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ABSTRACT Recent advances in telecommunications and database systems have allowed the scientific
community to efficiently mine vast amounts of information worldwide and to extract new knowledge by
discovering hidden patterns and correlations. Nevertheless, all this shared information can be used to invade
the privacy of individuals through the use of fusion andmining techniques. Simply removing direct identifiers
such as name, SSN, or phone number is not anymore sufficient to prevent against these practices. In numerous
cases, other fields, like gender, date of birth and/or zipcode, can be used to re-identify individuals and to
expose their sensitive details, e.g. their medical conditions, financial statuses and transactions, or even their
private connections. The scope of this work is to provide an in-depth overview of the current state of the art
in Privacy-Preserving Data Publishing (PPDP) for relational data. To counter information leakage, a number
of data anonymisation methods have been proposed during the past few years, including k-anonymity,
`-diversity, t-closeness, to name a few. In this study we analyse these methods providing concrete
examples not only to explain how each of them works, but also to facilitate the reader to understand
the different usage scenarios in which each of them can be applied. Furthermore, we detail several
attacks along with their possible countermeasures, and we discuss open questions and future research
directions.

INDEX TERMS Data anonymization, privacy preserving data publishing, data protection, k-anonymity,
privacy, review.

I. INTRODUCTION
Knowledge is one of the main keys to innovation. In that
respect, the research community continuously retrieves and
analyses data to discover new knowledge, whereas corpora-
tions are examining patterns of human behaviour to enhance
the quality of their provided services and products. Never-
theless, the extreme volume of knowledge that is hidden in
the electronic traces of human activity has raised significant
challenges which are attributed mainly to the advancements
of Big Data. As data recovering techniques can retrieve a
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lot of sensitive personal information, many concerns about
the privacy of individuals have also been emerged [1]–[3].
An adversary/attacker may exploit publicly available infor-
mation to obtain more details about individuals and to extract
knowledge that wouldn’t be allowed to have under normal
circumstances, thus invading the privacy of individuals [4].
A naïve approach to address this problem is to erase or mask
the fields that are explicitly identifying an individual: name,
social security number etc. Yet, such measures have been
proven to be insufficient since an individual can be uniquely
identified even when the explicit identifiers have been dis-
carded from a dataset. For instance, Sweeney [5] was able to
link a record to a specific individual by having access to two
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FIGURE 1. Sweeney’s Example of Re-identification.

different datasets in which the explicit identifiers had been
deleted. The first dataset contained the voter registration list
while the other one was a patient dataset disclosed by the
Group Insurance Commission (GIC). As shown in Figure 1,
in her famous experiment Sweeney linked both datasets using
three common fields: Gender, Zip code and birthdate. Based
on the 90s census data of the US population [6], Sweeney
showcased that the 87% of the population could be uniquely
identified through these three specific fields. In a more recent
work based on the 2000 census data [7], the percentage of the
US population that can be uniquely identifiable by using the
same fields decreased to 63%. More studies [8], [9] achieved
similar outcomes for other countries.

Legally speaking, personally identifiable information has
distinct interpretations depending on the concerned jurisdic-
tion. For example, the California Senate Bill 1386 defines
as personal identifying information the Social Security num-
bers (SSN), driver’s license numbers - excluding licence
plates, financial accounts, debit/credit card numbers, tele-
phone numbers, and email addresses. However, the European
Union uses a broader definition:

‘‘Any information relating to an identified or iden-
tifiable natural person. . . ; an identifiable person
is one who can be identified, directly or indi-
rectly, in particular by reference to an identifica-
tion number or to one or more factors specific
to his physical, physiological, mental, economic,
cultural or social identity.
. . . account should be taken of all the means likely
reasonably to be used either by the controller or by
any other person to identify the said person.’’ [10]

Nonetheless, as Narayanan and Shmatikov [11] point out:
‘‘Any information that distinguishes one person
from another can be used for re-identifying anony-
mous data.’’

The recent introduction of the General Data Protection
Regulation (GDPR)1 attempts to protect personal information
from misuse and allows citizens to take back control of their

1http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:
32016R0679&from=EN

data by granting them extensive data protection rights such
as the Right to be Forgotten (RtbF) [12]. According to the
GDPR (Article 4(1)), personal data are defined as follows:

‘‘Personal data’’ means any information relat-
ing to an identified or identifiable natural person
(‘‘data subject’’); an identifiable natural person is
one who can be identified, directly or indirectly,
in particular by reference to an identifier such as
a name, an identification number, location data,
an online identifier or to one or more factors spe-
cific to the physical, physiological, genetic, mental,
economic, cultural or social identity of that natural
person.

Such definition implies that any data that can be used
on its own or in combination with other data to identify,
contact, or locate an individual has to be referred to as per-
sonal data. Practically then, under the EU law, any location
information or device ID related to an individual that can
uniquely bind a place or a device to a physical person is
considered personal information. Clearly, this also applies to
the sets of seemingly anonymous data which, when correlated
with other information, can identify an individual. Overall,
the GDPR enforces many constraints to organisations for
collecting, storing, and processing personal data, whereas
it also refrain from the unconditionally sharing of personal
data [13].

Although nowadays vast amounts of information are pro-
duced in a daily basis, the discovery of new knowledge
faces great challenges [14]. For example, in the context
of healthcare, companies extract knowledge to utilise more
accurate diagnoses, patients’ treatments, and other health-
related tasks. Nevertheless, extreme care should be taken
when such sensitive information is to be disclosed or shared
to other parties. In that respect, the current state of the art in
Privacy-Preserving Data Publishing (PPDP) provides a set of
appropriate approaches and technical measures for the pro-
tection of personal data. One of the main contributions of the
current survey is to analyse and compare these approaches,
showcasing their benefits and shortcomings.

Apparently, as illustrated in Table 1, the disclosure of any
kind of unprotected non-personal data may entail - depend-
ing always on the underlying data and their correlations - a
privacy risk for individuals due to the feasibility of their iden-
tification. Hence, taking also into account the high imposed
sanctions for personal data breaches, it is of data publishers’
best interest to guarantee the efficiency of any employed
privacy-preserving methods. In this regard, and since the
most common type of published datasets correspond to data
stored in relational databases, this survey focuses on data
anonymisation and privacy-preserving methods when pub-
lishing relational data.

A. MOTIVATION AND CONTRIBUTIONS
Undoubtedly, there are already significant PPDP surveys in
the relevant literature such as those by Chen et al. [15]
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and Fung et al. [16]. While these surveys follow an in-
depth approach, as in this work, they do not cover the recent
advances in the area. For instance, our survey includes new
methods like β-likeness, loose associations and disassocia-
tion, to name a few. Moreover, both of those surveys cover
other fields as well, such as location and social network
privacy. Instead, in our survey we focus on the anonymisation
of relational data to prevent re-identification, and therefore
we provide a more detailed overview of the current work
in the field. Contrary to the most recent literature reviews
of di Vimercati et al. [17] and Domingo-Ferrer et al. [18],
we follow a bottom-up approach, by covering the whole
anonymisation procedure and by providing several examples
to facilitate the reader in understanding the different concepts
and possible attacks. Another recent PPDP work focused on
Differential Privacy can be found in [19].

Of particular interest to our survey is to present the dif-
ferent approaches of PPDP and to introduce the reader to the
various privacy guarantees and attacks in the literature. To this
end, having a single running example throughout the survey
acting as a reference point to all cases would have sound
ideal. Nonetheless, it will become apparent as we proceed
with our survey that the ‘‘one size fits all’’ approach is not
relevant to PPDP. This is because the methods and attacks are
highly dependent on the original dataset, enabling different
attack vectors and therefore requiring different countermea-
sures. Therefore, we facilitate the reader by employing small
distinct examples which have the required properties for each
case. Finally, our survey concludes by discussing open issues
in the field and by providing directions for future research.

B. ORGANISATION OF THIS WORK
The rest of this work is organised as follows. Section II
introduces the Privacy-Preserving Data Mining (PPDM) and
Privacy-Preserving Data Publishing (PPDP) concepts and
discuss their main differences. Section III outlines several
notions and dimensions of privacy, while it further extends the
description of the PPDP defining, among others, the actors
and their respective roles, the publication process, and the
metrics used to to quantify information loss. Section IV
presents the data transformation methods that are used to
anonymise datasets. In Section V we present the basic trends
in de-anonymisation attacks on published datasets. Then,
in Section VI we present the privacy models and dataset
properties that allow us to countermeasure the aforesaid
de-anonymisation attacks. For each case, we highlight the
possible data leakages and the level of privacy exposure of
individuals. Finally, we conclude this survey in Section VII
by identifying and discussing a number of pertinent research
directions and open issues for PPDP.

II. BACKGROUND ON PPDM AND PPDP
At a glance, PPDM focuses on data mining tasks in a privacy-
preserving way, while PPDP cares for the usefulness of the
data even if they are analysed on record level. Therefore,
unlike PPDM, in the PPDP the truthfulness on record level is

usually a requirement. Furthermore, the PPDP does not make
any assumption regarding the type of analysis to which the
data would be subjected because the published data can be
analysed by means of different techniques and with diverse
aims. In other words, one could argue that the difference
between PPDM and PPDP is where the query is executed.
In PPDM, the query is executed in a controlled environment;
therefore, we may install the necessary ‘‘watchdogs’’ to
control the information flow and preserve the privacy of
individuals. However, in the case of PPDP, the dataset has
been already released and the adversary can access it and
execute any arbitrary query. Therefore, while PPDM enables
more dynamic configuration as well as control on the fly,
for PPDP the utilisation of privacy protection methods is
mandatory prior to data release. Yet, data publishers do
not usually have the technical background to provide a
properly processed dataset that is optimal for data mining
algorithms while it does not compromise the privacy of indi-
viduals. Moreover, anonymisation and privacy-preserving
techniques can be applied more efficiently if the posterior
data mining process is known in advance. Better yet, the data
mining process could be performed ‘‘in-house’’ so that only
the anonymised results are published. For more on PPDM,
the reader may refer to [36]–[42].

In the rest of this survey we regard that a privacy breach
occurs when the prior belief of an adversary about an indi-
vidual differs significantly from his belief after accessing
the anonymised dataset. Based on this definition, we try to
showcase through examples how specificmethods allow us to
prevent these breaches as well as the nature of these breaches
which, as we are going to discuss later, is highly dependent
on the underlying dataset.

III. FUNDAMENTALS OF PRIVACY-PRESERVING DATA
PUBLISHING
Depending on what is to be protected and the assumptions
that we make for the knowledge and capacity of the adversary
various definitions of privacy exist in the literature [43].
Nonetheless, the compliance with each formal privacy def-
inition introduces different limitations on the sanitised data.

