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ABSTRACT

Least-squares exploratory factor analysis based on tetrachoric/polychoric correlations is a robust, defen-
sible and widely used approach for performing item analysis, especially in the first stages of scale
development. A relatively common problem in this scenario, however, is that the inter-item correlation
matrix fails to be positive definite. This paper, which is largely intended for practitioners, aims to provide
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a didactic discussion about the causes, consequences and remedies of this problem. The discussion is
more applied than statistical and based on the factor analysis model, and the problem is linked to that
of improper solutions. Solutions for preventing the problem from occurring, and the smoothing correc-
tions available at present are described and discussed. A new smoothing algorithm is also proposed.

The exploratory or unrestricted factor analysis (EFA) model
continues to play an important role in the development,
validation and usage of most psychometric measures, parti-
cularly in the non-cognitive or typical-response domains (e.g.
Reise, Waller, & Comrey, 2000). In the first stages of the
development of a measure, large item pools are usually ana-
lyzed to determine the most appropriate dimensionality and
structure of the item scores. In this scenario, EFA is particu-
larly appropriate for assessing these basic issues. Information
gained at further stages, when ‘cleaned’ item pools are
assessed, might allow more restricted solutions to be tested
with a confirmatory model. However, the inherent complexity
of many typical-response items (e.g. Cattell, 1986) makes the
more flexible EFA model a potentially useful option even in
this case (Ferrando & Lorenzo-Seva, 2000).

The overwhelming majority of items to which the EFA model is
applied use ordered-categorical response formats, which typically
range between 2 and 7 categories. Scores produced by these items
can be treated (a) as approximately continuous measures by using
the standard linear factor analysis (FA) model; or (b) as ordinal
measures by using Categorical-Variable (CV) FA, which is gen-
erally based on an underlying-variables approach (UVA, eg.
Muthén, 1984, 1993). Essentially, the UVA approach assumes
that continuous latent variables of response strength underlie the
observed categorical variables, so that these categorical variables
result from the categorization of the underlying variables at given
thresholds.

Considerable debate exists regarding the appropriateness
and usefulness of one approach or another, and we shall only
further discuss this point in terms of its relevance to this article.
At present, it is accepted that CV-UVA EFA based on catego-
rical item scores is an approach that in most cases mitigates the
problems of spurious evidence of multidimensionality and

differentially attenuated loading estimates which arise because
of the nonlinearity in the item-factor regressions (McDonald &
Ahlawat, 1974). The number of practitioners who use this
approach in item analysis is also clearly increasing: a research
in google academic of the terms “polychoric” and “exploratory
factor analysis” produced an outcome of 3,810 items until
the year 2009. However, the same search in the period
2010-2019 produced an outcome of 12,500 items. However,
this increase in use has also raised awareness among practi-
tioners that CV-UVA EFA is not devoid of problems either.
In its most basic form, the CV-UVA entails fitting the
common EFA model to the tetrachoric (binary) or polychoric
(polytomous) inter-item correlation matrix. Because the
tetrachoric correlation is the particular case of the polychoric
correlation when there are only two categories, from now on
we shall use the term polychoric to refer to both. The basic
approach we are describing is usually known as limited-
information estimation of the item EFA model. Its main
alternative are the full-information methods, that use the
raw data directly in parameter estimation, and so, avoid the
intermediary step of obtaining the inter-item polychoric
matrix (e.g. Wirth & Edwards, 2007). Full-information meth-
ods are theoretically superior than limited-information meth-
ods, and a great effort on improving its functioning is being
made from the item response theory framework. For the
moment, however, and in the context of item EFA, the
limited-information approach works as well in practice, is
computationally superior, especially as the number of factors
increase, and procedures for assessing model-data fit are
much more developed in this approach (e.g. Barendse, Oort,
& Timmerman, 2015). Finally, an additional advantage of
limited-information item EFA is that the model can be
extended to multiple-group and longitudinal analyses, as
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well as full structural models in general. These types of
extensions are generally known as ESEM (Asparouhov &
Muthén, 2009).

It must be noted that the polychoric correlation is not
a statistic obtained directly from the data, but an estimator
of a latent correlation between assumed continuous response
variables that is estimated iteratively and which is quite
complex. This estimator may not converge, achieve implau-
sible results, or may simply be very imprecise, with typical
errors much larger than those of a Pearson correlation.
Among other factors, these problems depend on the sample
size and the number of response categories (Ferrando &
Lorenzo-Seva, 2014). Underlying non-normality induces
bias in polychoric estimates and their standard errors: the
bias also affects to model estimates and goodness-of-fit tests
(Foldnes & Gregnneberg, 2019). In addition, model misspeci-
fication can lead to sample correlation estimates notably
different from the population polychoric correlations and as
a result, the reliability estimate larger than 1 (Kim, Lu, &
Cohen, 2020).

Now, one of the potential problems found when
a polychoric matrix is factor-analyzed is that it fails to be
positive definite. As developers of free software for explora-
tory item factor analysis, we can attest that, in this domain,
the problem is relatively frequent, and is also a cause of
considerable uneasiness and concern among practitioners (Is
the data wrong?; Is the model wrong?; Have I done something
wrong?). A review of the 307 queries received over more than
10 years is presented in Table 1.

