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ABSTRACT 113 

Background: Glycolysis/gluconeogenesis and tricarboxylic acid cycle (TCA) metabolites 114 

have been associated with type 2 diabetes (T2D). However, the associations of these 115 

metabolites with T2D incidence and the potential effect of dietary interventions remains 116 

unclear.    117 

Objective: To evaluate the association between baseline and 1-year changes in 118 

glycolysis/gluconeogenesis and TCA metabolites with insulin resistance and T2D incidence, 119 

and the potential modifying effect of Mediterranean diet (MedDiet) interventions.  120 

Methods: We included 251 incident T2D cases and 638 non-cases in a nested case-cohort 121 

study within the PREDIMED Study during median follow-up of 3.8 years. Participants were 122 

allocated to MedDiet+extra-virgin olive oil, MedDiet+nuts or control diet. Plasma metabolites 123 

were measured using a targeted approach by LC-MS. We tested the associations of baseline 124 

and 1-year changes in glycolysis/gluconeogenesis and TCA metabolites with subsequent T2D 125 

risk using weighted Cox regression models and adjusting for potential confounders. We 126 

designed a weighted score combining all these metabolites and applying the leave-one-out 127 

cross-validation approach.  128 

Results: Baseline levels of hexose monophosphate, pyruvate, lactate, alanine, glycerol-3 129 

phosphate, isocitrate were significantly associated with higher T2D risk (17%-44% higher risk 130 

for each 1 SD increment). The weighted score including all metabolites was associated with a 131 

30% (95% CI, 1.12, 1.51) higher risk of T2D for each 1 SD increment. Baseline lactate and 132 

alanine were associated with baseline and 1-year changes of homeostatic model assessment 133 

insulin resistance (HOMA-IR). One-year increases in most metabolites and in the weighted 134 
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score were associated with higher risk of T2D after 1-year of follow-up. Lower risks were 135 

observed in the MeDiet groups in comparison with the control group although no significant 136 

interactions were found after adjusting for multiple comparisons. 137 

Conclusions: We identified a panel of glycolysis/gluconeogenesis-related metabolites that was 138 

significantly associated with T2D risk in a Mediterranean population at high cardiovascular 139 

risk. A MedDiet could counteract the detrimental effects of these metabolites. 140 

 141 
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INTRODUCTION 156 

Metabolomics is a rapidly evolving discipline that offers a new avenue for identifying novel 157 

biomarkers prior to the onset of diabetes beyond classical risk factors (1). Metabolomic studies 158 

have revealed that several blood sugars, sugar-related metabolites, components of 159 

glycolysis/gluconeogenesis pathway and tricarboxylic acid cycle (TCA) intermediates have 160 

been associated with insuin resistance prediabetes and diabetes in case-control, cross-sectional 161 

and prospective studies (2-8). Interestingly, several metabolites belonging to the 162 

glycolysis/gluconeogenesis pathway and TCA show relevant changes in plasma levels after 163 

oral glucose challenges (9,10). Among them, lactate lactate (the end product of anaerobic 164 

glycolysis) also showed differential changes in its circulating levels during the oral glucose 165 

tolerance test (OGTT) by insulin resistance status (9). Moreover, circulating lactate is a 166 

relevant predictor of subsequent T2D incidence in several epidemiologic studies (11-13).  167 

However, these studies only assessed plasma lactate at baseline and did not perform a broader 168 

assessment of other lactate-related metabolites involved in glucose homeostasis.  169 

