid
for a time-dependent total number of cells, as long as this
number changes relatively slowly, in terms of diffusion
times inside the hull.

To see this, let’s compare the exact solution obtained in
Sec. IV A with this approximation. Here cells are added
not locally, with a growth rate v, but globally, through
the time-dependent total number of cells. This number,
N(t), changes more slowly than the relaxation time of the
similarity solution t,, Eq. (17). If we start from a pure
non-linear diffusion problem which has 2Ny cells and no
growth term, its domain size xq is given by

2(m + 2) DyM(0)m¢ ]/ (")
m(bng)™ '

zo(t) = (20)



Plugging here the total number of cells of the prob-
lem with the growth term included, i.e. substituting
M = 2Nph(t) for Ny, does not recover Eq. (12). Instead
of 7(t), one incorrectly obtains th™(¢). However, if the
differential equation (19) is used, one finds

2m+1 2)DoNg" [*
g () = (m+)0()/hwmﬁ1

0 m(bng)™ t
_2m+1(m + 2) Do N7 (t) (1)
o m(bng)™ ’

which matches Eq. (12), after using Eq. (13). Here it
is again assumed (c.f. Eq. (16)) that the lower limit of
integration is such that the localized initial condition is
forgotten.

To summarize, fast diffusion and slow hull expansion
at m > 1 form the basis of what we call parametrically
driven similarity approximation. It greatly simplifies the
analysis, by reducing the study of a non-linear PDE for
the concentration profile to solving an ODE for the loca-
tion of the moving fronts. The essence of this approxima-
tion is to evolve the population through a set of similarity
solutions, by properly adjusting the solution parameters
in time. It is similar to other “adiabatic” invariants, such
as adiabatic invariants in Hamiltonian systems [39].

C. Differential equations for both fronts

Still under the assumption of age-independent dy-
namics, we now add back the spatial diffusivity cutoff,
Eq. ((6). This vanishing spatial diffusivity precludes cells
at n > ng from participating in the front movement, and
their subsequent evolution is irrelevant for the front re-
gion.

For a population wave advancing to the right on z-axis,
the leading front moves with the speed dxo/dt defined as
the speed of the rightmost point, where n(zo,t) = 0,
while the trailing front moves with speed dz1 /dt, defined
as the speed of the rightmost point where n(z1,t) = ng.
Integrating Eq. (8) from z; to x, and using the formula

dn  d [E®)
E :a/ n(%t) de'
z1(t)

zo(t)
=/ 9 G+ n(wo,t) 220 a1y L1

NO) ot dt dt
@o(t) on d.fCl
= —dx —ng —, (22)
/Il(t) at dt
we get
N = 5(t)N — noy (1), (23)

where prime denotes the time derivative d/dt. This equa-
tion is exact. Now, if changes in x4 (¢) are slow enough
to preserve the applicability of the parametrically driven
similarity solution, the propagation of the leading front is

given by the approximation Eq. (19) with the following
change: the point z1(t), where the diffusion flux van-
ishes, now plays the role of the point = = 0 of the pre-
vious section. Writing the left-hand side of Eq. (19) as
(m + 2)z" ™z} we should replace xo(t) — zo(t) — 21 (t)

in the term "™, but not in the term z{. Then,
2D (201)™
_ m+l,/ 0 24
(xO J]]) Lo m(nob)m . ( )

The normalization condition Eq. (13) is also applicable,
in the form xg — 1 = 29/ngb. Equation (24) then be-
comes

Donob
i @)
and therefore,
Do’nob 2‘31’
"= — . 26
7 mN nob (26)

Now, using Eq. (23), we get a closed equation for the
total number of cells,

2-b Don2b
S = ()4 T (27)
and multiplying by I,
2—-10 Donb
W(mz)/ + ()N = %7 (28)

one finds a closed linear mean-reverting ODE for M2(¢),
with solution

2Dgnb? [*
N2(1) =N0e—¢(t>+ﬂ/ =00 gy (29)
to

m(2 —10)
20 [*

o(t) =53 )

V(§)dé. (30)

For non-steady motion of the fronts, Eq. (28) for D(¢)
may be substituted back into Egs. (25), (26), with the
wave width, xg — z1 = 291/ngb. As one can see, Eq. (27)
inverts source and sink signs. The origin of this property
may be traced to the number of cells needed to main-
tain sustainable growth given the growth rate, see also
Eq. (35) below. Note that (i) additional sources decrease
the number of cells in the wave, and vice versa, while
(ii) an increase in the growth rate v speeds up mean-
reversion. These properties, if they are observed in pop-
ulation waves or swarms, could aid to model applications.

Derivation of Eq. (28) was based on the assumption
that both fronts either move in the direction of the over-
all wave propagation, z((t) > 0, or at least remain static,
2} (t) > 0. The right-hand side of Eq. (25) is positive, and
the leading front, zo(t), moves as assumed. However the
right-hand side of Eq. (26) for the trailing front x;(¢),
may change sign. When this happens, the trailing front
stops. The diffusivity is zero behind it, and therefore the



trailing front cannot go backward. Under these condi-
tions Eq. (26) is no longer valid, and one has to revert to
the exact equation Eq. (23) with 2} = 0. To analyze this
situation, one has to go back to the non-saturated case,
n < ng, and revisit the front motion along with the max-
imal concentration dynamics, n,,(t) = n(0,t). Within
our parametrically driven similarity approximation, the
normalization condition reads in this case

20N = by (20 — 21). (31)

This relation can be substituted into Eq. (24) for the
leading front, which becomes,

(32)

We again find a closed system of ODEs for xq(t), ., (t)
and N(t), i.e. Egs. (32), (31), and (23), where z; is
constant. The latter is reduced to M = M, since the
trailing front is at rest.

It is straightforward to check our parametrically driven
similarity approximation against exact similarity solu-
tions in cases when the latter are available. This is dis-
cussed for the case of a steady-moving solution for a con-
stant rate y(t) = o, and a “square-root-in-time” solution
for a slowing wave with v; = (/t; both cases are stable
asymptotics, recovered by setting 9 = 0, in Eq. (27).

1. Wawve traveling with constant speed

For a constant growth rate v = ¢ > 0, supplied with
a diffusivity cutoff, Eq. (8) has a steady traveling wave
solution. One can make use of the substitution
v(x — vt)

n(z,t) =non(z), =z= Dy (33)

where length is measured in units of Dy/v and time in
units of Dg/v?. Equation (8) then reads

n 4+ (fn') +kn =0, (34)

with the rescaled growth parameter k = voDp/v?, and
f(n) given in Eq. (6). Unlike Eq. (A7), Eq. (34) pos-
sesses translational invariance, as it should be for a
steady-moving wave. The analytical solution of Eq. (34)
is unavailable. We give details on the numerical solu-
tion in Appendix B. These numerical results can be
compared with those obtained using the parametrically
driven similarity approximation developed above. To es-
tablish steady motion of the fronts with speed v, we set
N =01in (28), and find

2% 90N 0 Dob o
by V=19 = . NG = m%no. (35)

o —T1 =

The front moves with the speed given by the diffusion
length over the time scale associated with the inverse

growth rate. As the growth rate 7y increases, the speed
/2 while its
width and the number of cells both decrease as 70_1/2,
thus keeping the concentration inside close to ng and in-
dependent o ~p.