In terms of the dimensions of privacy, several approaches
are identified in the literature. For instance,
Domingo-Ferrer [44] splits database privacy issues into three
dimensions related to the main actors involved: respondents
(i.e. re-identification of individuals), users (i.e. guarantee-
ing the privacy of the queries), and owners (allowing the
access only to specific subsets of data). Other authors
such as Martinez et al. [45], [46] and Solanas et al. [47]
adopt a broader definition of the different privacy con-
texts which are classified into five dimensions: (i) identity
privacy ( [48], [49]), which - similarly to respondents’ privacy
above- refers to the non-disclosure of individuals identities,
(ii) query privacy ( [50]–[52]), which is analogous to the
aforementioned user privacy and refers to the privacy of for-
mulating queries and retrieving information, (iii) location pri-
vacy [53], which focuses on protecting the physical location
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TABLE 1. Re-identification attack on real datasets [20].

of individuals interacting with a system, (iv) footprint privacy
( [54], [55]), which guarantees that microdata collected from
users’ interactions with a specific system (i.e. the footprint
of the users) are properly sanitised before publishing so as
to control the amount of information extracted or inferred
from these microdata sets, and (v) Intelligence/Owner pri-
vacy, which refers to the owner privacy described in [44]
and focuses on the disclosure of data when different parties
collaborate (cross-domain and joint queries).

In relation to the above privacy classifications, PPDP tech-
niques aim to publish useful information while protecting
the privacy of the individuals in the dataset. Relevant lit-
erature defines two types of information disclosure when
data are released/published: identity disclosure and attribute
disclosure [56]. The former occurs when a specific respon-
dents’ identity is associated with a disseminated/disclosed
data record containing confidential or private informa-
tion [57], while the latter occurs when a specific respondent
is associated with either an attribute value in the dissem-
inated/disclosed data or an estimated attribute value based
on the disseminated data [57]. In order to avoid information
disclosure, the data need to be disguised/transformed in a
way that prevents an adversary/attacker from linking records
of the dataset with specific individuals. Careless disclosure

of data could lead to serious privacy breaches, as already
seen in a myriad of cases [4], [5], [21]–[35], [58], many of
which are reported by El Emam et al. in [20] (see Table 1 for
more details). Yet, the authors of the report undermined many
of them in terms of their actual impact. In principle, it can
be easily noticed that the number of attacks in real datasets
is relatively low to justify a thorough research in the field.
In addition, as Sweeney highlights [59], research contribu-
tions on this area often face issues related to their publications
due to the fear of consequent legal implications. Moreover,
one can assume attacks performed by adversaries that have
never surfaced publicly. Contrary to popular belief, an attack
may not always be executed by a ‘‘hacker’’. For example,
an ad service provider can perform a re-identification attack
to provide personalised ad recommendations according to
each user profile, obtaining thereby a significant advantage
over its competitors. On the other hand, the recent example of
the attack on Ashley Madison2 clearly reflects how hackers
can use disclosed data to extort individuals. Nonetheless, such
attacks showcase the trade-off between the privacy of individ-
uals and the usability of data. Regardless of how nefarious

2http://www.reuters.com/article/us-ashleymadison-cybersecurity-
idUSKCN0QN2BN20150819
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such attacks can be or the attacker’s intentions, other aspects
of privacy must be considered as well, such as the dignity-
based theory of privacy [60]. Indeed, privacy is inseparably
linked to the fundamental right of respecting one’s life, to the
right of controlling the information flow about oneself [61],
and ‘‘to selectively reveal oneself to the world’’ [62].

In what follows, we introduce the basic concepts and def-
initions of PPDP: attributes, actors, publishing scenarios and
methods, and information metrics.

A. ATTRIBUTES
Let us assume a tabular dataset T , comprised of t records,
where each record corresponds to a particular entity. We clas-
sify the attributes of each record into four categories:

• Explicit Identifiers are attributes that can uniquely
identify an individual, such as the Social Security
Number (SSN).

• Quasi-Identifiers (QI) are publicly known attributes/
features of individuals that might be used by an attacker.
Note that a QI cannot be used to uniquely identify
a person by itself. However, a combination of quasi-
identifiers can lead to re-identification by diminishing
the possible identities of a specific record. As a result,
this increases the confidence of an adversary regarding
the real identity behind an anonymised record. Typical
examples of QI attributes are Gender, Zip Code, and
Age.

• Sensitive Attributes (SAs) are the fields that store sen-
sitive/personal information. Therefore, SAs store the
information that an adversary most probably wishes to
know.Well-known examples of SAs are the Salary or the
Disease of an individual in a financial or medical dataset
respectively. While in general there is only one SA in a
dataset, this is not always the case [63]–[67].

• Non-Sensitive Attributes are attributes - other than
identifiers, quasi-identifiers and sensitive attributes -
which contain non-sensitive information about an indi-
vidual. Still, this type of attributes cannot be ignored
when protecting a dataset, since they can be part of
a QI. For example, attributes such as Job and Town
may not be considered confidential or private informa-
tion. However, when the population under examination
is low, there may be only few people, or even just
one individual, that fit to these specific search criteria.
Therefore, under certain conditions the combination of
these attributes could lead to identity disclosure with
high probability.

It is worth noticing that in some cases the distinction between
aQI and an SA is not straightforward. Imagine a supermarket
basket where some products may be considered not sensitive
but correlated with some sensitive ones can re-identify the
buyer in an anonymised table.

An example of a table with Explicit Identifiers EIs, QIs
and SAs is illustrated in Table 2.

TABLE 2. Attribute classification - Example.

Misclassifying an attribute Ai as SA when there is more
than one SAs allowing an adversary to access to it may com-
promise the anonymity of the data publishing scheme, as it
potentially exposes the other sensitive values. Misclassifying
an attribute Ai as SA, while there are other unclassified SAs,
would not only expose the other sensitive values in case an
adversary gets access to the dataset, but it may potentially
compromise the anonymity of the data publishing scheme.
Taking into account that in most anonymisation techniques
the SA is almost never altered, having access to an external
table with this sensitive information could always be bene-
ficial to any adversary. Suppose that the Salary and Disease
are classified as SA1 and SA2 respectively. If an attacker has
access to an external table with information about the SA1,
he could perform an attack on SA2 by correlating the SA1
along with other QIs. On the other hand, misclassifying a
SAi asQI could lead to less qualitative anonymisation results,
as we are going to discuss afterwards, due to the curse of
dimensionality.

B. ACTORS
Typically, an anonymisation scenario involves the following
actors:
• Data Holder/Publisher: The organisation or the per-
son that holds the data that need to be anonymised to
avoid privacy breaches. While typically the data holder
and publisher roles correspond to the same organisa-
tion or person, sometimes the data holder can out-
source the anonymisation process to another organisa-
tion or person due to the lack of knowledge or resources.
In this case, the data holder and the data publisher roles
correspond to two distinct actors.

• Record Owners: Every entity that pertains to
one or more records in the dataset that is going to be
released.

• Data Recipient: Anyone that has access to the
anonymised dataset.

• Adversary: A malicious entity whose goal is to obtain
knowledge about the sensitive attributes of an indi-
vidual or a subset of attributes that could lead to re-
identification.

C. SINGLE AND MULTIPLE-RELEASE PUBLISHING
There exist three main publishing scenarios each having
different privacy requirements dictated by the target audi-
ence and the usage of the published data. In each case,
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FIGURE 2. Roles in Data Collection/Publishing.

identity, query, location, footprint and owner privacy need to
be protected from attackers by guaranteeing non-disclosure
of sensitive data. Such scenarios can be categorised as
follows:

1) PUBLISHING A SINGLE RELEASE
In this scenario, we assume that the data publisher holds an
original table T and the anonymisation process is performed
only once, based on the privacy guarantees that the data
publisher wants to achieve. The original data T , or a subset
of them, have not been previously published and they will
not be published again in the future. This is the most frequent
scenario in the literature.

2) PUBLISHING RELEASES IN PARALLEL
Parallel releases ( [68]–[70]) refer to the case in which
the original dataset T is released in several different T ∗i
anonymised datasets. Each T ∗i may contain a different subset
of the original attributes. For example, from Table 2, two
anonymous tables can be released. The first table T ∗1 may
contain the attributes: Gender, Age, Disease, while the sec-
ond table T ∗2 may contains the attributes: Age, Zip Code,
Disease.

The main motivation behind parallel releases of data is to
minimise the information loss that stems from publishing a
single dataset with the complete set of attributes. In this case,
identity and attribute disclosures have to be prevented in the
context of the privacy dimensions described in Section III.
In addition, parallel releases target disparate recipients who
are interested in different attributes. The specific preferences
of the recipients result in disparate levels of anonymisation
for each release. Nevertheless, the data publisher should take
into account that the data recipients may try to collude by
combining the released anonymised tables that hold the same
QIs to obtain additional information.

3) PUBLISHING RELEASES IN SEQUENCE
The scenario of sequential publishing ( [71]–[91]) examines
the incremental release of anonymised data. For instance,
consider a company that publishes periodically anonymised
data about its clients. Take also into account that each pub-
lication may refer to clients whose data were also present in
previous publications. Due to the course of time, the data in T
are expected to have changed, usually with the addition, alter-
ation or deletion of records. Hence, the data publisher should
consider previous data releases, as the privacy of a record
owner could be compromised simply by cross-examining
them. In [92] the authors study the privacy of released datasets
considering also that SA values could suffer modifications
over time. For instance, the value of a SA Disease changed
from ‘‘flu’’ to ‘‘fever’’ in subsequent releases.

D. CENTRALISED VS DECENTRALISED DATA PUBLISHING
Centralised data publishing, which is performed by a data
publisher that holds - or gets from a set of data holders - the
entire original dataset, is the focal point of the relevant aca-
demic literature [93], [94]. For example, a Ministry of Health
could gather, under certain legal conditions, all the datasets
from the country’s hospitals. Provided always that legal and
data protection safeguards are in place, the advantages of
this approach derive from the fact that each data holder does
not need to anonymise on its own the dataset they wish to
provide to the recipients. The data publisher, who has prob-
ably more expertise in anonymisation techniques and more
computational resources, implements the anonymisation of
the entire collection of datasets. Additionally, as the data
publisher holds the entire collection of the datasets can handle
the trade-off between disclosure risk and data utility better as
she has full overview of the data. Clearly, in this scenario,
the data publisher must be trusted by all data holders, as risk-
wise, it is a single point of failure. Nonetheless, this is not
always the case due to the legal, ethical and commercial
constraints involved when private information is to be trans-
ferred across different data holders/controllers. Therefore,
there might be cases of data holders not granting access to
their corresponding raw data and as a result the data may
be shared among multiple parties [95]–[98]. In this scenario,
data might be partitioned between different parties in several
ways [99]–[104]:

• Vertical partitioning (VP): In this case, data holders have
only disjoint sets of attributes corresponding to the same
set of individuals. This situation can be found within
third parties of the same data provider, but usually VP is
more suitable for obtaining knowledge about specific
individuals by crossing large amounts of information of
different kinds of datasets.