While the most frequent questions are on: (a) the com-
parison between the outcomes of methods (like Parallel
Analysis versus Hull, or polychoric versus Pearson correla-
tions), (b) the interpretation of the EFA solution obtained in
a particular dataset, (c) which indices are actually implemen-
ted (like the indices related to the reliability of factor scores),
or (d) how to format a datafile so that it can be analyzed with
our software, the questions on not positive definite correla-
tion matrices are the ones which most concern researchers
because they do not understand the surprising results they
have obtained. It must be noted that most researchers prob-
ably do not even realize that they have run into a correlation
matrix that fails to be positive definite when the negative

Table 1. Frequency of queries addressed to the authors on different aspects of
exploratory factor analysis.

Source of query Frequency
Parallel analysis, MAP and HULL 15%
Interpretation of model 13%
Data file format 12%
Technical questions, bugs report 12%
Polychoric vs Pearson correlations 9%
Reliability 8%
Not positive definite correlation matrix 7%
Goodness-of-fit indices 6%
Factor extraction methods 3%
Suggestions for further improvements 3%
Handling of missing values 3%
Rotation methods 3%
Factor scores 2%
Unidimensionality 2%
Others 2%
Sample size 1%
Bifactor 1%

eigenvalues are actually close to zero, and their impact on
the factor solution is minor. However, they seek our advice
when they face much more difficult situations. For example,
one researcher obtained a tetrachoric correlation matrix
between 36 variables that have six negative eigenvalues, the
largest of which had a value of -0.305. In such extreme
situations, the factor solution is so distorted that researchers
cannot determine what has happened, and this is when they
ask for our advice.

The present article has a dual purpose: didactic and
methodological. First, we aim to provide a clear discussion
of the problem, including causes, consequences and reme-
dies, which can serve as a useful guide for practitioners that
use EFA for psychometric purposes. Second, we propose
a new approach for smoothing indefinite polychoric inter-
item matrices, with minimal impact on the smoothed corre-
lation matrix. With regards to the first contribution, we
agree with Wothke (1993) that the clear mathematical defi-
nition of positive definitiveness in itself is generally of little
help to practitioners. So we have provided a detailed and
specific treatment in terms of the EFA model, linking the
failure to meet these conditions to the problems of improper
or inadmissible solutions, because these should be, in our
opinion, the main causes of concern when the problem
occurs. As for the second, methodological contribution, our
proposal is a refinement of a previous methodology devel-
oped by Bentler and Yuan (2011). As the short simulation
below suggests, our proposal seems to improve the behavior
of the original proposal on which is based.

Basic theoretical results

An inter-item correlation matrix is positive definite (PD) if all
of its eigenvalues are positive. It is positive semidefinite (PSD)
if some of its eigenvalues are zero and the rest are positive.
Finally, it is indefinite if it has both positive and negative
eigenvalues (e.g. Wothke, 1993). This last situation is also
known as not positive definite (NPD).

The eigenvalues of the inter-item correlation matrix can
be interpreted as the amounts of total variance explained by
the corresponding principal components of the items. On
the other hand, the eigenvalues of the reduced inter-item
correlation matrix with proper communalities in the main
diagonal can be interpreted as the amounts of common
variance explained by the corresponding common factors
(see for example, ten Berge, 1998). Under standard condi-
tions (discussed below), the number of principal components
which are needed to account for all the total variance is the
same as the number of items. In the EFA model, however,
the number of common factors needed to account for all the
common variance is assumed to be less than the number of
items. Finally, because variances (sums of squares) are posi-
tive quantities, negative amounts of total or common var-
iances (i.e. negative eigenvalues) are inadmissible results that
make no sense.

From the summary provided above, it should be clear that
in the EFA model, and under standard conditions, the inter-
item correlation matrix in the population is PD, and the
reduced correlation matrix in the population is PSD (because



the number of common factors needed to explain all the
common variance is less than the number of items, some of
the eigenvalues of the reduced matrix must be zero). So, the
sample correlation matrix (denoted as R from now on) is an
estimate of a PD population matrix, and the sample reduced
matrix with communality estimates on the main diagonal
(denoted as R* from now on) is an estimate of a PSD popula-
tion matrix. In some circumstances, however, both sample
matrices can fail to meet these requirements.

Sources of not positive definiteness

We shall start by considering the case of product-moment
(Pearson) inter-item Rs. In principle, this type of matrix must
be PD if some standard conditions are met (e.g. Gorsuch, 1983;
Wothke, 1993). Of these conditions, four are particularly
important for the present developments. First, the number of
observations from which R is computed is larger than the
number of items. Second, all the correlations are based on the
same number of cases. Third, there are no linear dependencies
among the item scores (i.e. certain inter-item correlations are
unit or near unit, or certain item scores are linear composites of
the remaining scores). Fourth, there are no items with zero
variance. The second condition is violated when correlations
are obtained under pairwise deletion because, if they are, each
correlation is obtained from a different sub-set of cases (e.g.
Arbuckle, 1996; Wothke, 1993). The third condition will not be
met when the same item is repeatedly entered into the data set,
or if the dataset contains highly redundant items that correlate
near one among them. Finally, the fourth condition will not be
met if extreme items or, more generally, items for which all
respondents provide the same answer are present. Note that
these conditions are basic design requirements that do not
depend on the type of correlation matrix (i.e., a Pearson corre-
lation matrix or a polychoric correlation) that will be factor
analyzed. However, if these conditions are not met when poly-
choric matrices are factor analyzed, the problems this article
deals with will probably be aggravated. In our experience, most
of the inter-item polychoric matrices reported to be NPD also
suffer from some of the design problems described above.