Let us compare the concentration profile of the simi-
larity solution and Eq. (34). One can see that sufficiently
close to the fronts the exact solution is well described by
the similarity approximation Eq. (35), for any m. Indeed,
with the dimensionless units of this subsection, the length
of the half-hull is (to leading order, m~—1) vag/Dy = 2/m,
and Eq. (9) reads

m2z2\ ™ 2 m
we)=(1-"55) L wsd w=T

. . 1
of the population wave also increases as -,

In the vicinity of the leading front e = 2/m — 2/ < 1 we
have

n= (ms)l/m. (37)

This asymptotic form satisfies Eq. (34) near the leading
front, ' = (n™n’)" with n(0) = 0, where the slopes are
high, and the source term is irrelevant. On the trailing
front, the concentration profile is almost flat, and (36)
reduces to n = 1 — ma’?/4, 2’ < 1. This asymptotic
form satisfies 0 = wkn + (n™7n')’, i.e. Eq. (34) without
the velocity term. If m > 1, an additional study shows
that the approximate profile Eq. (36) is close to the solu-
tion of Eq. (34) everywhere between the fronts, including
the region where all three terms are of the same order.
Figures 2 and 3 below compare numerical values for the
speed, front width, and concentration profile with ana-
lytical formulae obtained by means of the parametrically
driven similarity approximation.

2. Slowing wave

In this example, we consider time-dependent growth
rates of the type, v(t) = 8/t, 8 > 0. With unre-
stricted diffusion, the population follows a power-law,
MN(t) = 2Ny(t/tp)?, and so does the population size,
To o t/tg)MBTV/(m+2) (for details see Appendix C).
It can be shown that the diffusivity cutoff matters for
B > 1/2, and leads to a slowing-down population wave,
generating a cutoff concentration ny behind the trail-
ing front. This motivates the use of n(z,t) = nog(z).
Lengths are measured in units of L, and times in units
of ¢2L?/ Dy, where c is an adjustable dimensionless coef-
ficient. For Eq. (8) we introduce a similarity variable,

_ %(t) [w + / v(t)dt} : (38)

(the constant of integration is disregarded here, as the
similarity solution is valid when the initial condition is
forgotten) and obtain

12 2
(%0 VN ey, B
g < %0 +$0) Ig(fg) +9 (39)
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FIG. 2. Comparison of the dimensionless velocity selection
ko(m) (a), and the dimensionless front width xq(m) (b) for
a steady-moving front, obtained by numerical integration of
Eq. (34) (red solid curve), and the similarity approximations
(blue dashed curve) given respectively by ko = m[B(3, + +
1)]7' and zo = 2/m. Asymptotic analysis and numerical
analysis both show that the leading asymptotic behavior of
the entire solution of (34) is the same as (9) at large m, and
represents a good approximation even at m ~ 1.

For consistency, one should set zo = ct'/2, v = ux /2t,
and we obtain

(fg')' + %g’ + Bg = 0. (40)

The analytical solution of this ODE is unavailable.
Using the parametrically driven similarity approxima-
tion, one substitutes (t) = S/t into Eq. (29), and

obtains after integration (by retaining only the leading
time-dependence),

2Dyt 1/2

N(t) = nob (208 —-b+2)| . (41)

The leading front moves according to Eq. (25), which
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FIG. 3. Comparison of the solution 7n(z) of (34) (solid

red curve) and the approximate solution (36) (blue dashed
curve), T for a steady-moving front. The difference between
solutions vanishes with m — oo. In this figure, m = 4. The
rightmost points are o = 0.482573 for the numerical solu-
tion, and xo = 2/m = 0.5 for the approximate solution, c.f.
Fig. 2(b).

may be combined with Eq. (41) to give

1/2
Iy ey (42)

Xo (t)

Within the same approximation, Fig. 4 shows that the
numerically selected value of the reduced speed u is well
approximated by u ~ (2/m)/2(2b8 — b + 2)'/2.

3.5 L e e B e

3k — numerical solution
—- approximate solution

2.5

FIG. 4. Comparison of the selected parameter u based on the
numerical solution of Eq. (40) (red solid curve) and the ap-
proximate solution Eq. (42) (blue dashed curve), for a slowing
wave with § = 0.7. One can barely see the gap between the
two curves in the upper-left corner, where m < 1.



D. Age-structured waves

We now apply the parameter-driven similarity solution
method to the full model, with constant growth rate,
v > 0. Integrating Eq. (5) over the z-axis between
the trailing and leading fronts, and introducing the age-
density, N(0,t) = [n(z,0,t)dz, we get an age-resolved
analog of Eq. (23),

ON ON 0?’N dx

=t ag =g TN - n(xl,ﬁ,t)d—;. (43)
This equation is exact, and valid for both mobile and
immobile cells, c.f. Eq. (23). Due to the last term, this
equation is not closed. In this subsection we further re-
strict ourselves to the case when both leading and trailing
fronts are in motion,

In the similarity solution for mobile cells, the den-
sity n(z,0,t) reaches its maximum at the trailing front,
n(x1,6,t) = ny,(0,t). The maximal age-density satisfies
the same relationship as we have seen in Eq. (31),

2N (0,t) = bnp,(6,t)(xo — 1), (44)
with b given by Eq. (14). Therefore,

ON ON

gy Lo 82N 2N dl‘1
ot o0 “oe?

N———. 45
+’Yo b(iCO —xl) dt ( )
If diffusivity is at its maximum, D = Dy, and both fronts
advance, the total number of mobile cells is simply,

fe 0
o) =2 [ N0, £)d0 = blzg — 21) / i (6, )0

90 0o
= ’I’Lob(.lio — xl),

(46)
and, similar to Eq. (25),
Dongd N2
ZC6 _ oMb YoVl (47)

mN(t)  neN(t)’

Using Eq. (46) and its time-derivative, along with
Eq. (47) in Eq. (45), the following closure results,

ON ON _ &N
ot o0 “op?

+ N, (48)

YoN3
m2’

where we used (35). The steady-moving wave of
Sec. IV C1 is recovered by setting both 4 and d9t/dt to
Z€ero.

Integrating Eq. (48) over mobile ages and simplifying,
one finds

Mm b
ot 2—b

2
(F et — 70;:0) , (49)
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with non-local sources/sinks,

Oc

e v ()

(50)
0o

Since b < 2, see Eq. (14), this equation is mean-reverting.
Equation (49) was derived for large m > 1 where 2—b <
1, see Eq. (18), and, to the leading order, one can set its
right-hand side to zero, to find the ”equilibrium” total
number of mobile cells in the wave,

F?2 F

N= /M +-—— —.
0 473 270

(51)

If the mobile population only has ages within the interval
0y < 0 < 0., or has an age-independent density, then F' =
0, and (51) reduces to (35). The slope of the steepest part
of the supercycles trajectories, in Figs. 9, 10 below, was
indeed found to be the speed of the age-uniform wave, vg
(Eq. (35)).