Although available literature has pointed to a link between some glycolysis/gluconeogenesis 170 

or TCA plasma metabolites and prediabetes or T2D, no previous longitudinal study has 171 

assessed the association of these metabolites with future T2D incidence in initially non-diabetic 172 

subjects. Importantly, existing studies have not integrated longitudinal data with the potential 173 

effect of dietary interventions. This integration is needed to evaluate the associations of interest 174 

in a comprehensive manner and to provide support for public health actions. In this context, no 175 

large, long-term study has assessed whether dietary interventions can modify the relationship 176 

between metabolomic profiles composed of gluconeogenesis-pathway metabolites and T2D 177 

risk. Therefore, the aim of the present study was to evaluate the association between baseline 178 

and 1-year changes in plasma glycolysis/gluconeogenesis-related metabolites and TCA 179 

intermediates with insulin resistance and T2D risk; and to examine whether these associations 180 
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might be mitigated by dietary interventions based on the Mediterranean diet (MedDiet) among 181 

participants at high cardiovascular risk. 182 

 183 

METHODS 184 

Study design and participants 185 

The present study was a nested case-cohort study within the PREDIMED trial. Briefly, the 186 

PREDIMED trial (www.predimed.es) was conducted from 2003 through 2010 in Spain and 187 

aimed to evaluate the effects of the MedDiet for the primary prevention of cardiovascular 188 

disease (CVD). At baseline, 7,447 participants aged 55-80 years with high cardiovascular risk, 189 

but initially free from diagnosed CVD were allocated to one of three dietary interventions: 1) 190 

MedDiet supplemented with extra-virgin olive oil (provided to participants for free); 2) 191 

MedDiet supplemented with mixed tree nuts (provided to participants for free); 3) a control 192 

group that received advice to follow a low-fat diet (and participants received non-food gifts). 193 

Detailed information about the PREDIMED trial was published elsewhere (14,15) ).  194 

In the present case-cohort study, we have included all the available incident T2D cases 195 

diagnosed during 3.8 years of median follow-up and a random subsample of 20% of 196 

participants free of T2D at baseline and who had available EDTA plasma samples (16). Among 197 

all participants free of diabetes at baseline (n=3,541), we selected for the present analysis 889 198 

participants (Supplemental Figure 1), including 251 incident T2D cases with available plasma 199 

samples and a sub-cohort of 691 randomly selected participants (638 non-cases and 53 200 

overlapping cases). Among the total selected subset of 889 participants, 656 had available 201 

blood samples after 1-year of follow-up (499 non-cases and 157 cases that occurred after 1-y 202 

of follow-up) and they were included in the 1-year change analyses. The protocol was approved 203 
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by the Research Ethics Committees at all study locations, and all participants provided written 204 

informed consent. 205 

 206 

Ascertainment of T2D cases 207 

The PREDIMED protocol included T2D as a pre-specified secondary endpoint of the trial 208 

among participants initially free of diabetes. At baseline, prevalent T2D was identified by 209 

clinical diagnosis and/or use of antidiabetic medication. The diagnosis of incident T2D during 210 

follow-up has been described elsewhere (17) and followed the American Diabetes Association 211 

criteria(18), namely two confirmations of fasting plasma glucose ≥7.0 mmol/L or 2-h plasma 212 

glucose ≥11.1 mmol/L, after a standard 2-hour 75-g OGTT. Blinded study physicians collected 213 

information on the outcomes. Blinded to the intervention assignment, the Clinical End-Point 214 

Ascertainment Committee adjudicated the T2D events according to standard criteria. 215 

Information on incident cases of T2D was collected from continuous contact with participants 216 

and primary health care physicians, annual follow-up visits, yearly ad-hoc reviews of medical 217 

charts and annual consultation of the National Death Index.  218 

Covariate assessment 219 

At baseline and at yearly follow-up visits, questionnaires assessing medical conditions, family 220 

history of disease, and risk factors were collected. Trained personnel measured participants’ 221 

body weight, height, waist circumference, and blood pressure (in triplicate) according to the 222 

study protocol. Body mass index (BMI) was calculated as weight in kilograms divided by 223 

height in meters squared. Physical activity was assessed using the validated Spanish version of 224 

the Minnesota Leisure-Time Physical Activity questionnaire (19). Participants were considered 225 

to have hypercholesterolemia or hypertension if they had previously been medically diagnosed, 226 
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and/or they were being treated with cholesterol-lowering or antihypertensive agents, 227 