So, in principle, two basic recommendations need to be
made. The first one is to use listwise computation and, if this
is not possible, schemas other than pairwise deletion should be
used to deal with missing data (see Arbuckle, 1996; Lorenzo-
Seva & Van Ginkel, 2016; Wothke, 1993). The second one is to
‘clean’ the data set and remove the offending items described
above, which, in addition, do not provide any relevant infor-
mation. This initial screening can be tedious in large item sets
but is well worth the trouble.

We turn now to inter-item polychoric matrices. Although
joint estimation of the full matrix is possible (e.g. Lee & Poon,
1987), for practical reasons the elements of these matrices are
generally estimated on a bivariate or pairwise basis (joint
estimation becomes computationally intractable with a large
number of items), and this is certainly the case with EFAs
based on many items. Now, pairwise estimation does not
ensure positive definiteness of R. So, it may or may not be
PD even if the standard conditions above are met.
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As explained above, in the EFA model the polychoric R is
an estimate of a PD population matrix. Furthermore, each
polychoric correlation obtained in the sample is a consistent
estimate of its population counterpart. So, if the model is
correct, as the sample size increases, each element of R will
increasingly approach its corresponding element in a PD
population matrix. It then follows that, if the standard pre-
liminary conditions above are met, the problem of R being
NPD is a problem of sampling fluctuation, so the conditions
that make this problem more or less likely to appear can be
determined. These conditions are: (a) sample size, (b) number
of items, (c) number of response categories, (d) item extreme-
ness, and (e) magnitude of the inter-item correlations.

Conditions (a) and (b) above are clear, and match the
empirical evidence: most R matrices reported to be NPD
were based on large item sets administered in medium-to-
small samples. Please note that small sample size means large
sampling error, so the sample polychoric correlation estimate
can be very different from the population element it estimates.
And with a large number of items there is more room for
some elements of R to considerably depart from their popula-
tion counterparts.

Conditions (c) to (e) above are, perhaps, less immediate.
As for (c), if the thresholds corresponding to the categories
are taken as fixed, and other things remain constant, the
sampling error of a polychoric correlation decreases with the
number of categories. So, the tetrachoric estimate based only
on two categories is the one that has maximal sampling error
(e.g. Guilford & Lyons, 1942, Olsson, 1979). And, as for (d),
the sampling error of a polychoric estimate varies widely as
a function of item locations or thresholds, so it increases as
the items become more extreme (e.g. Guilford & Lyons, 1942;
Mislevy, 1986; Olsson, 1979). It then follows that large sam-
pling errors are expected in item sets with a wide spread of
extremeness or locations. Finally, (e) (the role of the magni-
tude of the correlations, which determines the internal con-
sistency of the item set) impacts the NPD outcome in two
opposite ways: all other things being equal, the sampling error
of a polychoric correlation decreases as the ‘true’ correlation
value increases (Olsson, 1979; we assume for the sake of
simplicity that the correlation is positive). However, if the
‘true’ correlation value is near its upper limit it is more likely
to lead to communality estimates above the unit upper limit.
So, in summary, the failure of R to be PD is mostly expected
in the case of a large set of binary items that vary widely in
extremeness, some of which are highly correlated (in the form
of redundant content, doublets or triplets), and are adminis-
tered in a small sample.

Consequences of not positive definiteness in EFA

In many cases, EFA can still be directly computed when
R fails to be PD. Even in this case, however, several problems
of estimation, testing, and interpretation of the results might
appear. In general, the feasibility of EFA as well as the poten-
tial problems depend on (a) the extraction criterion on which
the EFA is based, (b) the particular estimation technique used
to meet this criterion, and (c) the relevance of the not positive
definiteness.
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We shall start with the two preliminary checks that are
commonly used in EFA to assess whether the dataset is
suitable for fitting the model to it: Bartlett’s (1950) test and
the Kaiser, Meyer and Olkin measure of sampling adequacy
(KMO; Kaiser, 1970; Kaiser & Rice, 1974). If one or more of
the eigenvalues of R are zero, the matrix will be singular and
cannot be inverted, which implies that neither of the two
indices can be obtained. If some of the eigenvalues of R are
negative, either no results can be obtained, or these results are
likely to be implausible (e.g. results outside the 0-1 theoretical
bounds in the KMO case). These are the first “odd” results
practitioners generally obtain when they try to fit the EFA
model and R is NPD.