• Horizontal partitioning (HP): disparate parties hold dis-
joint sets of individuals with the same set of attributes.
International communities and e-commerce companies
with related topics are suitable for this kind of data
partition model.
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• Arbitrary partitioning (AP): there is no specific pattern
of how data are distributed. If the entire set is defined
by an m × n individual-attribute matrix, one party p1
holds a subset of individuals mp1 ≤ m whilst another
party p2 holds the rest mp2 = m − mp1 and the same is
applied for attributes as well. Note that VP and HP are
specific cases of AP. The AP is the most pragmatic and
widely used scheme since commonly datasets contain
an undetermined number of coincident attributes and
individuals.

Based on the above analysis, the data may be distributed
among multiple data holders who wish to release their data in
a common anonymised table T ∗. The probable solutions for
this decentralised scenario, are the following:

• Anonymise-and-Aggregate: In this case, data holders
anonymise their data independently and then they all
aggregate their tables to create a single table [105].
While this approach enables fast data publishing, it may
also lead to unnecessary degradation of the data util-
ity.Yet, the cost is relatively manageable.

• Aggregate-and-Anonymise: A more proper solution
for less data distortion and better privacy guarantees is
first all the distributed data to be aggregated and then the
anonymisation process to be performed. To achieve this
without compromising the privacy of individuals, either
a semi-trusted third party need to be introduced or, alter-
natively due to the legal issues that prohibit the sharing
of data between parties, Secure Multi-party Computa-
tion protocols should be used [106], [107]. In the latter
case, the computations are performed over encrypted
data, enabling the functionality without information
leakages. Clearly, however, the use of encryption intro-
duces significant computational overhead. An exam-
ple of such collaborative data publishing scenarios is
depicted in Figure 3.

E. INFORMATION METRICS
Apparently, every table T can be transformed into an anony-
mous table T ∗, e.g. by generalising all the values to the
maximum level. However, while such a table would be safe
to publish, it would not have any practical value for the
recipients. Therefore, the primary concern when publishing
a table is to balance the trade-off between privacy and data
utility. In this regard, the claim that privacy is decreased it
actually means that an adversary can learn/discover easier
the sensitive attributes of an individual. On the other side,
the utility of the data refers to their accuracy after their
processing, so that one could be able to perform data min-
ing on the sanitised data and receive useful results. This
balance is quite biased as even moderate privacy measures
result in significant data loss [108]. Nonetheless, the goal
of PPDP is to maximise the information of the anonymised
dataset, subject to the privacy constraints that were set by the
data publisher. There exist a set of information metrics that
are used to measure the utility of an anonymised table T ∗.

FIGURE 3. Collaborative data publishing methods.

Such information preservationmetrics can be categorised into
three major categories according to their purpose: general,
special, and trade-off purpose.

The data publisher usually ignores how the data recipient
will analyse the anonymised table T ∗. Different recipients
may require different levels of generalisation on different
attributes. In such a case, the data publisher wants to publish
a table T ∗ which is as similar as possible to the original
table T . With that purpose, the simple principle of minimal
distortion was introduced in [5], [109], [110]. The minimal
distortion (MD) metric is issuing a penalty for every value
that is generalised, e.g. if a1 is generalised to A then a
MD(A) = 1. If, on the other hand, both a1 and a2 are
generalised to ∗, thenMD(A) = 4 as there is a penalty of two
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from generalising both ai to A, and another two from A to ∗.
The generalisation height metric [109] and the approach of
Meyerson and Williams [111] can be considered specific
instances of MD as they issue a stable penalty for each
generalisation regardless of its level. Similar toMD is also the
Normalized Certainty Penalty introduced by Xu et al. [112].
The metric ILoss was proposed by Xiao and Tao [113].

Such metric associates each cell of the table with a number
between 0 and 1, where 0 is attributed when there is no
generalisation and 1 when there is a total suppression. In the
rest of the cases, the number is proportional to the extent of
the generalisation used for that cell value. This metric allows
the data publisher to add weights to the generalised attributes
to reflect their relevance.

Contrary to ILoss andMDmetrics, the discernibility metric
(DM), introduced by Skowron and Rauszer [114], charges a
penalty for each value depending on the values of the rest of
the attributes in the release. Therefore, values are modified so
that they become indistinguishable from others with respect
to the QI. More precisely, if a record belongs to a group
of size s, the penalty for the record will be s when it is
generalised.

Nergiz and Clifton [115] introduced the Ambiguity Metric
(AM) which is designed for k-anonymity frameworks. For
each record r in the anonymised table T ∗, AM considers the
number of records in T that could have been generalised as r .
This number is the ambiguity of r . Thus, the AM for T ∗ is
defined as the average ambiguity of all records in T ∗.
When the data publisher knows how the data recipient is

going to analyse the anonymised table T ∗, then he can exploit
this knowledge during the anonymisation process to improve
utility. Some argue that if the purpose already was known,
then the data publisher could simply provide the results of
the data mining process. In practice, however, there exist
many different ways to perform data mining, whereas the data
recipient might further want to extract other information in
the future.

Generalisation and suppression methods in a data
mining process can affect the results both negatively and
positively. By all means, while they might destroy useful
classification structures, in some cases this can be perceived
as a positive side-effect, e.g. when over-specialisation of the
attributes is perceived as noise by the data mining algorithm.
Iyengar [116] introduced the classification metric (CM) to
measure the classification error on training data. The CM
metric charges a penalty when a record is generalised or sup-
pressed to a group in which the record’s class is not the
majority class. As a data metric though, CM does not solve
efficiently the issue of over-specialisation of values.

Trade-off metrics take into consideration both aspects of
an anonymisation process, namely the privacy and the infor-
mation requirements. Let’s assume that an anonymisation
procedure specialises a general value into child values, itera-
tively. In every iteration, the general value splits into as many
groups as the distinct values of the child nodes. Apparently,
each specialisation s gains in terms of information, which

is denoted as IG(s), and loses in terms of privacy, PL(s).
The metric Information-Gain-to-Privacy-Loss introduced by
Fung et al. [117] computes the specialisation s that maximises
the information gain for each loss of privacy: IGPL(s) =
IG(s)

PL(s)+1 , where the choice of IG(s) and PL(s) depends on the
information metric and the privacy model.

The previously described metrics do not consider the dis-
tribution of attribute values in the data set. For instance,
if an attribute’s values follow a uniform distribution, then
replacing it with the corresponding range of values would
have little effect on the anonymised data because a data
analyst would easily assume a uniform distribution of the
values within this range. However, if the distribution of values
is skewed, then the uniform distribution assumption could
lead to false results. Therefore, well-known techniques such
as the Kullback-Leibler divergence can be used to measure
the difference between two probability distributions P and
Q, where P represents the ‘‘true’’ distribution of data in the
original table, and Q is the distribution of attributes in the
anonymised table. Nevertheless, since KL-divergence cannot
be considered as a similarity metric as it does not obey the
triangle inequality, other measures such as Lp-Norm [118]
and Hellinger Distance [119] have been introduced. In [120]
Ye et al. use a searchmetric to guide each step of the anonymi-
sation process. However, they take a very different approach
using rough set theory to introduce a new searchmetric which
is used to find the minimum subset that has the same classifi-
cation as the attribute they want to anonymise. Kifer and Lin
paved the path for an axiomatic justification of the privacy
measures. First, in [121] they introduced some axioms for pri-
vacy and utility. More precisely, they introduced the axioms
of Transformation Invariance and Convexity for privacy, and
the axioms of Sufficiency, Continuity and Branching for util-
ity. Later, Lin and Kifer [122] introduced two more axioms,
namely quasi-convexity and quasi-concavity for information
preservation. The core contribution of these works is that the
data publisher, depending on the application, can determine
which is the most appropriate axiom. Using this axiom, he
can select the corresponding metrics that would enable him
to find the best balance between privacy and utility of the
data. More on privacy metrics can be found in Wagner’s et al.
survey [123].

IV. DATA TRANSFORMATION TECHNIQUES
Anonymisation can be defined as a procedure of transforming
a dataset T into a new dataset T ∗ according to some privacy
requirements, as depicted in Figure 2. Therefore, anonymisa-
tion methods modify the original data to achieve the desired
privacy guarantees in the anonymous dataset T ∗. In what
follows, we introduce the prevalent data transformation tech-
niques, namely generalisation, suppression, bucketisation,
permutation and perturbation.

A. GENERALISATION
Generalisation replaces the value of a QI with an abstrac-
tion of the original value, as shown at the taxonomy tree
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TABLE 3. Information metrics.

FIGURE 4. Taxonomy tree.

FIGURE 5. Domain generalisation hierarchy of attributes age and gender.

in Figure 4 for the attributes Age and Gender. This can
be performed through the Domain Generalisation Hierarchy
(DGH), a lattice or a graph which is the solution space for the
anonymisation problem (cf. Figure 5). Each node of the lattice
represents a different combination of generalisation levels of
the attributes. Nevertheless, in quantitative data the DGH can
be defined dynamically as in [124], [125].

In [126] values are replaced following a predefined gen-
eralisation hierarchy in which original values are substi-
tuted with a more generic representation of their domain.

Generalisation transformations can be classified into two
main categories:

1) Global recoding refers to the replacement of a value
with a more generic one, e.g. if a value a1 is replaced
byA, then all the occurrences of a1 in T will be replaced
by A. Three classes of global recording can be further
identified:
• Full domain generalisation: In this case, all val-
ues of an attribute are generalised to the same level
of the generalisation hierarchy [5], [109], [110],
[127]–[130]. The main advantage of this approach
is that the anonymous dataset T ∗ stores all its
data with the same granularity level, enhancing its
readability. However, substantial information may
be lost due to excessive generalisation.

• Subtree generalisation: This method requires
all sibling nodes to be generalised to the same
value. Nodes of other subtrees can be generalised
independently if deemed necessary [116], [117],
[131]–[133].

• Sibling generalisation: In this case, some of
the sibling’s nodes are generalised, while oth-
ers remain intact. Sibling generalisation further
reduces information loss since it grants higher flex-
ibility to the anonymisation algorithm. Neverthe-
less, it implies that the solution’s search space is
increased [127].

2) Local recoding: This method enables more flexibility
than global recoding as it allows only specific appear-
ances of a value to be generalised in the anonymous
dataset. In other words,QIs values can be generalised
to different levels to form groups of records with the
sameQIs values. For example, the value 13500 of the
attribute Zip Code in one group can be generalised to
125**, while in other groups it can have any value of
the hierarchy, e.g. 12*** or 1255*.
• Cell generalisation: Contrary to the previous
techniques of global recoding, cell generalisation
allows the generalisation of an instance of a value

VOLUME 8, 2020 51079



A. Zigomitros et al.: Survey on Privacy Properties for Data Publishing of Relational Data

while leaving the rest instances unmodified. If we
assume that in a specific record the value a1 needs
to be generalised to A, then every other occurrence
of the value a1 can either remain unchanged or be
modified to the same or another generalisa-
tion level, depending on the anonymisation
procedure [112].

• Multidimensional generalisation: A multidi-
mensional generalisation can be obtained by
applying a single function to the relation that gen-
eralises aQI = (v1, . . . , vn) toQI∗ = (u1, . . . , un)
such that vi = ui or vi is a descendant node of ui in
the taxonomy of attribute i [134], [135]. Therefore,
contrary to cell generalisation, multidimensional
generalisation considers the multiple dimensions
of the tuples.