Consider now a steady-moving age-structured wave,
where the mobile population is not small only in the
vicinity of the terminal age, § = 6., so that FF =
—N(0.)+aNy(0.) in (50). We expect the most populous
age-group to be there, given the life cycle in presence of
Malthusian growth. For a steady-moving wave, Eq. (48)
reads,

aN" — N' + 4N =0. (52)

We are after a solution, N = Cexp[A(§ — 0.)], with in-
tegration constant C, and positive eigenvalue A. Then,
N(6.) = C, Ny(6.) = \C, and the total number of mo-
bile cells is 91 = C/A. Equations (51) and (52) give

NN
a)\2—)\+’yo(1— 82 ):0, (53)

with two unknowns, C' and A. It means that there is a
family of such mobile solutions, and the velocity selection
occurs via interaction with the immobile cells.

The immobile cells also obey Eq. (43). Between the
fronts of the steady-moving wave, r1 < x < xg, the den-
sity of immobile cells, n(z, ), is independent of z in our
approximation, and therefore N (0) = n(0)(zo—x1 —0z().
The density N(6) then has a minimum at 6§ = 6y. Once
a small amount of cells becomes mobile at § = 6, their
concentration grows exponentially as per the solution
of Eq. (52) above. To the leading order we should set
xo — 21 = xpby. Together with Egs. (46) and (47) this
determines the number of cells in the wave and the ve-
locity of the age-structured wave,

Do\ /2 9D\ 1/2
‘ﬁ:bno< OO) , vsz( 0) . (54)

2m m by

The speed vs does not depend on the Malthusian growth
parameter, unlike the speed of the age-uniform wave,



vy X 73/2 in (35). The eigenvalues,

1:i:\/1—4a (70‘1%30” C(55)

are both real and positive, provided that

1
Ao =—
1,2 2

. 8a+b90

Yo < vi(a) = “dably (56)

For small a < b6y/8 this gives a condition 4avy, < 1,
which can be traced to the Green function of non-
interacting cells. Indeed, expanding the exponent in
Eq. (58) below, one finds a term, (9 —1/4a)t, controlling
population buildup at a fixed age, and also pointing to
the parameter combination avyg. While the condition of
no population buildup at a given age is natural for cells of
a single organism, there is no reason why it should hold
true for less organized communities, such as swarms.

The derivation above also relies on sufficiently large 7o,
namely, exp[A(6e —60p)] > 1, which for small a reduces to
exp[(70 —2/b00) (0. —0p)] > 1. When this condition does
not hold at v < 2/bfy, neighboring generations mix in
the wave, and although the age distribution N(6,¢) still
has a minimum near § = 6y, this minimum is shallow,
and linear growth dominates.

At 79 2 71 the model also exhibits linear growth,
achieved by a balance between aging and strong Malthu-
sian growth, accompanied by diffusion down the age-axis.
These conditions bound a region where the supercycles
dominate, see Sec. VB and Fig. 11 below.

E. The mobility threshold

Next we will examine in more detail the evolution of
the moving fronts in the parametrically driven similarity
approximation, as compared with the full solution of the
model PDE Eq. (5). We will also consider how the age
distribution reshapes when spatial diffusion sets in at the
mobility threshold, 6y, and when cells reach the age 6,
and lose mobility.

In presence of small age diffusion with the source
Nod(6)4(t), where § is the Dirac delta function, the evolu-
tion along the age axis is initially independent of spatial
transport. An age-localized initial condition in a spa-
tially uniform case evolves as described by the spatially-
integrated equation Eq. (5), resulting in

ON ON 0*N
E + W = QW —+ ’yoN + N05(t)5(9) (57)

with solution given by the Green function,

w—ww’

N
N(6,t) = NoG(0,t) = m exp [70t Sy

(58)
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When mobile cells first appear, their total number is

given by
No > (6 —1)?
TN /90 exp {’yot — do

) = (4rat) dat

= Npe™otc <9°t> o) = Lerfe(e),  (59)

Vdat 2

and the leading front begins to move according to
Eq. (47) with z; = 0. The leading front position is

wet2y 27 m + 2) DoNETi (1)
zg (1) =
m(bng)™

Ty (t) = /Ot em0s cm <9°4\/7§> d¢. (60)

If a = 0 we recover T1(t) = 7(t) = {exp[myo(t — 6p)] —
1}/m~o, at ¢t > 6.

Let us again denote as t; the moment when the max-
imal concentration inside the front reaches n = ng. It
satisfies the equation 20(t1) = bzo(t1). The time ¢; de-
pends on the initial concentration Ny, and could be larger
or smaller than 6y. Suppose a traveling wave solution
is eventually established. From the moment ¢; onward,
the trailing front xz; moves over the interval where cells
were initially located. While this happens, Eq. (59) is
no longer valid and instead the total number of cells is
governed by

)

m/ = 'yo‘ﬁ — nol'& + wOT_Ol‘l N()G(eo, t), (61)

where wg is the span of the initial condition along the
z-axis. Using Eq. (25) and zg — z1 = 291/ngb, we get a
closed system of two first-order ODEs and a linear equa-
tion. This system can be solved numerically, see Figs. 5,
6. These figures also contain a comparison with the full
PDE numerical solution.

We now describe what happens with the age distribu-
tion at the mobility threshold. Once the trailing front is
in motion the age-distribution begins to change. An age
group of width df which crosses the mobility threshold at
time t makes a contribution to the total number of cells
which is equal to ddNoG (0o, t) max[0, 1 — z1(t)/wo]. The
part of the age distribution where ages do not exceed 6y
by the time to, where z1(t2) = wq, does not participate in
subsequent motion and it is left behind the trailing front.
Adjacent parts of the distribution, where ages do not ex-
ceed Oy by the time when the trailing front starts moving,
are diminished in proportion to [1—z1(t)/wg]. The maxi-
mum of the age distribution advances in age, by a certain
positive amount Afy ~ (afy)/?log(fy/a), and its stan-
dard deviation is diminished, see Fig. 7. The reason the
standard deviation is more resilient to the threshold is
that, when the trailing front x;(¢) approaches the right
end of the initial condition wyq, the wave is not sufficiently
populated by the cells coming from the initial condition,
and the wave has to wait until the growth term makes its
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FIG. 5. Behavior of the leading and trailing fronts when the
distribution becomes mobile at § = 6y. For nonzero age dif-
fusivity a, cells do not acquire mobility synchronously, even
though they were initially synchronized at age # = 0 through
the initial condition. As a consequence, the fronts set into mo-
tion at times ¢ < fp. One can observe that the trailing front,
once it starts moving, quickly reaches an intermediate steady
state and awaits for accumulation of cells due to growth to
continue advancing. At larger times a steady-moving wave
is formed. Parameters: m = 4, 0p = 1, Do = 1, go = 1,
a = 0.05, wo =1, nop = 1, No = 10. Blue lines are solutions of
the system of ODEs for zo, 1, M, ny from Sec. IV D, green
lines are numerical solutions of the full model PDE (5).
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FIG. 6. Time dependence of the total number of mobile cells,
N(t) (solid line) and maximal concentration n., = n(x1(t),t)
(dot-dashed line). Parameters are the same as in Fig. 5.
When the trailing front starts moving the maximal concen-
tration remains equal to the cutoff value no = 1. The front
first shrinks, and the total number of cells takes a dip. Then
there is recovery and the trailing front finally clears the ini-
tial condition support wo. By then the steady-moving wave is
fully formed. Blue lines are the solutions of the ODEs for zo,
z1, M, ny from Sec. IV D, green lines are numerical solutions
of the full model PDE (5).