We turn now to fitting the EFA model in the strict sense
(i.e., to compute the estimates of the model parameters
from the sample data). In general terms, some procedures
such as generalized least squares (GLS) or minimum-rank
FA (ten Berge & Kiers, 1991) are simply not feasible when
R is NPD. Other procedures such as Maximum Likelihood
(ML) EFA are feasible in some cases. However, even when
the analysis can be performed, problems of convergence,
unstable estimates and unstable goodness-of-fit measures
can be expected when R fails to be PD and ML-FA is
used (Yuan, Wu, & Bentler, 2011).

The criterion in which positive definiteness of R is not so
important (see e.g. Wothke, 1993) is unweighted (or ordinary)
least squares (ULS), and from now on we shall solely consider
this approach. First, it seems to be of more interest to study the
consequences of the not positive definiteness of R precisely in
the case in which the analysis is most likely to be able to
converge in a solution. Second, these consequences are parti-
cularly clear in this case. So, ULS-EFA is submitted as the best
choice for didactic purposes. Third, ULS-EFA is particularly
appropriate in the scenarios considered here: It is easily imple-
mented, computationally robust, and works well in large item
sets and samples that are not too large (Forero, Maydeu-
Olivares, & Gallardo-Pujol, 2009; Lee, Zhang, & Edwards,
2012; Mislevy, 1986; Zhang & Browne, 2006). In fact, earlier
studies (Knol & Berger, 1991) suggest that the simple ULS-EFA
based on polychoric R provides better estimates and measures
of fit than methods that are either more theoretically correct or
use more information from the data or both.

Several EFA procedures and numerical solutions are based on
the ULS criterion and have been given different names in the
literature. In general, however, they can all be categorized into
two main approaches (Harman & Jones, 1966; McDonald, 1985,
p- 94). In the first approach, a reduced R* is obtained by using
communality estimates, which may be fixed from the start or
iterated until minimum function values are obtained, and the
ULS solution is obtained via principal axis factoring of R*. In
the second approach, pattern loading estimates that directly
minimize the ULS function are obtained by using approximation
procedures, and the communalities are then obtained on the
basis of the loading estimates of each approximation. Harman’s
MINRES is possibly the best known version of this second
approach (Harman & Jones, 1966). In principle, in none of the
two ULS approaches above is R required to be PD. However,
when it fails to be, some consequences, which are the same for
both approaches, are expected. Interested readers can obtain

a formal discussion of this by e-mail, or download it from the
website http://psico.fcep.urv.cat/utilitats/factor/Documentation.
html. Here we shall provide a conceptual discussion.

The general consequences of R being not PD are impro-
per solutions in which one or more estimates have inad-
missible values (i.e. values outside their theoretical bounds;
see Bentler & Yuan, 2011). These inadmissible estimates are
(a) uniqueness with zero or negative values, or (b) equiva-
lently unit or greater than one communalities. In the FA
literature these inadmissible results are known as Heywood
(1931) cases, but the terminology is not clear. In agreement
with previous distinctions, we shall use here the term “weak
Heywood” to refer to a 0 uniqueness (or 1 communality)
estimate, and “strong Heywood” to refer to a negative
uniqueness or greater than 1 communality. However, we
also acknowledge that weak Heywood cases or boundary
solutions will be very rare in practical applications. We
also note that in an orthogonal FA solution, the commun-
ality of an item is the sum of the squared factor loadings of
this item. So, an “inflated” or overestimated communality
estimate implies that some of the factor loadings for this
variable would also be inflated/overestimated.

The expected consequences can now be stated as follows: If
a ULS-based EFA is fitted to an indefinite R, and solutions with
different numbers of common factors are fitted until they expand
the common factor space, then inadmissible estimates in the
form of Heywood cases will necessarily appear. If R has substan-
tial negative eigenvalues, Heywood cases might appear even in
unidimensional solutions. If it is only slightly indefinite and only
solutions with few factors are attempted, they might not appear.
However, even in this case some loading estimates are expected
to be inflated or overestimated (Cureton & D’Agostino, 1983).
These “sequential” results — that is, (a) Heywood cases will appear
when solutions with an increasing number of factors are fitted to
R, and (b) the stronger the indefiniteness of R, the sooner they are
expected to appear - are the bases of the procedure proposed in
this article.

An illustrative, didactic example of these results based on
a graphical representation is provided below.

A graphical representation of the problem based on
a data example

Let us take a set of six items that are to be responded using a YES/
NO format (i.e., they are binary items) and are assumed to
measure two common factors. In order to assess this dimension-
ality hypothesis, a researcher should administer the six items to
a sample of a given size, compute the tetrachoric correlation
matrix and finally fit a two-factor solution. Table 2 shows R in
the population and the corresponding ‘true’ pattern matrix.
These are the matrices that the researcher aims to estimate
using his/her sample.

It must be noted that R in the population is PD, as it should
be, with a lowest eigenvalue equal to.516. Figure 1 prints the
graphical representation of the six items projected on the two
common factors. The blue points represent the position of each
item in the space defined by the two factors: the position of
each item is defined by the loadings of the item on the two
factors. The graph is based on the population loading values
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Table 2. Correlation and loading matrices that the researcher needs to estimate
from a sample.
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Table 3. Correlation and loading matrices estimated by the researcher from
a small sample (N = 75).