When selecting a generalisation operator, two factors have
to be considered: a) the quality of the generalisation; the more
flexible an operator is, the lower the information loss will be,
and b) the computational cost of the algorithm. More flexible
operators offer a greater solution space but the search for
a solution might be significantly harder. The importance of
selecting the right DGH has been studied in [126], [136]

B. SUPPRESSION
Suppression is the erasure of specific values from the original
dataset. Different levels of suppression can be considered.
For example, in Tuple or Record Suppression [128], [131],
the entire record is suppressed, whileValue Suppression [137]
entails the suppression of a given value throughout the entire
table. Finally, Cell suppression [111] deletes only a subset of
instances in the table.

C. BUCKETISATION
Another transformation for data anonymisation is bucketisa-
tion. The association betweenQIs and the SA breaks simply
by publishing them in separate tables. A common attribute,
the group − id , in the published tables lets the data recip-
ient to form groups from the SA table where any SA value
with group − id = i can be linked to any individual with
group − id = i at the QIs table. Bucketisation succeeds
to break the connection between QIs and the SA without
modifying them.
Bucketisation, often referred to as Anatomisation [138]

as well, simply de-associates the relationship between the
QI and the SA, without modifying them. This approach
releases the QIs and the SAs in separate tables conserving
only a common attribute, the ID of the group. Therefore,
the records with the same group ID in the QI table are
linked to the corresponding values in the SA. Compared to
the generalisationmethod, the anatomised tables grant a more
accurate answer to aggregation queries that involveQIs since
the values remain intact. Therefore, bucketisation enables
better preservation of the original terms, compared with other
methods.

One of the main drawbacks of bucketisation methods relies
on the fact that an adversary could infer more easily whether
his target participates or not in a released dataset. This privacy
breach is specially relevant when the participation in a table
is considered sensitive. For instance, an attacker could infer
whether his victim took a test for a sexually transmitted
disease, without knowing though the result of the test.

1) SLICING
The basic concept of slicing is to disassociate the cross-
column relations while preserving the association within the
context of each column. Anatomisation can be seen as a spe-
cial case of Slicing [139], where there are only two columns,
one containing all the QIs and another containing only the
SA. In slicing, columns can be formed with one or moreQIs,
SA or both. Grouping highly correlated attributes preserves
the utility, whereas breaking the associations between uncor-
related attributes increases privacy protection.

2) DISASSOCIATION
Terrovitis et al. proposed an anonymisation transformation
termed disassociation [140]. This technique focuses on iden-
tity disclosure protection in sparse multidimensional data.
The main advantage of such method is that it maintains
the original terms without suppressing or generalising. The
applied transformation partitions the original records into
smaller and disassociated subrecords. The main aim is to
disguise infrequent term combinations in the original records
by scattering terms in disassociated subrecords.

3) LOOSE ASSOCIATIONS
Loose associations [141] is a similar idea but provides a
more flexible solution than Anatomisation to cater for privacy
without using generalisation. The goal of Loose associations
is to protect sensitive associations among the attributes in
a dataset. The data publisher can define a set of sensitive
associations among selected attributes from the original table
and then break these associations by publishing the attributes
in different fragments. These sensitive associations are mod-
elled through confidentiality constraints. An extension of the
method was proposed in [142], [143] to handle more than a
pair of fragments.

D. PERMUTATION
Zhang et al. [144] proposed the permutation method based
on the concept of anatomisation. Permutation disassoci-
ates a QI with a numerical SA by separating the data
records into groups and then shuffling SA values inside each
group. Therefore, permutation enables accurate answering
of aggregate queries compared with other methods such as
generalisation-based approaches. Nevertheless, while data
permutation seems an efficient method, it has several draw-
backs. For instance, if logical links exist between the different
attributes, the randompermutation of the SA valuesmay result
in poor/low privacy guarantees.
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E. PERTURBATION
Perturbation modifies/disguises records in a way that they do
not correspond to the original values anymore. This method
keeps the distortion of statistical information values to accept-
able levels, while a synthetic dataset replaces the original
one. Therefore, record attribute linkage attacks are not useful
in this scenario. However, this does not imply that they are
immune to other attacks [145]. Perturbation methods can be
categorised as follows:

• Noise addition In the case of noise addition, we may
perturb the numerical values of a dataset using a
Gaussian distribution with zero mean and standard
deviation σ (i.e. N (0, σ ) ). The higher the σ value,
the greater the range of the generated values (i.e. it is
more likely to generate values close to the boundaries
of the value range). We may also use a discrete uni-
form distribution U (S), where S is the set of actual
values present in the category which is being evaluated
(i.e.wemay substitute rare values or values with too few
observations by other real values present in the dataset,
such as age or weight). Laplace distributions are also
widely used because of their interesting properties [146].
A simple way to hide a number a is to add a random
number r to it. Although that we cannot retrieve the
original value of a, as it is disguised, we can perform
certain computations if we are interested in the aggre-
gated data rather than in individual data [147]. The main
idea of random noise addition is to perturb/obfuscate the
data so that certain computations can be performedwhile
preserving users’ privacy. Despite that each individual’s
information is disguised, if the number of participants
is significantly large, the aggregate information of such
participants can be estimated with decent accuracy. For
instance, the scalar product and random sum are widely
used methods that can benefit from the aforementioned
property [148]. Therefore, we can estimate the required
information by using disguised data, and thereby we
obtain meaningful outcome without knowing the exact
values of individual data items.
Random Sum Let O be the original vector with n val-
ues, where O = (o1, o2, . . . , on). O is disguised by
R = (r1, r2, . . . , rn), where ri’s are values generated
by a Gaussian distribution with 0 mean and standard
deviation σ . Let O′ = O + R be the disguised data
that is known. Since ri’s are uniformly distributed in
domain [−σ, σ ], their contribution to the actual sum
of the values of vector O is close to zero. Thus, in the
long run, the relative error will converge to zero. Hence,
we have:

n∑
i=1

(oi + ri) =
n∑
i=1

oi +
n∑
i=1

ri ≈
n∑
i=1

oi (1)

Scalar Product Let A and B be the original vectors,
where A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn).
Let R and V be two vectors with values generated

by a Gaussian distribution with 0 mean and stan-
dard deviation σ , so that R = (r1, r2, . . . , rn), V =
(v1, v2, . . . , vn), and the sum of the values of R and V
are equal to 0. A is disguised by R and B is disguised
by V . Let A′ = A+ R and B′ = B+ V be the disguised
data that are known. The scalar product of A and B can
be estimated from A′ and B′ as follows:

A′ · B′ =
n∑
i=1

(aibi + aivi + ribi + rivi) (2)

Because R and B are independent, we have:
n∑
i=1

ribi≈ 0 and similarly
n∑
i=1

aivi≈0 and
n∑
i=1

rivi≈0

(3)

Therefore, we have:
n∑
i=1

(ai + ri)(bi + vi) =
n∑
i=1

(aibi + aivi + ribi + rivi)

≈

n∑
i=1

aibi (4)

• Data swapping is not constrained by the type of
SA (i.e. it can be used for both numerical and cat-
egorical values). This model anonymises the origi-
nal table by exchanging the SA values among the
records [149]–[153]. In several occasions, SA values
may have interdependencies which, when broken, might
undermine the utility of the data. A typical example
can be the case of gender-specific diseases in medi-
cal data. For instance, assigning Prostate cancer to a
woman or Mastitis to a man are impossible real pairs;
nonetheless, they may be a result of random swaps.

• Synthetic data generation builds amathematical model
based on the original data so that basic statistical mea-
sures or relationships are preserved. Therefore, it uses
the mathematical model to generate the anonymised
table with synthetic records [154]–[159]. The main
drawback of synthetic data is that they are no longer
useful for analysis on random subdomains. To overcome
this issue, two approaches were proposed, namely the
Partially synthetic approach [160], and the Hybrid data
approach [161]–[163].

• Microaggregation is a perturbation method which con-
sists on the aggregation of the attribute’s values to reduce
re-identification risk. This method is implemented in
two different phases, data partitioning and partition
aggregation [164]. The first phase partitions the dataset
T in subset Ts1 ,Ts2 , . . .Tsn in such way that for i 6= j,
Tsi∩Tsj = ∅ and Ts1∪Ts2∪. . . .∪Tsn = T . In the second
phase, a representative value for each cluster is selected
(e.g. the median or the mean value are widely used
as representative values) to replace the original values.
A cardinality parameter k controls the minimum size of
clusters.
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TABLE 4. Microaggregation example.

TABLE 5. Data transformation: data privacy vs utility.

Although microaggregation was initially designed for
numerical attributes, it was later extended to cover cat-
egorical attributes [165]. In the example of microaggre-
gation in Table 4, the multiplication of the value of the
attribute ‘‘Hours paid for’’ with ‘‘Wage Rate’’ should
result in the ‘‘Wage Sum’’. While this relation is valid in
the original data, in the microaggregated version, such
relation is violated. In such cases, the data publisher
should use certain constraints [166], [167] which the
microaggregation algorithm should not violate. More-
over, variations of microaggregation can use variable
group sizes to increase utility and decrease information
loss [168], [169].

A very important principle when applying anonymisation
is the so-calledMinimality principle.
Definition 1: Minimality principle Assume that an algo-

rithm A is used to produce an anonymous table T ∗ that
satisfies the requirements R. For any EC in T ∗ there are

no specialization of any QI that can result another table T #

which satisfies the requirements R
In essence, the minimality principle mandates that an

anonymisation algorithm should not generalise,
suppress, or distort the original data on T more than it is
necessary to achieve, e.g. k-anonymity.

Beyond any doubt, the relation between privacy and utility
of an anonymised table is crucial [108], [170], [171]. In that
respect, data publishers have to carefully balance between
an anonymised table that has no practical use and a useful
table of microdata that has not any strong privacy guarantees.
In this section, we have described the most widely-used
data transformation techniques that are used to satisfy the
data holders’ requirements. Moreover, we have shown with
practical examples in which cases each of them could be
efficiently used to provide for privacy. With this in mind,
Table 5 summarises in a three-scale level the impact of each
data transformation technique on privacy and utility.

V. DE-ANONYMISATION ATTACKS
In the following paragraphs, we discuss the main methods an
adversary would use to attack anonymised datasets and infer
sensitive information about individuals.