contribution. At small a and large total number of ini-
tial cells Ny, upon passing the mobility threshold, only
a fraction of the initial age-distribution remains in the
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FIG. 7. Reshaping of the age distribution at the mobility
threshold, 8 = 6y. Parameters are the same as in Fig. 5. At
times ¢ ~ 0.6 when the trailing front z1 begins to move (see
Fig. 5), the population at the threshold, Go = n(t,00,x1)
is reshaped. The blue line is the distribution G given by
Eq. (58) at 8 = 6y, and represents the ”incoming” distribu-
tion, observed at 8 = 6y with Dy = 0, when the spatial wave
does not move, and does not cut off the tail of this age dis-
tribution. The green line is obtained by numerically solving

Eq. (5).

moving front.

As can be seen in Fig. 7, the age-advanced cells are se-
lected by the mobility threshold. At the mobility thresh-
old, an initially age-synchronized population has an age
width of o9 = (2afy)'/?, and this time scale could be
smaller or larger than g ! notwithstanding the restric-
tion 4ayy S 1. If afpyd < 1, then age diffusivity plays a
small role, and all ages are retained in the wave. There-
fore the width of the age distribution is almost unchanged
while crossing the threshold, at least during the first cy-
cle. In the opposite case, aflpya > 1, the age distribution
after the threshold narrows down to v 1

As cells age and reach the terminal age, 6., the wave
also loses particles, this time due to rebirth. During this
process the cells which experienced rebirth earlier, and
cease moving, are passed over by age-delayed cells. The
age distribution of the residual population narrows. Both
thresholds act as distribution sharpeners, with the mobil-
ity threshold 6y decreasing and terminal age 6. increas-
ing the supercycle period. In turn, the dispersion of age
distribution allows the mobile phase to occupy a time
window exceeding 6. — 6y, thus aiding to spatial growth.

V. PROPERTIES OF SUPERCYCLES

This section discusses developed supercycles. Consider
first the case without age diffusion, a = 0, where any non-
uniform age structure will display age periodicity with
period 6. Suppose the initial population, Nod(68)d(t), is
created in the interval 0 < x < wg (c.f. previous sec-
tion). In Fig. 8, the arrow (a) points at an initial state



with wg = 1. For times t < 6y cells only grow, and
their number reaches Nye?% when they acquire mobil-
ity at g = 1 in (b). As we only have one age group,
we can simplify concentration-related transient behavior,
and choose the initial population parameters Ny to sat-
isfy condition Eq. (46), 2Nge0% = ngbzo(0). Then all
the criteria of a steady-moving wave considered in IVC1
are met, and a traveling wave forms.
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FIG. 8. Simulation at a =0, 0. =2,00 =1, v =4, m =4
and initial population Nod(6). See text for the description of
population stages (a—f).

If the width of the steady-moving front, wg, is larger
than the initial size, 2¢(0), the leading front will initially
move either by itself, or with the trailing front advanc-
ing more slowly than the leading front, until the growing
front width reaches its steady-state value. In the oppo-
site case, the trailing front will advance with a jump (c),
to reach the steady state. Upon reaching the maximal
age at t = 0. = 2 in (d) (also in (f)), the entire wave
stops, and the next cycle begins. For sufficiently large
m, when the concentration profile is almost uniform in-
side the front, only the immediate vicinity of the lead-
ing front will be mobile in the next expansion phase, at
t =0.+60 (e). This expansion will take place in a region
of smaller width, wq, where the concentration Eq. (9) sat-
isfies n(x, 6. +6y) < np. The mobile concentration profile
is steeper than the steady-moving shape, and there will
be a transient period when cells reshape the profile via
diffusion. The concentration at the trailing front n,, falls
below the diffusivity cutoff, ng, so that the trailing front
will be initially at rest. When the mobility edge is passed,
the similarity profile, associated with the remaining cells
is quickly achieved, and the front will continue expansion
with a time-dependent width until the terminal age 26..
If, in addition, the parameter e"(?=—=%) ig large enough,
the steady-moving wave is established.

Small nonzero age diffusivity introduces lifecycle vari-
ability with the effect that the period of the population
cycles shortens with respect to the life cycle of individ-
ual cells (Fig. 9). The population expansion phases fade
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out as a increases, until age mixing is sufficiently strong
so that cycles disappear. The effect of the Malthusian
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FIG. 9. Leading fronts for different values of the age diffusiv-
ity a, with the parameters 8. =2, 0o =1, 0 =4, m = 4 and
peaked initial population Nyd(8).

growth parameter is different. For a given age diffusivity
a, which in any case is restricted to values a < 6, there
exists an interval of -y for which supercycles may exist.
This is shown in Fig. 10. Steady cycles develop for this
set of parameters between vy ~ 3, and vy ~ 15.

20

15

FIG. 10. Leading fronts for different values of the Malthusian
growth parameter 7o, with 8. = 2, 0p = 1, a = 0.02, m = 4
and peaked initial population Nyd(6).

The (a,7) parameter region which supports supercy-
cles is further discussed in Sec. V B.

A. Relaxation of bimodal age distributions

When cell ages do not coincide, there is a mechanism
which offers competitive advantage to cell groups of close
ages. Consider two coexisting age groups, A and B, cre-
ated by the initial condition. Suppose also, that the



group B, reaches the mobility edge, 0, first, triggering
spatial expansion of B alone. If conditions are right, i.e
the growth rate and age difference are large enough, the
wave may leave A entirely behind the trailing front. The
mobility edge contributes to age segregation, benefiting
age-advanced groups, and shortens supercycle period, if
applicable.

At the terminal age, 6., this behavior could be in-
verted. If A and B are both found inside a traveling
wave, age-advanced B stops first upon reaching 6., and
A spreads alone, possibly leaving group B behind. Selec-
tive mobility termination favors age-delayed groups and
age segregation. It lengthens the supercycle period.

We further note that in this system, an exponential
growth is followed by shrinkage of the future mobile pop-
ulation down to the immediate vicinity of the leading
front. Repetitive application of two such competing pro-
cedures could lead to complex intermediate behavior.
Both mobility changes contribute to narrowing the age
structure, counteracting age diffusion, eliminating out-
liers, and promoting cells from the tails of age distribu-
tion.