Factor solution

Estimate of R from a sample Loading matrix

R population matrix Loading matrix

1 12 13 14 15 F1 F2 H
I 537 .036 290
12 375 .704 .020 496
13 203 264 .365 414 .305
14 .036 .032 241 .029 542 294
15 .039 .025 291 .368 .019 .666 444
16 .032 .026 302 .386 484 019 714 511
1.20 T
1.00
0.80
o R
o i i
S 0.60 |
oy ® 14
0.40 ® i3
0.20
0.00 020 0.40 0.60 0.80 1.00 1.20

Factor 1

Figure 1. Graphical representation of the two-factor model solution in the
population.

obtained from the population R matrix, and is the two-factor
model that the researcher aims to estimate from a sample. It
must be noted that no item should be beyond the gray arch
defined by the two factors: any item situated just inside the
arch would be a weak Heywood, and outside the arch a strong
Heywood (i.e., an item with a communality larger than 1).
Table 2 and Figure 1 show that a feasible two-factor model
exists for the six items.

So far, the researcher should have no difficulties in esti-
mating the population matrices in Table 2 from a sample and
fitting the two-factor model in Figure 1. Now, when
a researcher aims to estimate the population loading values
using a sample R matrix, the better the estimates of the
correlation values are, the better the estimates of the loading
values themselves will be. Unfortunately, our researcher has
limited resources and is only able to recruit a sample of 75
people. With such a small sample, a large amount of sampling
error is likely to be present in his/her estimates. To help to
visualize the amount of sampling error with this small sample,
Figure 1 represents the ellipse of the 90%-confidence interval
of the possible estimated positions of one of the items in the
analysis: item 3 (labeled i3 in Figure 1). The same ellipse could
be drawn for each one of the six items, but we focus on this
single item for the simplicity of the graph.

It can be observed that the true position of item 3 is not in
the center of the ellipse: this is because the distribution of the

I 12 13 14 15 F1 F2 H
11 .642 -.067 416
12 497 738 —-.162 572
13 408 408 720 734 1.056
14 038 -079 139 -.096 523 .283
15 -.237 =115 524 .507 -.082 713 515
16 -.080  -.301 .642 542 519 -.091 .889 799

estimated loading values is expected not to be symmetrical,
but skewed. In addition, the size of the ellipse is in fact large
because the sample is very small. Finally, it must be noted that
a small area of the ellipse is actually outside the gray arch: this
means that some of the estimated positions for item 3 would
place it outside the admissible solutions. Whenever this hap-
pens, the estimated two-factor model will produce a Heywood
case, and the estimated factor solution cannot be interpreted.
Table 3 shows the estimates that our unfortunate researcher
obtained using his/her small sample.

The first clue of the anomalous situation is that the tetra-
choric correlation matrix R obtained from the sample is
indefinite, with a negative eigenvalue of —0.036. However, an
inexpert researcher could miss this detail, and go straight to
the piece of the output produced by his/her computing soft-
ware where the loading matrix is printed. The first impression
is actually quite good because the two-factor solution is clear
and the estimated loading values are quite large (even larger
than the ones in the population that he/she aims to estimate).
An experienced researcher will not miss, however, that the
communality of item 3 is larger than one. Figure 2 shows
where item 3 (labeled as i3a) has been placed on the basis of
the loading values estimated with the small sample.

The conclusion of the example is that while a feasible two-
factor model does exist in the population, the use of the small

1.20 T
1.00

0.80 ™
o~ = Py 5,
5 ki
S 0.60 i3 b
= ® i4
0.40 ® i3
0.20
0.00 eilei2 .

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Factor 1

Figure 2. Graphical representation of the two-factor model solution in the
population that includes the position of item 3 estimated from a small sample.
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sample led to a correlation matrix that was NPD. The conse-
quence was that the estimated loading values are overestimated
and a Heywood case appeared. In addition, if the researcher
decided to explore if a unidimensional factor model was fea-
sible based on his/her sample R matrix, then no Heywood case
would be observed in this dataset: the largest estimated loading
value would correspond to item 6, with a value of .956. While
the unidimensional solution seems to be admissible (as no
Heywood case appeared), the estimated loading values would
still be overestimated. As an example of this overestimation,
consider that when a single factor is extracted in the popula-
tion, item 6 has a loading value of .676 (instead of the value of
.956 estimated from the sample matrix R).

Our advice to the researcher would be to substantially
increase the size of the sample in order to obtain more reliable
estimates of the correlations between items in the population. If
this is not possible, then we would advise using a technical
approach to correct the sample correlation matrix R so that it
becomes a PD matrix. The most popular techniques are known
as smoothing techniques. Figure 2 shows the estimated position
of item 3 after the matrix has been smoothed (labeled as i3b).