Data publication opens the door to a wide range of possible
attacks. Factors related to adversaries’ capacities in terms
of processing power, technical knowledge, as well as goals
and motives for accomplishing their attacks (e.g. identifying
complete records of individuals or determining whether one
is included in as published dataset) affect greatly the variety
of possible attacks. We can classify them into the following
categories:

• Record Linkage: In the record linkage attack the adver-
sary, by using his background knowledge of the QIs,
tries to link one or more records of the anonymised
dataset to an individual

• Attribute Linkage: In this attack an adversary attempts
to link a specific attribute value to an individual. Even if
the data are anonymised and there exist several occur-
rences of the same QI to prevent a record linkage
attack, the adversary might still be able to associate a
specific individual with an SA value. This attack can
be effectively executed if the diversity of SAs in each
group of records sharing the same QI is insufficient.
Therefore, in the case of groups formatted by means of
QIs, the adversary could still infer the sensitive value of
an individual.
The Attribute Linkage attack can be manifested in vari-
ous ways. In [172]the authors describe theHomogeneity
Attack in which a unique or a very common SA value
among individuals with the same QIs can lead the
adversary to infer the victim’s SA. To achieve his goal
the adversary can also use his background knowledge
about his target. For example, let us assume that Alice
has a Korean friend Uneko and an SA attribute about
Uneko’s health status could take only two values, either
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Viral Infection or Stroke. Since it is well-known that
Koreans have an extremely low incidence of strokes,
Alice can conclude with high confidence that Uneko
has an infection. This is an example of Background
Knowledge Attack [172].
Probabilistic attacks are special cases of attribute link-
age attack and they focus on how the attacker’s belief
about the SA value of an individual would be modified
after accessing the anonymised table T ∗. The two main
types are the Skewness Attack which exploits a skewed
distribution of an SA and the Similarity Attackwhich take
into account the semantic similarity of the SA values.
More details on Skewness and Similarity attack will be
given in VI-B9.

• Table Linkage Attack: There might be cases in which
only the presence of an individual could lead to privacy
breaches. Such an example could be the presence of
a specific person in a published cancer dataset. This
kind of attacks that reveal whether someone’s record
exists or not in an anonymised table are called table
linkage attacks [173], [174].

• Attack on Continuous Data Publications: The adversary
can use previously released anonymous publications of
the same dataset to perform any of the aforementioned
linkage attacks.

• Algorithm exploitation: In this attack the adversary
is aware of the algorithm that has been used in the
anonymisation process and therefore he can use reverse
engineering to reason about the decision the algorithm
made and extract a lot of knowledge about anonymised
records.

VI. PRIVACY MODELS AND COUNTERMEASURES
In what follows, we illustrate the methods a data publisher
would apply to protect the published data against the attacks
discussed in the previous section, and what privacy guaran-
tees each method provides.

A. COUNTERMEASURES TO RECORD LINKAGE
In this section, we present the most well-known coun-
termeasures against record linkage. Of specific interest is
k-anonymity, one of the first and most widely-used methods
in the field. Moreover, we present some of its variations and
discuss their drawbacks and limitations in specific attack
scenarios.

1) k-ANONYMITY
Samarati and Sweeney [175] and Sweeney [5] presented the
notion of k-anonymity as a countermeasure to record linkage.
A dataset is k-anonymous if it includes k records for any set
of QI values. Therefore, a record must be indistinguishable
from at least k − 1 other records with respect to QIs. The
group of records sharing the same QI form an equivalence
class (EC). From an attacker’s perspective, the probability
to successfully link his target record is never greater than 1

k .
This is the probability that the adversary knows a specific

TABLE 6. Example of 4-anonymity.

individual is present in the dataset as well as the possible
values of QI of the target.
A formal definition of k-anonymity, as given by

Machanavajjhala et al. in [172], is the following:
Definition 2 (k-anonymity): A table T is k-anonymous if

for every record (tuple) t ∈ T there exist k − 1 other records
ti1 , ti2 , . . . , tik−1 ∈ T such that t[C] = ti1 [C] = ti2 [C] = . . . =
tik−1[C], ∀C ∈ QI
Example 1: The original table T1 in Table 6a, is trans-

formed into T ∗1 (see Table 6b) with the generalisation of
the QI Age and Zip Code, and with generalisation to the
maximum level of Nationality, which is equivalent to the
suppression of this QI attribute. Obviously, the anonymised
table is 4-anonymous, since for every record there exist at
least three others with the same QI values.

The Curse of dimensionality plays a crucial role in
anonymisation, as observed by Aggarwal [176]. He showed
that if the set ofQIs becomes large enough, the k-anonymity
property can only be guaranteed if most of the records are
deleted, as seen in Table 6. In this scenario, it is clear enough
that the higher the dimensionality of data, the greater the
information loss. To overcome this problem, practitioners
often anonymise data by using only a subset of the QIs
according to their purpose. Moreover, they release data in
parallel tables with different subsets of QIs.

a: SELECTING k IN k-ANONYMITY
The parameter k in k-anonymity is selected according to each
data publisher. Nevertheless, Dewri et al. [177] argue that k
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must be selected in a more informative and objective manner
when suppression is not permitted. In that regard, they pro-
pose a multi-objective optimisation problem to analyse the
trade-off between different k values and the information gain.

b: k-ANONYMITY THOUGH MICROAGGREGATION
The use of microaggregation to satisfy k-anonymisation was
first studied in [178]–[180]. When numeric attributes are
microaggregated independently - a case called univariate
microaggregation - k-anonymity cannot be guaranteed since
each set of QIs may have less than k − 1 instances. On the
contrary, multivariate microaggregation considers the full
set of QIs and microaggregates these attributes together so
the k-anonymity is guaranteed. Nevertheless, multivariate
microaggregation suffers from larger information loss than
univariate microaggregation.

c: k-MAP
Prior to k-anonymity, Sweeney [5] introduced the k-map
property. Let us assume that Tid is an identification database
which is k-anonymised to produce T ∗id . The k-map property
states that each record in the disclosed k-map dataset T ∗ can
be linked to at least k records in T ∗id (and not in the original
dataset T as in k-anonymity).
This way the data publisher guarantees that the

re-identification risk is the same as k-anonymity and simulta-
neously the information loss is reduced. The main drawback
of this approach is that the combination of external data with
those the data holder wants to release is rarely feasible.

d: (X,Y)-ANONYMITY
As previously stated, k-anonymity assumes that each record
holder has only one record in the dataset. Nevertheless, as can
be seen in the medical context this is not always the case. For
example, let us assume a dataset with a set of QIs, namely
Age, Gender and Zip Code, an SA Disease and the Social
Security Number (SSN) as EI . Since a record holder may
suffer from more than one diseases, there may be more than
one records representing the same individual in the dataset.
Therefore, even when removing the EI SSN, each EC may
not contain k distinct individuals. In the extreme case in
which a record holder has k records, an EC could contain
only records from the same individual. In [71]Wang and Fung
presented the notion of (X,Y)-Anonymity. (X,Y)-Anonymity
requires that each value on X must be linked to at least k
distinct values on Y . In our example, X = {Age, Gender, Zip
Code} and Y = {SSN}. Note that Y may also be set to the SA
disease so that each group is associated with a diverse set of
SA values, enhancing the protection of the SA value.

2) (1,k)-ANONYMISATION, (k,1)-ANONYMISATION,
(k,k)-ANONYMISATION
In [181], Gionis et al. proposed a relaxation of
k-anonymity by introducing the notions of (1,k)-anonymity
and (k ,1)-anonymity.

(1,k)-anonymity In the case that adversaries only possess
knowledge of public datasets Tpub, the generalisation of the
table entries in such way that the public data Tpub of every
individual are consistent with at least k records of the released
table T ∗ may be sufficient. It is worth noting that every
k-anonymous table is also a (1,k)-anonymised table but the
opposite is not necessarily true.

(k ,1)-anonymity A table satisfies (k ,1)-anonymity if all
records in the released table are consistent with at least k
records on the original table T . As in the previous case, a
k-anonymous table is also (k ,1)-anonymous.

Obviously, since both these methods are relaxed adoptions
of k-anonymity, a combination of the two could be used to
increase the privacy guarantees.

(k ,k)-anonymity If an anonymous table satisfies both
(k ,1)-anonymity and (1,k)-anonymity, then this table also
guarantees (k ,k)-anonymity. In this case, the privacy protec-
tion level is similar to k-anonymity when the attack scenario
considers an adversary who has knowledge of a subset of
the individuals in the table. By employing (k ,k)-anonymity
a data publisher may offer more data utility than when using
k-anonymity.

3) NON-HOMOGENEOUS GENERALISATION
To enhance the baseline approach that considers the same
generalised values for each QI within an EC , some
researchers [182]–[184] have explored the idea of further
reducing the information loss in ECs with more than k
members by using non-homogeneous generalisation. In this
regard, tuples within a partition can now take different gener-
alised QIs values inside the EC .
Example 2: The original data are shown in Table 7a while

Table 7b is the 2-anonymous table with homogeneous gen-
eralisation applied. Now consider the possible publication of
Table 7a, as shown in Table 7c. The first 3 records, out of 5,
have different generalised QIs. In this example, we assume
that the adversary has knowledge of all theQIs of all record
holders in Table 7a. In Tables 7b and 7c the adversary has
a 50% chance to perform a successful record linkage attack
since both of them are 2-anonymous. Someone can easily
observe that for each record and QI attribute of Table 7c,
the generalised range is either smaller or equal to the corre-
sponding range for that record and QI attribute in Table 7b.
The latter improves utility by means of non-homogenous
generalisation regardless of the information metric used.

a: k-CONCEALMENT
Based on (k ,k)-anonymisation, Tassa et al. [183] proposed
the notion of k-concealment to achieve anonymity. In contrast
to k-anonymity where ECs with identical QI are required,
in k-concealment the generalisation is made so that each
record becomes computationally-indistinguishable from k−1
others.
Example 3: Consider the Table 8a with QIs Age and Zip

Code and SADisease. Table 8b corresponds to 2-anonymised
version of Table 8a, where there are two EC with two and
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TABLE 7. Homogeneous vs non-homogeneous generalisation.

three records. Table 8c corresponds to 2-concealment version
of Table 8a, where an adversary who knows the QIs of all
records cannot link a specific record to less than two records.
Assuming that the adversary knows the QIs of Alice (Age
and Zip Code), he cannot tell which one of the two records
(the first or the third one) belongs to Alice. Although the first
record is more likely to belong to Alice, the authors [183]
showed that proving that is computationally expensive.

b: n-CONFUSION
n-Confusion [184] is another relaxation of k-anonymity that
resembles k-concealment. The main idea behind it is to mod-
ify the records so that they become indistinguishable with
respect to the re-identification process. The re-identification
process is a function that given a collection of entries in the
anonymised table and some auxiliary additional information,
returns the probability that there are entries from the original
table.

4) MultiRelational k-ANONYMITY
The vast majority of the algorithms assume that each indi-
vidual’s record corresponds to one row in a table. Never-
theless, information about an individual can be disseminated
across multiple tables in a database scheme. In this regard,
k-anonymity offers protection at a record level but not at
an owner’s record level. Negriz et al. [185] showed that
algorithms designed for a single table were insufficient, even
when the database tables were transformed into a single

TABLE 8. 2-anonymous vs 2-concealment [183].

table. Hence, Nergiz et al. proposed [185] theMultirelational
k-Anonymity, which assumes that a database contains a
person-specific table with a unique key, and such table is
linked with other tables which have a foreign key, someQIs
and SAs. In this scenario, MultiRelational k-Anonymity is
satisfied if, after we join any person-specific table with all
the others, there exist at least k − 1 record owners having the
same QIs.