B. The period, T, and average front speed, v, of
supercycles

We now discuss selected properties of supercycles and
linear growth, and the dependence of these properties
on two model parameters, a, . The supercycle domain
introduced in Sec. IV D is shown in Fig. 11 using axes

(a,7 ).
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FIG. 11. Numerically obtained ”phase diagram” of the types
of long-term asymptotic solutions. ’IC-dependent’ labels the
domain where both linear growth and cyclic attractors coex-
ist, see text. Parameters: 6o = 1, 0. =2, m =4, Do = 1. The
dotted line passing through the origin is given by Eq. (56).

14

In the domain labeled 'IC-dependent’, supercycles
form only for sufficiently peaked initial conditions, and
then tend to spend relatively long times in the consolida-
tion phases. For a peaked initial condition, the leading
front and trailing front both stop during the immobile
(consolidation) phase.

In the domain ’supercycles’, even for age-uniform ini-
tial conditions, cycles become the long-term asymptotic.
Close to the dashed boundary their amplitude vanishes
for age-uniform initial conditions.

Inside a sub-domain with ayg < 0.1 both fronts stop
completely during consolidation phases, and consecutive
generations do not mix much during the expansion phase.
As vp grows for a fixed a, first the effect of the mobility
edge dominates, and the period T becomes shorter than
0. (see Fig. 10). While the cycle-averaged front speed
U is, of course, lesser than vy given by Eq. (35), ¥ may
exceed the fraction 1—6y /0. of vg, which is the fraction of
life cycle any given cell can be mobile in the model. This
is a beneficial property of supercycles: due to incomplete
synchronization along the age-axis, the collective wave is
able to move for a larger fraction of elapsed time than
any participating cell.
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FIG. 12. Top: Dependence of the scaled supercycle period,
T/0., on the parameter product avyo. Here, 0.015 < a < 0.045
(values and color coding shown in the legend), 1 < o < 21.
Bottom figure: dependence of the cycle-averaged speed, o/vo,
on the growth rate, vo, with vo given by Eq. (35). o-markers
show front speeds while supercycling, and x-markers show
front speeds with linear growth. The color coding is the same,
and the other parameters are given in the caption of Fig. 11.
See text for more details.

In the remaining part of the ’supercycles’ domain in
Fig.11, the leading front and then the trailing front no
longer stop for consolidation as 7y grows. At small a, the
period T'(a,vo) reaches a minimum and then increases,
see top Fig. 12. For larger a, the period does not have a
minimum: it increases with -y once supercycles appear,
as shown by the blue colored lines in the same figure.
In this region of the parameter domain, the distribution



near the terminal age acquires more and more signifi-
cance with g, and the cycle period can significantly ex-
ceed 0.. Notably, the front speed, v reaches a local mazx-
imum with -y in the supercycling regime as a function of
9. The growth rate, g, of the speed maximum is larger
than the growth rate corresponding to the minimum of
the cycle period, if the latter exists. Past the speed max-
imum, as the growth rate vy further increases, the wave
speed reaches a local minimum, in units of vy. Past that
point, the front speed resumes its increase with g, see
x-markers.

At low a, at the border of 'supercycles’ and further
inside the 'IC-dependent’ domain in Fig. 11, we observed
prolonged transients and more complex supercycles.

VI. OBSERVATIONS OF SUPERCYCLIC
BEHAVIOR

While discussing possible applications, there is a risk
of nominating any adaptable internal oscillator as the
driver of cyclic behavior, or delegating the driving to a
relevant external (and very complex, such as climatic)
variable. Given that the number of possible explanatory
combinations is large, the search might simply terminate
at the first statistical success. Below we discuss three
selected examples where cyclical behavior is observed,
the time scales can not be related to any known driver
with certainty, and even if we find a driver operating at
the observed time scales, it is unclear why it should lead
to cycles. We hope that the present model will encourage
quantitative studies in these systems.

A. Intra-annual thallus growth of lychen Parmelia
conspersa

Cyclic growth is sometimes observed in the growth of
thallus lobes of lichens on intra-annual time scales, see
Fig. 2 in [3]. We replot these data here as a cumulative
curve, displaying steps, to facilitate comparison with the
model. The shape of the steps in Fig. 13 is similar to
the leading front profiles among the curves of Fig. 1, and
we borrow the parameter value m = 4 for the estimate
below. By regressing the logarithm of the entire colony
area (not only terminal lobes) on time, one finds 1/ ~
20 + 2 months. The typical top front speeds observed in
the experiment were v = 0.8 mm/mon, so that

mu? mm?

Dy=—~25
270 mon

(62)

Not much is known about the age diffusion in lichen
lobes, but it cannot exceed a ~ 1 mon (see below). The
product ayg S 0.05 is then likely to be small, and the
cycle period should be close to 6., see Fig. 12. In the ex-
periment, it was observed that the period, 7" ~ 3.8 mon,
and dormant or consolidation phases (widths of steps in
Fig. 13) are close to 6y ~ 1 months. R.A. Armstrong and
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coauthors, who have studied Parmelia conspersa, identi-
fied the “internal driver” as follows: “The data suggest
the hypothesis that lobes of P. conspersa exhibit a pat-
tern of cyclic radial growth determined, in part, by lobe
division” [3].

While the overall shapes of many foliose thalli are
somewhat reminiscent of gradient-controlled Hele-Shaw
flows, such flows, per se do not require or prescribe any
periodicity. We note that lichens are symbiotic commu-
nities, and one should consider mechanisms where one
of the bionts has to accumulate enough resources before
continuing its growth. In the case of P. conspersa the
timescale of T above is unlikely to be associated with
the photobiont, as its reproduction is fully controlled or
arrested by the mycobiont depending on location within
the lichen [40]. It all then points to the mycobiont life
cycle. While we are unaware of the dedicated life cycle
studies of P. conspersa mycobiont(s), these life cycles in
other lichen do last months, [41, 42]. The arrested de-
velopment inside the lichen colony (similar to suppressed
mobility inside bacterial colony of P. mirabilis, [17]) mo-
tivated us to disregard the region behind the trailing front
in the model.
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FIG. 13. Data from [3] plotted as a cumulative growth curve.
The development of a single lobe of the foliose lichen Parmelia
conspersa shows a cyclic pattern of radial growth over 22
months.

In agreement with the tight mycobiont control, the
model has a well-controlled growth if ayy << 1. This del-
egates the observed variability of the supercycle period
T in Fig. 13 to that of 8.. It has been indeed discussed
that the mycobionts within the same P. conspersa lichen
vary genetically by location. This would account for a
non-uniform 6. (see e.g. p.185 in [43] and [44]).