Preventing the problem and existing smoothing
solutions

Prevention is the best way to avoid, insofar as this is possible,
the problems of NPDs when working with polychoric matrices.
Careful selection of the variables (items in our case) and data
collection is crucial in any EFA design, and the problem dealt
with here might well arise (or be considerably aggravated) from
a failure to meet good standards. As described above, redun-
dant or repeated items, non-informative items, and items that
all the individuals tend to respond to in the same way must be
avoided. And, as for data collection, pairwise deletion should
also be avoided whenever possible.

Provided that the recommendations above are met, the pro-
blem of NPDs is mainly a problem of sampling error. And, as
above, the problem is a specific case of a more general problem.
Practitioners are not usually aware that the sampling error of
a polychoric correlation is generally far larger than that of
a Pearson correlation based on the same data. To see this
point, consider that in the extreme case of a tetrachoric correla-
tion, the sampling error is at least 50% larger than that of
a Pearson correlation, and can become considerably larger as
the correlation becomes smaller and the splits become more
extreme (e.g. Guilford & Lyons, 1942). Guilford’s recommenda-
tion for the size of the sample to be double that used for
a Pearson matrix is, in our opinion, a good one.

The consequences of working with small samples are not only
that the inter-item matrix is more likely to be NPD. The para-
meter estimates in EFA (i.e. the factor loadings) are based on the
inter-item correlations, and if these correlations are unstable and
have large sampling variability, the loading estimates based on
them are expected to be even more unstable. A solution of this
type cannot be generally trusted and is unlikely to generalize
across samples drawn from the same population.

If all the recommendations above are implemented, and
the matrix still fails to be PD, then, post-hoc, smoothing
corrections that aim to render the correlation matrix at least

PSD should be employed. Below, we shall review some of
these corrections, and propose a new one. Before doing so,
however, it would be good to consider the goals and benefits
we expect to obtain from the correction. In our opinion, the
most important are:

® To obtain the adequacy measures that require inversion
of R (Bartlett, KMO).

® To avoid inadmissible (out of their bounds) uniqueness/
communality estimates.

® To bring the parameter estimates (communalities, loadings)
closer to their parameter values (reduce biases).

® To improve assessment of model-data fit.

® To allow procedures that require R to be PD, such as
MRFA (ten Berge & Kiers, 1991) to be performed using
the corrected matrix. The main advantage of using the
MRFA approach is to obtain a proper reduced correla-
tion matrix in which the uniquenesses of the factors not
considered in the solution are minimized. This property
is very useful for assessing essential dimensionality via
the proportion of common variance that can be
explained by the retained factors (see e.g. Ferrando &
Lorenzo-Seva, 2018).

The basic principle in the smoothing corrections is to change
the relative weight of the diagonal elements of the correlation
matrix with respect to the non-diagonal elements. Now,
a straight approach would be to change all the outside diagonal
elements so that they are closer to zero: for example, all the
elements could be divided by 100. While most of the NPD
correlation matrices would probably be corrected at once with
this extreme approach, a large amount of variance would be
destroyed in the process (i.e., the new R matrix would be close
to a unit matrix), and it could not be used to compute any further
interesting analyses. So, the challenge of the smoothing proce-
dures is to change the relative weight of the diagonal elements of
the correlation matrix while destroying as little variance as
possible in the process. We shall now review some of the most
popular smoothing procedures available and propose one of
our own.

Least-squares smoothing proposed by Knol and ten Berge

Knol and ten Berge (1989) proposed approximating a correlation
matrix that is NPD by using the symmetric, unit diagonal, PSD
matrix that is the best least-squares fit to R. The outcome of the
procedure is a smoothed correlation matrix (R) of lower rank
that is constrained to be PD. From a practical point of view, when
this approach is used, the values of the non-diagonal elements of
the correlation matrix increase in comparison to those on the
diagonal, which implies that the communality of the set of items
is artificially increased.

Linear smoothing adding a ridge proposed by Joreskog
and Sérbom

In this approach a constant value is added to all the diagonal
elements of the R correlation matrix that is NPD. It was first



proposed for use in the context of factor analysis by Joreskog
and Sorbom (1981). The size of the value added is the one
empirically detected in order to make the matrix PD. From
a practical point of view, a small value can be added iteratively
until all the eigenvalues of the matrix are positive. In this
manuscript, whenever we used this approach we added
0.0010/N(N). As the sum of the diagonal elements of the
smoothed matrix does not equal the number of variables,
the smoothed matrix must be considered a variance/covar-
iance matrix. In order to convert it back to a correlation
matrix, the smoothed matrix can be standardized as,

1
2

R = diag (g) _Egdiag (g) (1)
where diag() refers to the diagonal elements, and S is the

smoothed variance/covariance matrix. Now R is a smoothed
correlation matrix that is PD.

Please note that in an extreme situation of a correlation
matrix with very large eigenvalues, the final smoothed matrix
will be a diagonal matrix with ones on the diagonal and zeros
elsewhere (i.e., a unit matrix). This sort of situation means
that all the information in the correlation matrix has been
destroyed during the smoothing process. In order to quantify
the amount of information destroyed, the following index can
be computed,

o Zis&j tij — Zis&j Tij )

Zi#j Tij

where 7;; are the off-diagonal elements of the correlation matrix
that is NPD, and 7;; are the off-diagonal elements of the smoothed
correlation matrix that is PD. A value of v of one would mean that
no information has survived the smoothing procedure, while
a value close to zero would mean that the amount of information
destroyed is minimum. In addition to v, the same information
could be computed for each variable in the correlation matrix.
This index v; would be reporting the amount of information
destroyed in each variable.