respectively.  228 

Study samples and metabolomics profiling 229 

All analyses used fasting (≥8 hours) plasma EDTA samples collected at baseline and at year 1 230 

of intervention. Samples were processed at each recruiting center no later than 2 hours after 231 

collection and stored at -80°C. Pairs of samples (baseline and first-year visit) from cases and 232 

sub-cohort participants were randomly distributed before being shipped to the Broad Institute 233 

in Boston, MA, for metabolomics assays. Using a targeted approach, LC-MS was used to 234 

quantitatively profile polar metabolites including organic acids, sugar phosphates, purines, 235 

pyrimidines, bile acids and anionic (carboxylate containing) metabolites. Internal standard 236 

peak areas were monitored for quality control and to ensure system performance throughout 237 

analyses. Pooled plasma reference samples were also inserted every 20 samples as an additional 238 

quality control. The raw data were processed using MultiQuant software (AB SCIEX) to 239 

integrate chromatographic peaks and the data were visually inspected to ensure the quality of 240 

signal integration. Details of the LC-MS platform can be found elsewhere (20). 241 

For this analysis we used plasma levels of metabolites involved in the pathways of glycolysis, 242 

gluconeogenesis and TCA metabolites, namely: fructose 6-phosphate, fructose 1,6-bis 243 

phosphate, 3-phosphoglycerate, phosphoenolpyruvate, pyruvate, lactate, alanine, glycerol-3-244 

phosphate, citrate, aconitate, isocitrate, fumarate, malate and succinate (see Human 245 

Metabolome database HMDB numbers in Supplemental Figure 2; http://www.hmdb.ca/). 246 

These products were considered representative metabolites because the method could not 247 

chromatographically solve the isomers and therefore did not have unique multiple reaction 248 

monitoring transitions in MS. For this reason, in this manuscript we used the general name for 249 

these molecules, i.e., hexose monophosphate for fructose-6-phosphate, hexose diphosphate for 250 

fructose 1,6-bis phosphate, and fumarate/maleate for fumarate. We observed 2 missing values 251 
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in the measurement of 3-Phosphoglycerate, 4 missing values in phosphoenolpyruvate, 109 in 252 

pyruvate and 319 in hexose diphosphate. 253 

Participants’ triglyceride (TG), total cholesterol, low-density lipoprotein-cholesterol (LDL), 254 

and high-density lipoprotein-cholesterol (HDL), were measured using fasting plasma samples 255 

at baseline. Serum glucose, triglyceride, total cholesterol and HDL-cholesterol levels were 256 

measured using standard enzymatic methods and LDL-cholesterol concentrations were 257 

calculated with the Friedewald formula. Plasma glucose was measured using an enzymatic 258 

method to convert glucose to 6-phosphogluconate (ADVIA Chemistry Systems, Tarrytown, 259 

NY, USA). The intra- and inter-assay coefficients of variation were 1.2 and 1.6. Insulin levels 260 

were measured using an immunoenzymometric assay (ADVIA Chemistry Systems) with and 261 

intra- and inter-assay coefficient of variation equal to 3.7 and 4.4, respectively. Insulin 262 

resistance was calculated by using the HOMA-IR index (HOMA-IR = fasting insulin (μU/mL) 263 

× fasting glucose (mmol/L) /22.5). 264 

Statistics 265 

Individual glycolysis/gluconeogenesis-related metabolite concentrations were normalized and 266 

scaled to multiples of 1 SD using the rank-based inverse normal transformation. Weighted 267 

proportional hazards Cox regression models using Barlow weights to account for the over-268 

representation of cases, as recommended for case-cohort designs(21) , were applied to estimate 269 