Within the mycobiont, the results suggest to focus on
radial hyphal growth. A recent stereo-microscopic study
of growth of a similar foliose lichen, Xanthoparmelia fari-
nosa, showed that three months after inoculation the
so-called ”exploration hyphae” appear in large numbers,
while at 6 months the hyphae are fully interlinked (anas-
tomosed) [42]. Exploration hyphae participate in se-
creting an adhesive substance, which allows the lichen



to anchor to the substrate. A limited amount of the
photobiont participates in this exploration, creating a
spatial separation between the region where symbiotic
metabolism is operating and the region where the adhe-
sive substance is employed. Which part of this process
represents the bottleneck that determines 6, — 6 is dif-
ficult to say, as lichenologists question the life cycles of
P. conspersa. Citing R. Honegger, “Can we assume that
the mycobiont and photobiont cells making up the oldest,
central parts of such thalli are decades or even centuries
old, or is there a cell turnover in the entire thallus?”
citehonegger1993developmental.

The duration of the spatial growth phase, 6. — 6y = 2.8
mon, may just be the time it takes to reach the maximal
sustainable spatial mismatch ~ 2mm between the bionts,
given the adhesion-limited speed v = 0.8 mm/mon. In
the case of X. farinosa mentioned above the times were
similar, while the spatial scales were smaller by a factor
of 30. If the mechanism suggested here is confirmed,
an extension of the model could also be applied to the
2D experiments on lobe division by R.A.Armstrong and
coworkers (see [3] and references therein).

B. Crop yield cycles

In addition to alternate bearing of fruit trees [4], agri-
cultural crops display multi-year yield cycles. For exam-
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FIG. 14. Cumulative long-term records of annual crop yield,

y: of year ¢, summed up with a shift, Y; = Eﬁzé[yk —min(y)]:
(a) wheat in Yemen, (b) barley in Ecuador. Data from [5].

ple, wheat in Yemen (Fig. 14(a)), had several cycles with
6. = 6 yrs, while barley in Ecuador (b) had cycles with
0. = 7 yrs. In terms of modeling, these historical data
are available not for the spatial expansion z(t), but for
integrals of the type

tr wo(t)
Yk :/ dt/ dxn(zx,t), (63)
tk—l a:l(t)

taken over time windows of one year, t; = tx_1+1. Such
integrals may also exhibit cyclic behavior. During the
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years of low yields, the yields were not zero. In view
of this, minimal annual yields were subtracted from the
time series before additional summation in Fig. 14 (see
caption).

Multi-year crop cycles are known since antiquity, and
can in many cases be prevented by annual reseeding. Be-
ing perennial grasses, wheat and barley are always grown
as annual crops. Yet, a multi-year memory can be seen
in Fig. 14 in several countries. In these countries a small
proportion of cultivated plants grows in the wild as peren-
nials and so do their wild or previously used varieties. In
wheat and barley, allogamous pollinators co-exist with
self-pollinators, and therefore mature perennial plants
of the same or close species growing in the wild might
influence the agricultural yields. It is, in fact, known
that Emmer wheat with its exceptional genetic diversity
grows in Yemen [45], while Ecuadorean highlands have
supported barley since 1800s [46]. A value of T = 6 to
7 yrs is similar to the perennial life span of grasses. A
multi-year wild pollen analysis is required to support or
refute this mechanism. In grasses as in many plants, the
age diffusivity, a ~ 0.1 day, see Sec.Il A, and ~q is of
the order of hundreds per year, judging by the number
of seeds a single annual plant may produce. Therefore
7o ~ 0.01day ', so that the control is tight, ayy < 1.

Since yield is connected to “spatial growth in the model
by means of Eq. (63), the cycles are a sign of fast growth.
Indeed, starting from small 7o, and increasing it (as it
happens with agricultural drive for higher yields), for a
fixed small a, the system crosses the dashed line in Fig. 11
and develops cycles. The front speed v will eventually
reach a maximum, as per bottom chart in Fig.12. While
the model supports observations that the appearance of
cycles is a response to rapid reproduction, a multi-year
rapid reproduction (forced by annual reseeding) requires
ample resources. If fact, the relation between cycles and
strain is known in botany [4]. Prolonged strain makes
the plants vulnerable to diseases. The cycles of barley
yield were promptly followed by leaf rust, and yield dete-
rioration in the late 1990s, as seen in Fig. 14(b) [47]. In
the case of wheat, after emergence of multi-year cycles,
the decline seen in Fig. 14(a) in mid 2000s was caused by
the wheat stem rust pathogen, first identified in Uganda
([48], Fig.1). The subsequent yield rebounding was due
to rapid introduction of engineered wheat varieties.

C. Swarming of locust chortoicetes terminifera in
Eastern Australia

Swarming is associated with collective mobility and
density-dependent phenotypes [49]. From the viewpoint
of the present model, it is the considerable desynchro-
nization of individual life cycles combined with high in-
dividual insect mobility that underlies our interest here,
as it might shed light on why most insect swarms are re-
current but not periodic. Although insect swarms resem-
ble organisms in some ways, we will argue that namely



the limitations of swarm collective control gives them an
edge over tightly self-controlled species in the affected
ecosystems.

The Australian Department of Agriculture and Water
Resources has been collecting data on locust swarming
(see [6] and references therein) since 1934, with evalua-
tions complied every 4 months. The scales of outbreaks
are defined semi-quantitatively, with scale 4 referring to
a “plague, several hundred thousand hectares infested
by bands/swarms in the agricultural zone” and scale
5 - a “major plague, over 500,000 hectares infested by
bands/swarms in the agricultural zone”. If we quantify
the word “several” here as at least 2, then the transi-
tion from scale 4 to scale 5, corresponds to an increase
in ~ e times with spatial migration of several dozen kilo-
meters. The data do show that if the current time step
has scale 5, the previous step, on average had scale 4
and the step before that, had scale 3. Assuming that an
increase of infested area in e times in 4 months, implies
e times more locusts, we get 79 = 1/4mon, and proba-
bly bigger. If, instead, the data for the South American
locust Shistocerca cancellata is used [26], with ”mean re-
productive rate and mean generation time” of 130 and 18
days, respectively, we find 7o = log(130)/18 day~* = 8
mo~!. This was measured in laboratory conditions, in
the absence of predators.

With the “field” value of 7y, and using Eq. (62),
one can estimate saturated spatial diffusivity, Dy ~
(50km)?/(2 - 4mon) ~ 300km?/mon, provided there is
no dominant wind direction. The scales of outbreaks are
usually logarithmic in nature, and we believe that a fac-
tor of e in area coverage could quantify the growth of
infected areas. Then, it is possible to compute cumula-
tive affected areas over time (arbitrarily arranged over
the affected territory), see Fig. 15.