In comparison with the previous approach, the values of the
non-diagonal elements of the correlation matrix are decreased in
comparison to those on the diagonal matrix, which implies that
the communality of the set of items is artificially decreased. This
feature is common to all the smoothing methods described from
now on.

Non-linear smoothing proposed by Devlin, Gnanadesikan
and Kettenring

Devlin, Gnanadesikan, and Kettenring (1975, 1981) proposed
subtracting (or adding) a small constant value directly from
(or to) the elements outside the diagonal of a correlation
matrix that is NPD. The subtraction is applied iteratively
until the smoothed matrix becomes PD. The approach is
nonlinear because the subtraction (or addition) is only applied
to the elements outside the diagonal of the smoothed matrix
that are not zero. The subtraction is applied to positive values
in the smoothed matrix, while the addition is applied to the
negative values. Again, extreme situations could lead to
a smoothed matrix that is diagonal and from which all the
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information has been removed during the smoothing process.
The amount of information destroyed during the smoothing
process can also be quantified using expression (2).

Straight smoothing proposed by Bentler and Yuan

Bentler and Yuan (2011) observed that the above strategies
impacted all the variables in the correlation matrix. To prevent
this from happening, they proposed focusing the smoothing
procedure only on the problematic variables (i.e., the ones that
would potentially produce a Heywood case in the factor solu-
tion). Their proposal is to extract all the possible factors in the
common factor space and to check which variables have com-
munalities larger than 1 in the factor solution. Once these
variables have been detected, the correlation estimates to
which they are related are decreased by a low value k, so the
smoothed R matrix is PD. The decreasing factor is arbitrary
and depends on the correlation matrix at hand. In their numer-
ical example, they used a value of k = .96 but any other value

can be used as long as the information lost in the smoothed R

matrix is minimum, and the matrix R is PD. Whenever we
computed this approach, we implemented their method itera-
tively in order to find an optimal constant value k. In the first
iteration, we multiplied the corresponding values of R by
a value of k = 1-0.0010/N(N), and decreased k progressively
with the value 0.0010/V(N), until the smoothed correlation

matrix R was PD.

It must be noted that the information lost during the
smoothing procedure only has an effect on a (possibly small)
number of variables. In the most extreme situations, all the
information in the smoothed variables could be lost, which
would be equivalent to removing these variables from the
analysis. Again, the amount of information lost in R can be
quantified using expression 2.

As Bentler and Yuan did not explicitly name their approach,
here we refer to it as “straight smoothing”. This label refers to
the fact that the method attacks all the possible annoying
variables at once. Debelak and Tran (2013, 2016) concluded
that this approach was the best option among the smoothing
methods they compared in the context of principal components
and parallel analysis.

A new proposal: sweet smoothing

Finally, we propose a new approach that is essentially
equivalent to that of Bentler and Yuan, but applied very
carefully, so that the amount of lost information in R is
minimal. Our approach can be summarized with this itera-
tive algorithm:

Step 1. Set the number of factors to be extracted r = 1.

Step 2. Extract r factors from R, and check for Heywood
cases.

Step 3. If no Heywood cases are observed, increase r in 1
and go to step 2. Otherwise, go to next step.

Step 4. Set the correction value k = 1-0.0001.

Step 5. Decrease the correlation values of the variables that
showed communalities larger than 1 using the value k, in
order to obtain the smoothed correlation matrix R.
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Step 6. Check if the matrix R is PD: in this case, the algorithm

ends and matrix R is the smoothed correlation matrix that
removes the minimum information. Otherwise, go to next step.

Step 7. Decrease k with the value .0001.

Step 8. If the value of k is lower than .5 and r is lower than
the maximum possible number of factors in the common
factor space, then it is considered that too much information
is to be removed from the variables at hand: in this case,
increase r in 1 and go to step 2. Otherwise, go to step 5.

While all the information in some of the smoothed variables
could be lost, the algorithm is expected to find the minimum
number of variables that need to be smoothed, and aims to
produce the minimum loss of information. In order to achieve
it, the smoothing of the NPD matrix is done progressively and
very carefully, removing a very low amount of information in
each iteration. It could be said that we manipulated the NPD
matrix in a loving way with the aim of damaging it as few as
possible. This is why we label it sweet smoothing.