HRs and the 95% CIs of T2D comparing participants in each quartile to the lowest quartile as 270 

well as per 1SD deviation increment in individual metabolites. Follow-up time was calculated 271 

from the date of enrolment to the date of diagnosis of T2D for cases, and to the date of the last 272 

visit or the end of the follow-up period for non-cases. Models were adjusted for age, sex, 273 

intervention group, smoking, BMI, physical activity, hypertension, dyslipidaemia and baseline 274 

plasma glucose (centered on the sample mean and adding a quadratic term). All models were 275 
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stratified by recruitment center with the option “strata” from Stata, thus equal coefficients are 276 

calculated across strata but with a baseline hazard unique to each stratum. We adjusted P-277 

values of the multivariable-adjusted associations between 1-SD increment in individual 278 

metabolites concentration and T2D risk using the Simes procedure to account for the multiple 279 

testing(22). To quantify a linear trend, we assigned the median value of each metabolite 280 

concentration within each quartile and modelled this variable continuously.  281 

We created a weighted metabolite score combining the glycolysis/gluconeogenesis-related 282 

metabolites using the respective coefficients from the multivariable Cox regression model 283 

fitted for each individual metabolite (23). We applied the leave-one-out cross-validation 284 

(LOOCV) approach to obtain unbiased estimates of these models and to avoid overfitting when 285 

creating the score (24). In each run, Cox regression models were applied to all-but-one sample 286 

(i.e., the training dataset), and the regression coefficient obtained was the weight applied to the 287 

remaining one sample (i.e., the testing dataset) to calculate the score. For metabolites with 288 

missing values (hexose diphosphate, 3-phosphoglycerated, phosphoenolpyruvate, and 289 

pyruvate) we imputed the values by using the minimum observed value divided by 2. We also 290 

repeated this analysis using a new score with all metabolites except pyruvate and hexose 291 

diphosphate to assess the possible influence of the replacement of missing values from these 292 

metabolites. We adjusted for the same covariates described above. Additionally, we adjusted 293 

for other metabolites related to glycolysis/gluconeogenesis or TCA cycle and previously 294 

associated with T2D(25-27). Specifically we adjusted for a branched-chain amino acid score 295 

(leucine + isoleucine + valine), aromatic amino acid score (phenylalanine + tyrosine), ratio 296 

glutamine/glutamate, and global arginine bioavailability ratio (arginine/[ornithine + 297 

citrulline]).  298 

Some departures from the individual randomization protocol in a small subset of participant 299 

have been reported in the PREDIMED trial(15). As ancillary analyses, we repeated the 300 
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analyses using robust variance estimators to account for intracluster correlation and we 301 

additionally adjusted for propensity scores predicting randomization to account for small 302 

between-group imbalances at baseline.   303 

Using the same models described above but with further adjustments for baseline metabolite 304 

concentrations of the corresponding metabolite, we also examined the associations between 1-305 

year changes in individual glycolysis/gluconeogenesis or TCA-related metabolite and T2D risk 306 

(using as outcome only cases of T2D occurring after 1-year follow-up). We first calculated the 307 

difference between baseline and 1-year levels, and then normalized this difference using the 308 

inverse normal transformation. We applied the same procedure described above to obtain the 309 

1-year weighted metabolite score using the coefficients from Cox regressions for 1-year 310 

changes.  311 

In addition, we stratified the analyses by intervention group (control group vs both MedDiet 312 

groups merged together). The likelihood ratio test was used to assess the significance of the 1-313 

degree of freedom interaction product-term (effect modification in multiplicative scale) 314 

between the intervention (MedDiet groups vs control) and the individual metabolites 315 

(continuous).  316 

Finally, we applied multiple linear regression models to examine the associations between 317 

quartiles of glycolysis/gluconeogenesis-related metabolites at baseline and 1-year changes with 318 

HOMA-IR adjusting for age, sex, intervention group, smoking status, BMI, leisure-time 319 

physical activity, hypertension, dyslipidemia and baseline plasma glucose. Only metabolites 320 

previously associated with T2D incidence were included in the analyses.   321 

All statistical analyses were performed using Stata version 15 (Stata Corp), at a two-tailed α of 322 