5) km-ANONYMITY
The notion of km-anonymity was proposed by
Terrovitis et al. [186] for transaction databases. Formally, it is
defined as:
Definition 3 (km-anonymity): A table T is km-anonymous

if any adversary with background knowledge of up tom items
of a transaction t ∈ T , cannot use these items to re-identify
less than k records from T .
Hence, any subset query of size m or less should return

either zero results or more than k records. Note that queries
not returning an answer are also considered secure since they
indicate that background information cannot be associated
with any transaction. km-anonymity relaxes the guarantee of
k-anonymity and does not take into account the distinction
between QIs and SA since, in the case of transactional data,
there are no QIs and all items are considered sensitive.
Example 4: An adversary may know that Alice has pur-

chased milk, beer and diapers from a store. This background
knowledge is easy to acquire by just observing the top of
the shopping bags of Alice or by just looking at a pic-
ture on a social network where these items are depicted
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in Alice’s house. The adversary now can examine the released
transactional data to find the records with these 3 items (beer,
milk and diapers). By exploiting this knowledge over the
released data the adversary can limit the results to a reduced
set of transactions or even uniquely associate a transaction
with an individual. Since the transaction may include sensi-
tive items, if the adversary knows its content, Alice’s privacy
may be compromised. If the dataset were anonymised using
53-anonymity, then for such 3 items there would exist at least
4 other transactions containing beer, milk and diapers, so that
the adversary could not distinguish which one is Alice’s.

B. COUNTERMEASURES TO ATTRIBUTE LINKAGE AND
TABLE LINKAGE
To protect data from Attribute Linkage & Table Linkage
attacks, several privacy notions have been introduced in
the literature. The most well-known are `-diversity and
t-closeness, which are analysed in the next paragraphs.
Nonetheless, we extend the discussion to other approaches
as well and we provide specific scenarios in which they can
be applied.

1) CONFIDENCE BOUNDING
In [137], [187] Wang et al. introduced the idea of bounding
the adversary’s confidence of inferring a SA value from a
set of QIs by specifying privacy templates. Such templates
define which SA value to protect with a threshold h of a
given set of QIs. A table satisfies the privacy template if
for the given QIs the confidence of inferring the SA value is
lower than h. A key point of confidence bounding is that the
data publisher can set different templates to protect different
values of SA rather than a unique policy protection for the
dataset.

2) p-SENSITIVE k-ANONYMITY
The (p)-sensitive k-anonymity has been proposed by Truta
and Vinay [188]:
Definition 4 ((p)-sensitive k-anonymity): An anonymised

table T ∗ satisfies (p)-sensitive k-anonymity property if it
satisfies k-anonymity, and for each EC in T ∗, the number of
distinct values for each SA is at least p within the same EC .
Table 9b shows an example of (p)-sensitive k-anonymity.
Someone can easily observe that while in the first EC (IDs

from 1 to 4) the SA values are different, an adversary can still
conclude that his target suffers from a severe and incurable
disease.

The authors in [189] proposed two extensions of
(p)-sensitive k-anonymity.

a: (p+)-SENSITIVE k-ANONYMITY
Definition 5 ((p+)-sensitive k-anonymity): An

anonymised table T ∗ satisfies (p+)-sensitive k-anonymity
property if it satisfies k-anonymity, and for each EC in T ∗,
the number of distinct categories for each SA is at least p
within the same EC .

TABLE 9. (p)-sensitive k-anonymity.

TABLE 10. Grouping SA values.

Table 10 shows an example of how SA values can be
grouped to achieve the preferred (p+)-sensitive k-anonymity.

b: (p, α)-SENSITIVE k-ANONYMITY
Definition 6 ((p, α)-sensitive k-anonymity): An

anonymised table T ∗ satisfies (p, α)-sensitive k-anonymity
if it satisfies k-anonymity, and each EC has at least p distinct
SA values with its total weight being at least α. An example
of this property is depicted in Table 11.

3) `-DIVERSITY
One of the first attempts to counter Attribute Linkage was
made by Machanavajjhala et al. [172]. To illustrate their
approach we provide the following example.
Example 5: Even if anonymisation of QIs has been

applied in table T1 (see Table 6a), and a 4-anonymous table
T ∗1 has been produced, someone can easily observe that there
is a privacy leakage. Let us assume that we have an adversary,
Malory, who has some background knowledge about the
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TABLE 11. (p)-sensitive k-anonymity.

TABLE 12. 4-anonymous 3-diverse.

victim Bob. In this case, we assume that Malory is Bob’s
neighbour that she knows that Bob is a 31 year old American
and, since they are neighbours, she also knows Bob’s zip
code. Malory knows that Bob recently visited the hospital
and she is curious to find out why. From Table 6b Malory
can infer, even if she cannot point which is Bob’s record, that
Bob has cancer.

To counter such attacks, the `-diversity model requires that
each EC contains at least ` different attribute values. A more
formal definition of `-diversity given by Machanavajjhala
et al. [172] is the following:
Definition 7 (`-diversity): An EC is `-diverse if there are

at least ` ‘‘well-represented’’ values for the sensitive attribute.
A table T is `-diverse if every EC ∈ T is `-diverse.

The term ‘‘well-represented’’ denotes that there are at least
` distinct values for the SA in each EC , which is identical to
(p)-sensitive k-anonymity property.

When a table T has more than one SA then the use of
Multi-Attribute `-diversity provides the required privacy (see
Table 12):
Definition 8 (Multi-Attribute `-diversity): Let T a table

with quasi-identifiers Q1,Q2, . . . ,Qm1 and sensitive
attributes S1, S2, . . . , Sm2 . T is called `-diverse if for all

i = 1 . . .m2, the table is `-diverse when Si is treated as the
sole SA and {Q1,Q2, . . . ,Qm1 , S1, . . . , Si−1, Si+1, . . . , Sm2}

is treated as the QI.
Nonetheless, an adversary can have a lot of background

information about specific individuals due to, e.g. acquain-
tance or inference [190]. Martin et al. [191] provided a formal
language to express the background knowledge of the adver-
sary into individual units. Therefore, prior to publication, one
could quantify the disclosure risk of the anonymized dataset
for different background knowledge scenarios. Moreover,
the authors provided a method to generate an anonymized
table whose maximum disclosure is well bounded.

4) `+-DIVERSITY
The `+-diversity notion was presented by
Liu and Wang [192]. Instead of granting a global protection
for all SA values, it sets a different privacy threshold for each
SA value to decrease the distortion of the original data while
offering user defined value-based privacy protection.

5) (X,Y) - PRIVACY
The main weakness of (X,Y) - Anonymity is that when a value
on Y occurs more often than others, then the probability
of inferring the SA value can be greater than 1

k . To over-
come this issue, Wang and Fung introduced the notion of
(X, Y)-Privacy [71] which extends (X,Y) - Anonymity by
inserting the constraints of confidence bounding. To satisfy
(X, Y)-Privacy each group x on X has to contain at least k
records and for each SA value s on Y the confidence to infer s
from x is less than h, where h is the value for the confidence
bounding.

6) (α, k)-ANONYMITY
Wong et al. [193] proposed the notion of (α, k)-anonymity
which acts as an extension of k-anonymity. (α, k)-anonymity
limits the confidence of the disclosure between a QI and
SA value within a threshold α, to enhance the protection of
sensitive information. The extension of k-anonymity relies on
the following requirement.
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Definition 9 (α - Deassociation Requirement): Given a
table T , an attribute set QI and an SA value s. Let (E, s)
be the set of tuples in EC E containing s for SA and α be
a user-specified threshold, where 0 < α < 1. Dataset T is
a α -deassociated with respect to attribute set QI and the
sensitive value s if the relative frequency of s in every EC is
less than or equal to α. That is |(E, s)|/|E| ≤ α for all ECs E

Therefore, (α, k)-anonymity is defined as follows:
Definition 10 ((α, k)-anonymity): A table T ∗ is an

(α, k)-anonymisation of the table T if it satisfies both
k-anonymity and the α-deassociation properties with respect
to QI.

7) PERSONALISED PRIVACY
The concept of Personalised Privacy [113] was introduced by
Xiao and Tao for categorical SAwith a taxonomy. In this case,
each individual defines the desired level of privacy, rather
than applying the same level to all of them. This is achieved
by means of guarding nodes. A guarding node is a node in
the SA taxonomy which a user can reveal. The personalised
privacy level is achieved by limiting the breach probability
of any leaf value under the guarding node within a user-
defined threshold. Depending on the selected privacy level,
some individuals may hinder the utility of a subset of the
released data.

8) (k, e) AND (ε, m) ANONYMITY
(k, e)-Anonymity is a pertubation-based method proposed by
Zhang et al. [144]. This approach aims to cover the gap in
protecting numerical SA, given that `-diversity is designed
only for categorical SA. (k, e)-Anonymity requires that each
EC has at least k different sensitive values, while the range
of sensitive values in the EC is no less than a threshold e.
However, (k, e)-Anonymity has a major drawback: it

ignores the distribution of sensitive values within the group.
This could open the door to proximity attacks which allow
an attacker to discover with high confidence that a numeric
sensitive value falls within a short interval, even if the re-
identification of its exact value has low confidence.
Example 6: Let us assume that in an EC we have 4 records

and the salary corresponds to the SA. If an adversary knows
that his victim is in this EC and the possible salary values
are {1000, 1030, 1050, 4000}, the adversary has 25% chance
to discover the real salary of his victim but he can also infer
with 75% probability that his victim’s salary is in the interval
[1000− 1050].

As a countermeasure to proximity attacks, Li et al. [194]
extended (k, e)-Anonymity by introducing (ε,m)-Anonymity.
(ε,m)-Anonymity requires that for every SA value in an EC ,
at most 1

m of the records will have similar values. The similar-
ity is controlled by ε and can take different values, such as the
absolute difference | y−x |≤ ε or a relative one | y−x |≤ εx.
Another countermeasure to proximity attacks is the Worst

Group Protection (WGP) introduced by
Loukides and Shao [195]. This approach prevents range
disclosure and can be applied without generalising SA values.

WGP measures the probability of disclosing any range in
the least protected group of a table, and captures the way
SA values form ranges in a group, based on their frequency
and similarity. WGP handles both numerical and categorical
attributes and also considers the possible background knowl-
edge of an attacker.

9) t -CLOSENESS
Even though `-diversity solves many of the weaknesses of k-
anonymity in protecting against attribute linkage, it presents
several shortcomings. Apart from the fact that `-diversitymay
be difficult to be achieved in lots of cases, below we provide
an example to demonstrate that privacy protection offered by
`-diversity may be insufficient as well.
Example 7: Suppose that the original data on table T

has only one SA: the test result of a rare virus infec-
tion represented by a boolean value ‘‘Positive’’ (True) or
‘‘Negative’’ (False). Let us assume that T contains 10K
records, 99% of which are negative, and thus only 1% are
positive. Clearly, the two values have different degrees of
sensitivity. For instance, if we assume that the virus is the
HIV, a possible infection (positive value) may have a social
impact on the patient, whereas the disclosure of the negative
result would have a low impact as 99% of the population in
our example has the same result. Unavoidably, an individual
having a positive result would like to avoid its disclosure.
In this case, to have a distinct 2-diverse table, there can exist
at most 10000×1% = 100 ECs. Hence, the information loss
in such case would be prohibitive.