Comparison between straight smoothing and sweet
smoothing

In order to compare the two approaches and to understand
whether they actually performed differently, we computed
a short simulation study. We produced a set of 7 (dichotomous)
items that in the population would be modeled by a two-
dimensional factor model. The corresponding pattern matrix
in the population is shown in Table 4. The reader can observe
that: (a) items 1 and 2 are pure indicators of Factor 1; (b) items
5 and 6 are pure indicators of Factor 2; (c) items 3 and 4 are
complex items; and (d) items 7 and 8 are not indicators of any
of the two factors. Instead of analyzing the correlation matrix
between the items expected in the population, we drew small
samples of size N = 75, until 1,000 R matrices that were NPD
(with a negative eigenvalue between —0.10 and -0.15) were
obtained. Then we smoothed the matrices using Straight
Smoothing and Sweet Smoothing. We observed that Straight
Smoothing modified the correlation of an average of 2.96
items, and the correction value k was on average equal to .896.
On the other hand, Sweet Smoothing modified the correlation of
an average of 1.57 variables, and the correction value k was on
average equal to .825. The first approach modified the value of
more variables, while the second removed a bit more of infor-
mation from the variables it modified. Table 4 also shows
the percentage of times that each item was modified. Both
methods quite systematically modified item 4, which was the

Table 4. Differences of performance between straight and Sweet Smoothing
algorithms.

Loading matrix in Percentage of times that each variable needed to
population be smoothed

Items F1 F2

Straight Smoothing

33%
34%
28%
54%
32% 19%
35% 18%
38% 9%
39% 9%

Sweet Smoothing

20%
18%
16%
56%

oNOUVThAWN =
LibbNbbb
—_ =000 NOO O

most complex and had most variance. In addition, Sweet
Smoothing modified items 7 and 8 (the ones with lowest com-
munality) on few occasions. It may be surprising that Straight
Smoothing frequently modified the values of these two items:
the explanation is that both items are affected by a large amount
of sampling error, and their communality is often considerably
overestimated when the common factor space is explored.
How this different performance affects the factor model esti-
mates in general needs to be explored in a more exhaustive
simulation study. Interested readers can obtain the simulation
study from the authors by e-mail, or download it from the website
http://psico.fcep.urv.cat/utilitats/factor/Documentation.html.

Implementing Sweet Smoothing in FACTOR

The authors’ experience suggests that proposals such as the
present one are only used in practical applications if they are
implemented in user-friendly and easily available software. In
this respect, the procedure proposed here has been implemen-
ted in the 10.10 version of the program FACTOR (Ferrando &
Lorenzo-Seva, 2017). Although researchers can select between
various smoothing procedures, the default option is sweet
smoothing.

In addition, packages in R can be found that implement differ-
ent smoothing algorithms. For example, Waller (2019) developed
the package fungible that includes the function smoothBY that
correspond to the algorithm that we labeled here as Straight
Smoothing (Bentler & Yuan, 2011). As our Sweet Smoothing is
closely related Straight Smoothing, it should be easy to implement
it base on the available R function.

Discussion and conclusions

Polychoric inter-item correlation matrices that fail to be PD are
relatively common in factor analytic applications, particularly in
scenarios that use the exploratory version of the model. It is
generally the cause of considerable concern among EFA practi-
tioners. It is indeed submitted that the causes of NPDs are well
known among methodologists and psychometricians, and also
that there are excellent general guidelines such as Wothke’s
(1993). However, to the best of our knowledge, this is the first
didactic approach to the problem that (a) specifically discusses
item EFA, and (b) focuses on limitations and improper solu-
tions. We believe that this part of the article will provide useful
guidelines for practitioners, both in terms of preventing the
problem from appearing and of correcting it when this is the
only feasible option. In our experience, practitioners are not
generally aware of many of the points discussed here, particu-
larly the sampling error problems associated to the use of poly-
chorics, and the links between NPDs and improper solutions.
Our methodological contribution is that we refine an exist-
ing procedure that smooths an indefinite R with minimum
intrusiveness and destroys the minimum possible amount of
information. Sweet smoothing appears to fulfil these purposes:
it renders R PD, produces minimum biases compared to other
smoothing alternatives, and seems to improve goodness-of-fit
assessment not only with respect to existing alternatives, but
also with respect to the option of leaving R untransformed. At
the practical level, the proposal has been implemented in


http://psico.fcep.urv.cat/utilitats/factor/Documentation.html

a noncommercial, free and popular program. So, we expect
the proposal to be used in applications.

Wothke (1993) criticized standard smoothing schemas for
only fixing the data but not diagnosing the sources of NPDs.
This is not the case with sweet smoothing. Our proposal
allows the practitioner to detect which items are responsible
for the NPDs of R, and this information is potentially useful
in practical applications. In principle, our simulation results
suggest that the items implied in the correlations that have
large sampling errors, high communality items, and complex
items are most prone to causing these problems.

We acknowledge that our proposal has its share of limita-
tions and points that require further research. Thus, more
extensive simulations would be of interest, and further
empirical studies are needed to ascertain the appropriateness
of our proposal in practice. And, as far as the scope is con-
cerned, our article has dealt only with ULS estimation. While
the reasons for doing so are, in our opinion, justified, it would
be of interest to extend both the discussion and the study of
the performance of sweet smoothing to other popular least
squares schemas in item FA such as WLS and DWLS. Finally,
we have only considered the causes and remedies of NPDs in
terms of the structural (calibration) stage of FA. It would be
interesting in further studies to assess the impact of NPDs in
the scoring stage and whether the use of our proposed correc-
tion is able to lead to improved factor score estimates.
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