0.05. 323 

 324 
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RESULTS 325 

The coefficients of variations were 4.6% for fructose 6-phosphate, 4.5% for fructose 1,6-bis 326 

phosphate, 4.0% for 3-phosphoglycerate, 6.3% for phosphoenolpyruvate, 11.5% for pyruvate, 327 

2.9% for lactate, alanine, 3.3% for glycerol-3-phosphate, 1.2% for citrate, 2.5% for aconitate, 328 

1.9% for isocitrate, 2.2% for fumarate, 0.9% for malate and 2.7% for succinate. 329 

Table 1 shows the baseline characteristics of the subset of PREDIMED participants by T2D 330 

incidence included in our analysis. Participants who developed T2D, were more likely to 331 

smoke, had a higher baseline waist circumference and BMI, as well as higher concentrations 332 

of fasting glucose at baseline than participants who did not develop T2D during follow-up. 333 

The Hazard Ratios (HR) and 95% confidence intervals (CI) for incident T2D risk according to 334 

individual baseline glycolysis/gluconeogenesis-related metabolites are shown in Table 2. In 335 

the multivariable-adjusted models, plasma hexose monophosphate, pyruvate, lactate, alanine, 336 

glycerol-3 phosphate and isocitrate were significantly associated with a higher risk of T2D 337 

(23% to 44% relatively higher risk for each 1 SD increment).  338 

Each 1 SD increment in the weighted score including all metabolites was associated with a 339 

30% (95% CI, 1.12, 1.51) higher risk of T2D (Table 2). Results remained significant when we 340 

additionally adjusted for propensity scores predicting randomization to account for small 341 

between-group imbalances at baseline and when we used robust variance estimators to account 342 

for intra-cluster correlations (29% [95% CI: 3%, 61%]). The association became stronger (37% 343 

[95% CI: 18%, 58%] per 1 SD increment) when we repeated the analyses with a metabolite 344 

score without pyruvate and hexose diphosphate (P < 0.001 after false discovery rate [FDR] 345 

correction). T2D risk was slightly attenuated but still significant when we additionally adjusted 346 

for other T2D-associated metabolites: 22% (95% CI: 4%, 44%) higher risk for each 1 SD 347 
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increment in the score when we additionally adjusted for branched-chain and aromatic amino 348 

acids, glutamine to glutamate ratio and the global arginine bioavailability ratio.  349 

The stratified analysis by intervention group for only those metabolites that were significantly 350 

associated with T2D are shown in Supplemental Table 1. We observed a positive association 351 

of hexose monophosphate (as a continuous variable) with T2D in the control group (HR:1.46 352 

[95% CI, 1.13, 1.87]), but no significant association was observed in the MedDiet intervention 353 

groups. The P for interaction for the intervention (both MedDiet groups merged versus the 354 

control group) was 0.049, 1 degree of freedom (df), but it was not significant after the FDR 355 

correction. A non-significant trend for an interaction suggesting a higher risk of T2D for 356 

baseline pyruvate in the MedDiet group but not in the control group was observed, but it 357 

became non-significant after the FDR correction (P for interaction after FDR correction = 358 

0.076, 1 df).  359 

Baseline homeostatic model assessment insulin resistance (HOMA-IR) was positively 360 

associated with plasma pyruvate, lactate, and alanine (P for trend for quartiles of these 361 

metabolites: <0.001, <0.001, and 0.003, respectively). Additionally, plasma lactate and 362 

alanine were significantly and positively associated as well with 1-year changes in HOMA-363 

IR (P for trend 0.015, 0.027, respectively) (Table 3).  364 

Our results also indicated a significantly increased risk of T2D associated with one-year 365 

changes in hexose monophosphate, 3-phosphoglycerate, lactate, aconitate, isocitrate, 366 

fumarate/maleate and malate (Supplemental Table 2). The strongest associations were 367 

observed for lactate and aconitate. Those participants in the upper quartile of one-year changes 368 

in lactate had 3.87-fold higher risk of T2D, and those in the upper quartile of aconitate had 369 