The age diffusion of locusts is considerable; we know
that several generations can emerge during a favorable
summer, so we estimate conservatively, a 2 1 mon.
(Recall that in controlled laboratory conditions without
predators the age diffusivities for Schistocerca cancellata
are 7 days for females and 4 days for males.) The prod-
uct a7y is larger than with lichen and crops above, and
according to the model, for such values of a~vg, the super-
cycles may have periodicities larger than the life cycles
of participating insects (Fig. 12), and the dependence of
period T on ay is steep. The period is then sensitive to
noise. For even larger values of a7y, linear growth domi-
nates in the long term, but swarms still exhibit transient
oscillations, see Sec.VB. This is similar to Fig. 15(a),
where subsequent peaks of the autocorrelation function
barely surpass their statistical errors, with the peak-peak
lag of T~ 3.8 yr. Such lag exceeds the insect longevity
[26] by an order of magnitude.

Further analysis using data in Fig. 15 shows that
outbreak durations are close to adult insect longevi-
ties, ~ 4 months. The inter-plague time windows are
much larger. Combining these conditions with the above-
mentioned period T sensitivity to noise, we conclude that
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FIG. 15. Autocorrelation of locust outbreak scales (a). The
horizontal lines display the confidence interval. Estimated
cumulative area occupied by locusts outbreaks (b) using data
from [6] and a conversion convention based on factor e: scale
5 is 5000km?, scale 4 is 5000/ekm?, scale 3 is 5000/¢? km?,
etc.

the swarms may appear unpredictable, thus providing an
edge over ecosystem control and agricultural control.

According to the Australian Department of Agricul-
ture, “Heavy summer rainfalls in western Queensland of-
ten lead to large population increases and subsequent
southward migrations in late summer and autumn. This
pattern has characterized several of the recorded major
pest outbreaks, or plagues.” Large increase in foliage fol-
lowing rainfalls is suggested here as an external trigger or
driver, despite the fact that this driver by itself does not
possess the observed multi-year autocorrelation structure
with T = 3.8 yrs.

Since the seventies, the intervals between the largest
scale-5 plagues are clustered around values from 5 to 10
years, while before that they were typically twice as large.
(Such long-term trend is also consistent with the history
of North American locust plagues in 19 and 20th cen-
turies, due to the growth of agricultural land use [50].)
It could be that with the growth of the agricultural use
of land promoting annual crops, the locust community
does not have to wait as long as it used to for vegetation
to rebound, and outbreaks can reemerge sooner. One
can see in Fig. 15, the average slope of the cumulative
curve is somewhat higher since the seventies. It could
be that the observed lag of 3.8 years is the time required
for sufficient restoration of combined biomass of foliage
available to locusts, an evolving combination of both wild
and cultivated plants.

VII. CONCLUSION

A model has been introduced which may improve un-
derstanding of the cyclic growth of multicellular organ-



isms, to facilitate quantitative studies and indicate con-
nection with previous models of non-linear spatial trans-
port, such as models used in insect dispersal and the
KPPF equation. The present model, making use of
known processes for physiological aging along the vari-
able 6 and spatial transport along x, allowed us to see in
more detail how collective cycles emerge.

It has been shown that a cellular birth and death pro-
cess, characterized by stochastic physiological aging with
age diffusivity a, in presence of Malthusian growth -y and
nonlinear spatial diffusion with an age-limited motility,
may produce stable cyclical expansions for a range of pa-
rameters. We have found that the product ayy is one
of the key quantities for observing cyclical waves with
windows of boost and consolidation. When avyy < 0.1 is
small enough, while Malthusian growth is rapid enough,
collective cycles become the asymptotic behavior with
periods shorter than cell lifetimes. For intermediate a~yy,
we find that the supercycle period could well exceed cell
lifetimes, while spatial expansion rates reach a maximum.
For large avg linear spatial growth prevails. The fastest
spatial expansion occurs in the supercycling regime.

A key development on the theoretical side has been de-
riving the equations for the mobile fronts using the para-
metrically driven similarity approximation. It is based
on the assumption of fast diffusion and slow hull expan-
sion of the density profiles, at parameters m > 1 of the
nonlinear spatial diffusivity. It simplifies the analysis, by
reducing the study of a non-linear PDE for the popula-
tion density n(t, 6, z) to solving an ODE system for the
location of the moving fronts. The essence of this ap-
proximation is to evolve the population through a set of
similarity solutions, by properly adjusting the solution
parameters in time. The approximation has been tested
in several exact cases, for which the solution is avail-
able. We have supplemented the theoretical analysis of
the model PDE with direct numerical simulations to il-
lustrate the population dynamics and the emergence of
cycles as compared with the analytical solution derived
under the assumption of the parametrically driven sim-
ilarity approximation. By means of both tools, we have
analyzed the first cycle which is found to be special. This
matches the behavior of Proteus mirabilis which colonies
on hard agar have a distinct first terrace, the emergence
of cotyledons in plants, and others.

Three potential applications were selected. In all cases,
the observed cycles are of rather intriguing origin, and
point to collective long-term development of communities
of multicellular organisms. For tightly held “communi-
ties” such as lichen and crops, the cycle phases match
the mycobiont time scales (lichens) or perennial species
growing nearby in the wild (crops). For loosely held com-
munities with variable density, such as locust swarms, we
argue that the expansion phase is clearly limited by in-
sects. The consolidation phases may be determined by
both insects (as per the model in the given parameter
range) and by plants, and only tuned by weather.

A version of this model was previously applied to Pro-
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teus mirabilis bacteria colonies [17, 18], which tend to
form recurrent terraces on hard agar with surprisingly
robust periodicity [33]. It might also be applicable to
tightly controlled phenomena in marine plankton, e.g.
to diurnal rhythm of luminescence of the dinoflagellate
Gonyaulax polyedra, which persists under conditions of
constant low light and constant temperature for many
days [51], eventually losing correlation with the time of
the day. An opposite extreme example of very elastic
cycles, is the reappearance of mosquitoes, which could
reproduce in just a few weeks or in more than a year,
depending on conditions [52]. Multi-annual oscillations
have been observed in large-scale populations of many
seabirds [53-55] in absence of any apparent prey-predator
mechanisms and belong to the cases of intermediate con-
trol.

Two properties of supercycles stand out in terms of
biological significance: (i) these cycles are responsible for
a faster spatial expansion rate for a given biomass growth
rate as compared to linear growth, and (ii) these cycles
can entrain and organize a spectrum of (asynchronous)
life cycles of participating cells or organisms.