Based on the aforementioned example, we explain clearly
below both Skewness Attack and Similarity Attack in action.

• Skewness Attack: In the case of a skewed distribution,
satisfying `-diversity does not prevent attribute disclo-
sure. For instance, considering the previous example and
assuming that one EC has an equal number of posi-
tive and negative records, the table T satisfies distinct
2-diversity and its variations, entropy 2-diversity, and
any recursive (c,2)-diversity [172] requirement that can
be imposed. However, it is exposed to a serious privacy
risk since anyone in the class would have 50% chances
of being positive, as compared with the 1% of the overall
population. Another relevant issue in terms of privacy
risks occurs when an EC is 2-diverse by having 49 posi-
tive records and 1 negative. While the overall possibility
of being positive is 1%, in this specific EC this chance is
raised to 98%, hindering the privacy of the individuals.

• Similarity Attack: Since `-diversity does not consider
the semantical closeness of the values, a similarity attack
can be triggered. For instance, let us assume that an
adversary finds the EC of his target in an anonymous
medical publication which is 3-diverse and the three
values of this class are (gastric ulcer, gastritis, stomach
cancer). In this case, it is obvious that the adversary can
deduce that an individual has a stomach-related issue,
regardless of the specific disease of his target.
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With the aim to overcome these attacks, a new privacy
notion, t-closeness, was proposed by Li et al [196], [197].
t-closeness requires the distribution of an SA in anyQI group
to be close to the distribution of the SA in the original table
T .
Definition 11 (t-closeness): An EC satisfies the t-

closeness requirement if the distance of an SA distribution in
this class compared to the distribution of that attribute in the
whole table is not greater than a threshold t . A table satisfies
the t-closeness requirement, if all ECs satisfy the t-closeness
requirement.
t-closeness uses the Earth Mover Distance (EMD) [198]

function to measure the closeness between two distributions
of sensitive values and requires this closeness to be within t .
Notably, as proved in [199], the complexity of t-closeness for
every constant t such that 0 ≤ t < 1, it is NP-hard to find the
optimal t-closeness generalisation of T .

To give an insight of the EMD function, let us assume a
field with dug holes and the corresponding quantity of soil
to fill these holes to be dispersed in different points on that
field. EMD would calculate the least amount of work that
someone would need to fill in the holes. Let us assume that
a unit of work corresponds to transporting a unit of soil by
a unit of (ground) distance. Formally, EMD evaluates the
dissimilarity between two multi-dimensional distributions in
a feature space for a given distance measure, which in this
case would be the ground distance. Therefore, EMD lifts this
distance from individual features to full distributions.

Cao et al. [200] proposed the SABRE framework which
was based on t-closeness principle for both categorical and
numerical attributes. In this framework, the data are first par-
titioned into a set of buckets and then form ECs by selecting
the appropriate number of records, a task that is performed
considering the t-closeness requirement from each bucket.
The authors argue that algorithms for t-closeness that are
built on top of k-anonymisation [196], [197] fail in terms
of efficiency, whereas their experimental evaluation shows
that SABRE achieves higher information quality. In [201]
the authors use and evaluate three microaggregation-based
methods to achieve k-anonymous t-closeness datasets.

10) β-LIKENESS
The t-closeness notion exhibits several limitations and weak-
nesses. First, it lacks the flexibility of specifying differ-
ent protection levels for different sensitive values. Second,
the EMD function is not suitable for preventing attribute
linkage on numerical SAs. Moreover, enforcing t-closeness
would substantially hinder the data utility as it requires the
distribution of sensitive values to be the same in allQI groups.
Example 8: Assume a dataset T with SA values HIV and

Flu. If the overall SA distribution between them is P =
(0.4, 0.6) and their distribution in an EC is Q = (0.5, 0.5),
then EMD(P,Q) = 0.1. Still, if their overall distribution is
P′ = (0.01, 0.99) and their distribution in an EC is Q′ =
(0.11, 0.89), then EMD(P′,Q′) = 0.1 again. Clearly, both
cases satisfy 0.1-closeness. However, the information gain

in the latter is larger than in the former one, because in the
first case the probability of HIV is increased by 25%, from
0.4 to 0.5, while in the second by 1000% from 0.01 to 0.11.
In effect, the two cases do not afford the same privacy. Unfor-
tunately, any function that aggregates absolute differences (as
in the case of EMD) faces the same problem.

Likewise t-closeness, β-likeness [202] is a privacy model
for categorical data.
Definition 12 (basic β-likeness): Given a table T with a

sensitive attribute SA1, let V = {v1, v2, . . . , vm} and P =
(p1, p2, . . . , pm) the overall SA1 distribution in T . An EC G
with SA1 distribution Q = (q1, q2, . . . , qm) is said to satisfy
basic β-likeness, if and only if max{D(pi, qi)|pi ∈ P, pi <
qi} ≤ β, where β > 0 is a threshold.

For an anonymised table T ∗ from T to satisfy the β-
likeness, all ECs G ⊂ T ∗ have to comply with the β-likeness
requirement.

11) δ-PRESENCE
δ-presence [173], [174] is a metric to evaluate the risk of
identifying an individual in a table based on the generalisation
of publicly known data.
Definition 13 (δ-presence): Given an external table Tp and

a private table T , we say that δ-presence holds for a general-
isation T ∗ of T , with δ = (δmin, δmax) if:

δmin ≤ P(t ∈ T |T ∗) ≤ δmax , ∀t ∈ P

In such datasets, we say that each tuple t ∈ P is δ-present
in T . Therefore, δ = (δmin, δmax) is a range of acceptable
probabilities. The parameters δmin and δmax define the trade-
off between the utility and the privacy of the anonymised
table T ∗. The increase in δmin leads to better privacy pro-
tection, as more information is hidden. Similarly, when δmax
decreases the utility rises, but at the cost of lowering the
level of privacy. The data publisher should select the maximal
δmin and the minimal δmax value that guarantee her desired
thresholds on privacy and usability of the data. For more
information on selecting the appropriate δmin and δmax the
interested reader may refer to [174].

A drawback of δ-presence is that it requires all the available
publicly known data to be in the form of a table. The c-
confident δ-presence [174], an extension of δ-presence, was
introduced to address this issue by relaxing the assumption
on the availability of a public table to the publisher. The c-
confident δ-presence assumes that data publisher has some
knowledge, for example statistics and count queries, about
the world from which the table T was drawn from. Such
information is not sensitive and more likely to be publicly
available. On the other hand, the assumption for the adversary
is that she has access to the whole world knowledge in the
form of a public table. The only thing she does not know is
the presence or the absence of individuals in the private table.

C. OTHER COUNTERMEASURES TO ATTACKS
In addition to the well-known countermeasures described
in Sections VI-A and VI-B, several techniques take into
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account scenarios that are not usually considered in PPDP.
In the next subsections, we describe the m-invariance and
m-confidentiality concepts. Later in Section VI-D we intro-
duce the notion of ε-Differential Privacy and its relevance to
the PPDP field.

1) m-INVARIANCE
A scenario that most data protection methods do not take into
consideration is the future re-publication of the anonymous
table T ∗. Insertions and deletions in the original table T
happening through the pass of time make the anonymisation
procedure to generate different T ∗ anonymous tables over
time. An adversary can usemultiple time releases of T ∗ tables
to infer sensitive information just by comparing them. On
the assumption that deletions in T are not allowed, a naïve
approach would be to anonymise the new records sepa-
rately from the already anonymous published table. However,
if there is a small amount of new data, then this would lead
to severe information loss. Moreover, it is difficult to analyse
a collection of datasets with different levels of generalisation
for each. For instance, if in a previous release the required
generalisation reached to country level (e.g. Greece) but in
a second release at the city level (e.g. Athens), aggregation
queries such as those for counting the people in the city of
Athens would be rendered almost useless.

Another solution is to require the latest release to be no
more specialised than the previous [5]. The problem here
is that, although the new data in general lead to a better
anonymisation, each subsequent release gets increasingly
distorted. This drawback led Xiao and Tao to propose the
m-invariance method [72]. Yet, before proceeding with the
description of m-invariance we introduce below some more
necessary definitions.
Definition 14 (Historical Union): At time n ≥ 1, the his-

torical union U (n) contains all the tuples in T at timestamps
1, 2, . . . , n, respectively. Formally:

U (n) =
n⋃
j=1

T (j)

Definition 15 (Lifespan): Each tuple t ∈ U (n) is implic-
itly associated with a lifespan [x, y], where x is the smallest
and y is the largest integer j such that t appears in T (j).
Using the above, m-invariance can be defined as follows:
Definition 16 (m-invariance): A sequence release of

T1,T2, . . . ,Tp is m-invariant if the following properties are
met:
• every QI group in any Ti has at least m records and
all records in a QI group have different values on the
sensitive attribute.

• for any record r with published lifespan [x, y] where
1 ≤ x, y ≤ p, QIx , . . . ,QIy have the same set of
sensitive values, whereQIx , . . . ,QIy are the generalised
QI groups containing r in Tx , . . . ,Ty.

The rationale behind m-invariance is that if a record r has
been published in different anonymous releases Tx , . . . ,Ty,

then all the ECs containing that record r in all Tx , ..,Ty are
required to have the same set of SA values. This is done to
ensure that the intersection of SA values over all such ECs
does not reduce the set of SA values. One of the drawbacks
of this method is that, in order to achieve the m-invariance,
Xiao’s and Tao’s algorithm adds the minimum required coun-
terfeit data records, which results in the loss of truthfulness
at the record level.

2) m-CONFIDENTIALITY
Before defining m-confidentiality [203] we need to define
Credibility.
Definition 17 (Credibility): Let T ∗ be a published anony-

mous table generated from T . Consider an individual
o ∈ O and a sensitive value set s in the sensitive attribute.
Credibility(o, s,Kad ) is the probability that an adversary can
infer from T ∗ and background knowledge Kad that o is asso-
ciated with s.
The background knowledge mentioned here refers to the

minimality principle, as a mean for Algorithmś exploitation.
Definition 18 (m-confidentiality): A table T is said to sat-

isfym-confidentiality if for any individual o and any sensitive
value set s, Credibility(o, s,Kad ) does not exceed 1

m .
m-confidentiality restricts the probability that an adversary

can infer from T ∗ the association between any individual and
a record in T to 1

m by taking into account the adversary’s
background knowledge.