3.16-fold higher risk than those in the first quartile [HR (95%CI): 3.87 (2.05, 7.30) and 3.16 370 

(1.76, 5.68), respectively].  371 
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A significant association was also found for the one-year changes weighted score of all these 372 

metabolites [60% higher risk for each 1 SD increment, HR (95% CI): 1.60 (1.31, 1.97)] 373 

(Supplemental Table 2). A consistent association was found when we additionally adjusted 374 

for baseline and 1-year changes in other metabolites including branched-chain amino and 375 

aromatic amino acids, glutamine-to-glutamate ratio and global arginine availability score (HR 376 

(95%CI): 1.61 [95% CI: 1.29, 2.01] per 1 SD increment) and when we repeated the analyses 377 

with a metabolite score without pyruvate and hexose diphosphate (HR (95%CI): 1.63 [95% CI: 378 

1.36, 1.96] per 1 SD increment). 379 

When these models were stratified by intervention group (Table 4), one-year changes in 380 

several metabolites including hexose monophosphate, 3-phosphoglycerate, lactate, and 381 

aconitate were also associated with higher T2D risk both in the control and in the MedDiet 382 

groups. Citrate, isocitrate and malate were only associated with higher risk of T2D in the 383 

control group but not in the MedDiet intervention groups. The test for interaction was 384 

significant for isocitrate and malate, but no longer significant after the FDR correction. One-385 

year changes in the metabolite score were associated with 3.57-fold higher risk of T2D in the 386 

control group (95% CI, 1.54, 4.27), whereas no significant associations were observed in the 387 

MedDiet groups. However, the interaction was not statistically significant (p for interaction = 388 

0.071). 389 

 390 

DISCUSSION  391 

In this prospective nested case-cohort study, we observed that baseline and one-year changes 392 

in fasting plasma concentrations of several glycolysis/gluconeogenesis and TCA-related 393 

metabolites and a global score were associated with higher risk of T2D among participants at 394 

high cardiovascular risk.  Moreover, one-year change of this score and some individual 395 

metabolites was associated with T2D risk in the control group but not in the MedDiet group, 396 
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although interactions were not statistically significant after FDR correctionIn addition, baseline 397 

plasma levels of lactate and alanine were associated with increases in HOMA-IR after one-398 

year.  399 

Since T2D is itself defined by hyperglycemia (29,30), our results may be partly explained by 400 

the fact that early dysglycemia usually precedes changes in metabolite levels. Sugar-related 401 

circulating metabolites were correlated with prediabetes and/or T2D in observational studies 402 

(25). The KORA case-control study, reported that plasma glucose, mannose, desoxyhexose and 403 

dihexose were higher in T2D cases than in the control group (7). In the Framingham Heart 404 

Study Offspring, glycolysis products increased after a 75-gram oral glucose tolerance test 405 

(OGTT),  (9,10). It was also reported very modest reductions in circulating levels of glucose 406 

1-phosphate, glucose 6-phosphate, fructose 1-phosphate and fructose 6-phosphate after glucose 407 

loads (9).  408 

In our study, both baseline and 1-year changes of plasma lactate levels were strongly associated 409 

with T2D risk. Previous studies have shown that fasting plasma lactate levels are associated 410 

with surrogates of insulin resistance and T2D risk (11,12).  Although pancreatic β-cell lines 411 

have shown alterations in the glycolytic pathway and TCA metabolism(31), it is unlikely that 412 

circulating lactate or pyruvate may have a direct effect in insulin secretion given that the 413 

lactate/pyruvate transporter MCT1 is specifically disallowed in β-cells(32). However, fasting 414 

plasma lactate has been reported as one of the circulating metabolites involved in insulin 415 

resistance and metabolic syndrome phenotypes (6). Increased plasma lactate levels have also 416 

been reported after the standard 75 grams OGTT and hyperinsulinemic-euglycemic clamps, 417 

showing differential post-challenge lactatemia in insulin-resistant versus insulin-sensitive 418 

subjects(8,9,33-35). Moreover, the increased insulin sensitivity observed after weight loss 419 

programs have also been accompanied by reductions in plasma lactate concentrations(36). 420 