Finally, here Malthusian dynamics has been assumed
as representative of early growth mechanisms, which also
facilitated the analytical treatment. Other growth mod-
els might be implemented, like the logistic model. We can
anticipate that in such case, if the logistic saturated con-
centration exceeds ng where the spatial diffusivity peaks,
the presented behavior will survive. If the saturation oc-
curs earlier, it will prevent consolidation, and a linear
regime will emerge. Jointly, this offers a different route
to switch supercycles on and off, and could be studied in
more detail.
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Appendix A: Solution of the age-independent
problem for time dependent growth rates v(t)

With unrestricted non-linear diffusivity, Eq.(8) may be
integrated for an arbitrary growth rate v(¢). Indeed, a
transformation n(z,t) = h(t)y(x, 7(t)), results in

0 —myma1 O O
h'y—&-hT'a—z:DonO h +1% (y az)—&—fyhy. (A1)

Such transformation is motivated by the fact that the
exact solution of Eq. (8) without the growth term yn is
known [14]. If one chooses the scaling function A(t) to
be b’/ = vh, 7/ = h™, the non-linear diffusion problem is



recovered, but now without the growth term:

7= [l hm(t)dty, logh= [ y(t1)dt;, (A2)

oy —m 0 m Oy
% o ().

or oz

Here, ty is an arbitrary initial time, when the initial
concentration profile has been forgotten. Integrating
Eq. (A3) over the z-axis, one can see that the integral
[ y(x,7) dx is conserved, this is the normalization condi-
tion. We are interested in localized solutions of Eq. (A3).
One can easily check that Eq. (A3) is invariant with re-
spect to a transformation, where 7 is scaled in k£ times,
the space axis z is magnified in £'/("*2) times and the
solution ¥ is rescaled in &'/ (™+2) times (Eq. ((A3)) has
four different types of transformations which leave it in-
variant [37]). A self-similar solution of the form

Ag(z) z

xo(7) = zo(7)’ (A4)

y(z,7) = :
is appropriate, where A is the normalization constant.
The integral [y(x,7)dz = A [ g(z)dz does not depend
on the transformed time 7. Substituting Eq. (A4) into
Eq. (A3) and dividing the resulting equation by A/xo(T),
one finds

xl

—L(g+29) = (A5)
Zo ng Zg

For this equality to hold at any 7 and z one must require

! 1 DyA™
To o = (A6)

zo  cngagT
g+zg +c(g™g') =0, (A7)

where ¢ is a constant. The solution of Eq. (A7) defines
the similarity function. This equation explicitly contains
z, and does not possess translational invariance. For a
diffusion problem, translational invariance is broken by a
localized initial condition. The evolution of such condi-
tion is described by this similarity solution. Integrating
this ODE once, we obtain zg + cg™g’ = 0. The constant
of integration has been set to zero since a localized solu-
tion is being sought, and the left-hand side must vanish
at both infinities in space. Integrating again, we have
g™ = m(C — 2?)/2c. For convenience, one can fix scale
and amplitude, g(0) = 1, g(1) = 0. Scale and amplitude
are governed by zg and A, respectively, and any differ-
ent choice here will be compensated back by A and x.
Then the solution is g(z) = (1 — 22)/™, and ¢ = m/2.
Equation (A6) is consistent if

2(m + 2) Dy Am 7|/ )
mng'

xo(T) = , (A)

where the constant of integration was chosen so that
20(0) = 0 for the localized initial condition. Integrat-
ing Eq. (8) over z, and introducing the total number of
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cells N(t),

MN(t) = /n(x,t)dx, (A9)
we obtain M = M, or N(t) = 2Nyh(t), with h(t) given
by Eq. (A2). Here the initial total number of particles is
2Ny, or Ny for each half-axis. This choice of normaliza-
tion is needed for what follows in subsequent sections.

Appendix B: Wave traveling with a constant speed

The details on the numerical integration of Eq. (34)
are as follows. Positioning the leading front of the wave
at z = 0, and integrating Eq. (34) over the domain, from
z = 0 on the leading front where = 0, to some z = z at
the trailing front defined by n = ng or n(z9) = 1, we get
a solvability condition, reflecting conservation of cells,

= [/0 n(z)dz}

where use has been made of the condition that the dif-
fusion flux fr’ vanishes on both fronts. Equation (B1)
ensures that the total growth per unit time (k [ dan in
dimensionless units) is equal to the cell deposition rate
at the trailing front, which is moving with the speed 1 at
concentration 1 in these units. In dimensional units, the
selected speed is v = (y9Dg/k)'/2.

Equation (34) can be converted into a first-order ODE,
by introducing a new function w(n) = fr’, and assuming
71 to be the new independent variable. The function w is
the diffusive flux in dimensionless units, which satisfies

h (B1)

ww' +w = —knf. (B2)
This is an Abel equation of the second kind, and its ana-
lytical solution for our right-hand side term is unknown.
However it can be solved numerically, and defines a func-
tion k(m), and front width zy — x1, given an overdeter-
mined set of four boundary conditions. At small z, in the
vicinity of the leading front, the solution could be approx-
imated by 7(z) = (mz)'/™, which satisfies, ¥ = (f1)’,
ie. (34) without the source term. For a second-order
ODE this implies two boundary conditions at small z. In
the course of the numerical integration, one stops at a
point z = zg where 1/(z9) = 0, and requires 7(zp) = 1.
This point is the trailing front.

Appendix C: Slowing wave

Here ~(t) = B/t, § > 0. We start with unrestricted
diffusion, in which case Eq. (A2) gives

h<t>=(t’;)ﬂ, T<t>:m;°+1(;)mﬁﬂ, )



while 2 (1) o t}/ (m*2) " The formulae for the population
size and the concentration read,

1 mpB+1

ro(t) = {2’”*1(m+2)D0N6"t0] ™2 (t) ™2 ()

m(mgB + 1)(ngb)™ to
and
B 2m(mp + 1) N2 s t e
n(0,t) = ng [(m - 2)Doto(noz)2] (to> . (C3)

Again, this is a two-parameter (Ny, to)-family of similar-
ity solutions of sub-exponential expansion. The evolu-
tion of the maximal concentration now depends on the
growth rate amplitude, 5. At 8 < 1/2 the concentration
diminishes, while the population size grows faster than
pure non-linear diffusion without growth. Its exponent is
lesser than the value 1/2 of linear diffusion. At §=1/2
one finds a special boundary case, when the maximal
concentration is time-independent, while the population
size grows as a square-root of time, xo(t) o< (t/tg)/?.
At § > 1/2, the maximal concentration grows, while the
population size exponent, (mS + 1)/(m + 2) spans the
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interval [1/2, 5] as 0 < m < oco. Only in the latter case,
immobilization may occur if a diffusivity cutoff at n = ng
is introduced.

When the diffusivity cutoff is introduced, the transfor-
mations applied to Eq. (8) mentioned in Sec. IV C 2 lead
to Eq. (40), which again does not have an analytical so-
lution. This time it is not reducible to an Abel equation
anymore, but two interesting facts should be mentioned.
First, all lengths in the problem scale like t'/2, includ-
ing the positions of the leading and trailing fronts, and
the width of the wave. The super-diffusional exponent
(mB+1)/(m+2) in Eq. (C2) does not survive when the
diffusivity cutoff is introduced: the problem effectively
migrated to a 8 = 1/2 expansion scenario, despite the
fact that a source growth rate with multiplier 5 > 1/2
is maintained. This is clearly the action of the trailing
front and cross-influence of the two fronts. Second, there
is no translational invariance, as we cannot eliminate u
by a z-shift, and still keep the leading front position at
z = 0. Thus u remains, and gets adjusted, to solve for the
boundary value problem, g(z) = (muz/2)'/™ for small z,
with g(z0) =1, ¢'(20) = 0 for some zy > 0, providing se-
lection for the front width and its velocity.
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