D. DIFFERENTIAL PRIVACY
In 2006, Dwork [204] proposed the notion of Differential
Privacy which is commonly used for PPDM and interac-
tive query answering. Differential privacy states that the risk
to one’s privacy should not substantially (as bounded by a
parameter ε) increase as a result of participating in a statistical
database. Thus, an attacker should not be able to learn any
information about any participant that they could not learn if
the participant had opted out of the database. In this paper,
we adopt the definition presented in [205].
Definition 19 (Differential Privacy): A privacy mecha-

nismA gives ε-differential privacy if for any dataset T1 and T2
differing at most one record, and for any possible anonymous
T ∗ ∈ Range(A),

Pr[A(T1) = T ∗] ≤ eε × Pr[A(T2) = T ∗]

where the probability is taken over the randomness of A.
However, this definition of ε-differential privacy is too

restrictive to be satisfiable in some scenarios. Therefore,
to increase the functionality of differential privacy with
respect to more particular and sensitive queries, several relax-
ations have been developed, with the most widely-adopted
being (ε, δ)-differential privacy [206]. In our case, this relax-
ation is adopted by allowing the output T ∗ to violate the
inequality of Definition 19 with a small error probability δ.
Thus, (ε, δ)-differential privacy ensures that for all adjacent
queries, the absolute value of the privacy loss will be bounded
by ε with probability at least 1− δ.
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TABLE 13. Attacks each Privacy Model prevents.

Among themultiplemechanisms used to obtain differential
privacy for real-valued queries [206] the most widely-used is
the Laplacemechanism [146]. Given a function f , the Laplace
mechanism will perturb each coordinate with noise drawn
from the Laplace distribution, defined as:

Lap(x|b) =
1
2b
e−
|x|
b (5)

where b denotes the scale. Hence, the variance of this distri-
bution is σ 2

= 2b2. Note that this distribution is centered at 0.
The scale of the noise would be calibrated to the sensitivity
of f (divided by ε). Also, using Gaussian noise with variance
calibrated to 1fln(1/δ)/ε, one can achieve (ε, δ)-differential
privacy [206].

As previously stated, the differential privacy notion is not
novel. A survey of the first works towards this breakthrough
in privacy-preserving data analysis can be found in [207].
However, the vast majority of research on differential privacy
are for answering statistical queries, rather than publishing
microdata [208], [209]. More precisely, differential privacy
is based on adding noise to query results [146], [210], [211]
(i.e. output perturbation). Therefore, although some PPDP
works based on differential privacy can be found [19], [205],
[208], [212]–[219] this approach remains useful as far as
statistical results are concerned.

Microdata publishing in the context of differential privacy
has been widely studied [208]. Machanavajjhala et al. [220]
introduced a variant of (ε, δ)-differential privacy named
(ε, δ)-probabilistic differential privacy. The authors used
a synthetic data generation method to release privately
commuting patterns of the population in the US privately.
Differential privacy for secure release of search queries has
also attracted the attention of many researchers such as
Korolova et al. [221] and Gotz et al. [222].

While most privacy concepts are easily to be understood
by data publishers, data recipients, and record holders, differ-
ential privacy is quite theoretical in nature and thus difficult
to be explained in terms of its level of anonymisation guar-
antee [223], [224]. Moreover, as claimed by several authors,
differential privacy has not yet reached the maturity to replace
other existing models of PPDP [225]. Nevertheless, the intro-
duction of Local Differential Privacy (LDP) partially solved
some of these drawbacks, enhancing the trade-off between
privacy and efficiency [226]–[228]. LDP is a data collec-
tion framework in which each contributor locally perturbs
data using a mechanism that guarantees differential privacy
(e.g. Laplace noise). Next, this perturbed data are sent to the
data collector, avoiding, for instance, repeated query attacks,
since all responses would be based on this perturbed ver-
sion of the data. This method is usually combined with a
randomized response [226]. Therefore, each response would
be randomly obfuscated (according to a predefined level of
privacy) in a way in which statistical indicators are preserved,
considering a large enough number of responses. Moreover,
the use of randomized response can be extended to complex
data types and sophisticated statistics at the data collector,
so that information can be extracted from repeated queries
without hindering the privacy of individuals [228], [229].

Finally, we observe that current definitions of
(ε, δ)-differential privacy require δ to be very small to provide
sufficient privacy protection when publishing microdata,
hindering the efficiency of such method. This is particularly
challenging in some scenarios such as high dimensional
datasets [230]–[232]. Therefore, realistic attacks should be
analysed more profoundly to provide for insights about what
ε-differential privacy (and its variants) means in practice and
how its drawbacks can be minimised [233], especially in
terms of the new era of big data [231], [234], [235].
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A summary of all the privacymodels described in the paper
and the attacks that each one of them prevents is depicted
in Table 13. Note that all the countermeasures in Table 13,
except differential privacy, offer ‘‘truthfulness on the record
level’’. That means each record on the anonymised table T ∗,
no matter how much generalised, corresponds to a record on
the original table T . On the contrary, similar to randomi-
sation, differential privacy does not guarantee such prop-
erty [236], a fact that can affect the quality of the released
data, rendering them useless (e.g. in the case of existingmutu-
ally exclusive output queries) for some applications [220].

VII. OPEN QUESTIONS AND FUTURE DIRECTIONS
The recent advances in IoT, machine learning and big data
analytics have significantly increased the requests for data
resources. In view of these countless requests, the use of
privacy-preserving methods to provide data without exposing
users’ privacy is mandatory. Examples of such practices can
be already seen in companies such as Apple which embraced
the use of differential privacy in its products [237]. More-
over, there is a wide range of companies and startups, such
as Aircloak,3 whose primary service is to provide dataset
anonymisation, thus paving the way for the greater adop-
tion of PPDP. However, regardless of the currently powerful
mechanisms and anonymisation procedures implemented in
the PPDP context, several open issues need to be addressed in
the upcoming years. An overview of these open questions and
challenges in the PPDP research area is provided in Figure 6.

One of the biggest challenges for the wider dissemination
of PPDP methods is the management of Big Data, as its three
‘‘V’’s, namely Volume, Variety and Velocity, impose many
constraints to their adoption. Volume, an inherent character-
istic of Big Data, affects substantially the PPDP algorithms
since data processing and sanitisation demand high com-
putational power. In this regard, microaggregation methods
offer an attractive computational trade-off among compu-
tational complexity, privacy, and information loss. Besides
microaggregation, differential privacy attracts also a signifi-
cant research interest in the context of Big Data [238], [239].
Big Data Variety adds further constraints to anonymization
algorithms since methods such as Generalisation are highly
dependant on data variations. Notwithstanding the two afore-
said ‘‘V’’s, the third ‘‘V’’, Velocity, appears to be the most
challenging one as Big Data are being generated and stored
at an unprecedented rate. It appears that for high velocity
data that need to be anonymised on the fly the only thus far
viable solutions rely on (Local) differential privacy. However,
in the context of sequential data publications, the security
of the data that are anonymised through differential privacy
methods has not been studied thoroughly. Yet, as practice has
shown, this might be subject to the underlying implementa-
tion of each particular application.

While, as already discussed, differential privacy has great
potential for PPDP, it is far from being considered a

3https://www.aircloak.com/

FIGURE 6. Mindmap representation of the challenges and future trends
in PPDP.

panacea or immune to attacks. For instance, Clifton and
Tassa [225] have already criticised the widespread belief that
differential privacy is resistant to attacks. As a matter of fact,
as shown by Cormode in [240], even under differential pri-
vacy the accurate inference of private attributes from realistic
data is possible. What’s more, the noise addition is often
subject to the queries that are expected to be performed on the
dataset, or to whether there exist sequential data publications.
In that regard, some recent research studies explore the gen-
eration of incremental ε-differentially private releases of data
so as to address the demand for up-to-date information [241],
[242]. However, in such cases the incremental privacy risk
that arises when different anonymised versions of the same
dataset are released, has to be also taken into consideration.
While several approaches to this challenge can be found in
the literature [74]–[76], [243], yet there is still a big gap to be
filled. Furthermore, it has been shown that machine learning
algorithms can be exploited to extract further knowledge from
the anonymised dataset [244]. Based on the above, it is clear
that although differential privacy might be very useful in
PPDP, its privacy guarantees as well as its implementations
and use case scenarios have to be further investigated.

Another very active field in PPDP is the study of high-
dimensional data [245]. As previously stated, the curse of
dimensionality has a significant impact on the k-anonymity
model [176]. These days, due to the prevailing vast col-
lection of data from mobile sensors and ubiquitous com-
puting devices [246]–[249], high-dimensional data are not
only found in healthcare anymore - in which traditionally
PPDP is applied - but to other application domains as well.
Hence, the development of proper anonymisation mecha-
nisms that can be extended to many and diverse application
areas becomes compulsory [250]–[253]. While there are sev-
eral proposals for the treatment of such high-dimensional
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datasets [254]–[257], more generic approaches try to exploit
either the fact that in real datasets the actual background
information cannot span to many QIs, or the inherent cor-
relation of many QIs [258], [259]. In general, the current
state of the art is rather promising and leads the way in
fruitful future research extensions [260]. Nevertheless, while
the proposed methods provide enough privacy guarantees,
they fail to provide adequate levels of data utility. Therefore,
this unbalanced trade-off hinders their adoption.

Closely related to the above, multivariate datasets
(i.e. which if they are high-dimensional face the challenges
described in the previous paragraph as well) present several
well-known challenges. Amongst others, we consider the
proper detection of outlier users (i.e. outliers) as a significant
issue since the presence of outliers in datasets may lead
to the disclosure of information about the data distribu-
tion, thereby hindering the quality of the obfuscation. For
instance, clustering algorithms may incorrectly select the
proper users to form a group, creating inaccurate data rep-
resentations. In this regard, several approaches to deal with
outliers in multivariate datasets have been proposed in the
literature [261]–[269].

Nowadays, due to the need for massive amounts of real-
time data as well as seamless and continuous user interac-
tions, centralised data publication approaches are shifting
towards more decentralised solutions. As already discussed,
novel cryptographic solutions have been developed to face
such novel approaches. Nevertheless, these primitives imply
a significant computational cost, especially for large-scale
distributed networks [270]. To overcome this challenge, one
strategy would be to enhance secure multiparty protocols in
terms of computational and communication costs. On top of
that, application-oriented mechanisms may also be imple-
mented to deal with specific scenarios and requirements.

Beyond all the above challenges, the models discussed so
far fail to take into account some mining patterns which,
depending on the context of data, may infer sensitive infor-
mation. In healthcare, for example, a link between hos-
pitalisation costs and a particular ZIP area may disclose
information that could be abused by insurance companies.
In this context, the goal is not to identify individuals or their
information but to infer knowledge about specific group of
individuals [271]. To protect against this challenge, similar
sensitive knowledge patterns must be identified before apply-
ing further operations on data or sharing them. Against this
background, the active field of research in group privacy is
steadily growing [272].

Overall, it may be said that the type and context of pub-
lished data are very relevant to the way they can be protected
since all attacks are crafted to the context of information.
Hence, prior to de-anonymization, all known external data
sources that may be used for attacking the anonymized data
can be used in our advantage to selectively reinforce data
anonymisation procedures where deemed appropriate [273].
Above all, we must identify the specific weaknesses of each
application domain so as to protect data efficiently.
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