There is a well-known link between circulating lactate and glucose homeostasis since lactate 421 
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is a precursor of hepatic gluconeogenesis, potentially enhancing the endogenous glucose 422 

production. It has also been shown that plasma lactate transported through MCT1 in the adipose 423 

tissue (37) may interfere with insulin action in skeletal muscle (38) and mediate inhibition of 424 

lipolysis through the activation of GPR81 receptor in adipocytes (39). The importance of 425 

plasma lactate in metabolism has been reinforced after the observation that this metabolite is 426 

the major carbon source to mitochondrial TCA in most of the peripheral tissues (40, 41) .  427 

We found that both baseline selected TCA-related metabolites and their 1-year changes were 428 

associated with higher T2D risk. Impaired TCA flux in insulin resistant human skeletal muscle 429 

has been suggested as one of the characteristics of the diabetic phenotype (42,43).  430 

Mitochondrial aconitase converts citrate to isocitrate via aconitate, which is a highly sensitive 431 

enzyme biomarker of age-related oxidative damage, a process widely linked to 432 

hyperglycaemia(44). Interestingly, TCA metabolites isocitrate, aconitate and malate have been 433 

reported to be involved in the metabolomic signature of human aging (45). Both malate and 434 

isocitrate are involved in the pyruvate-citrate cycle though malic enzyme oxidizing malate to 435 

pyruvate or through the cytosolic isocitrate dehydrogenase converting isocitrate to α-436 

ketoglutarate, and such reactions participate in NADPH production which is critical in the 437 

cellular antioxidant defense system.  In our study, we found that one-year changes of isocitrate 438 

and malate were only associated with a higher risk of T2D in the control group but not in the 439 

MedDiet intervention groups. This finding suggests that the MedDiet could counteract the 440 

detrimental effects associated with an increase in these metabolites. In fact, the MedDiet is an 441 

antioxidant rich diet that may prevent cellular aging through a reduced intracellular oxidative 442 

stress (46). 443 

Gluconeogenesis from amino acids (mainly via the glucose-alanine cycle) contributes up to 444 

40% of the non-glycogen-derived hepatic glucose production (47-49). Alanine showed the 445 

strongest association with HOMA-IR index among 285 candidate metabolites in pre-pubertal 446 



20 
 

 
 

 

children (50). Alanine is directly connected to pyruvate through a reaction of amino 447 

transference catalyzed by ALT (pyruvate is the 2-oxoacid of alanine) and circulating alanine 448 

has been proposed as an indicator of pyruvate (the 2-oxoacid of alanine) production (51). As it 449 

is well known, pyruvate is the precursor of lactate through the lactate dehydrogenase reaction. 450 

Malate can also be derived from pyruvate through the anaplerotic reaction canalized via 451 

oxalacetate through the pyruvate-malate shuttle. One study showed synchronous increments of 452 

circulating lactate, pyruvate, alanine and malate after glucose loads (10). Our results did not 453 

showed an association between baseline plasma malate and T2D risk but we found an 454 

association between 1-year increase of malate and T2D risk in the control group. 455 

Glycerol-3-phosphate, involved in the gluconeogenesis from glycerol, is part of the glycerol-456 

3-phosphate shuttle and a critical intermediate in the synthesis of glycerolipids. The importance 457 

of glycerol-3-phosphate in glucose homeostasis is proposed given the observation that 458 

overexpression of the glycerol-3 phosphate acyltransferase GPAT1 enzyme converting 459 

glycerol-3-phosphate to lysophosphatidic acid causes hepatic insulin resistance (52).  460 

Additionally, inhibition of glycerol-3-phosphate dehydrogenase by metformin may reduce 461 

gluconeogenesis from glycerol and disrupt cytosolic NADH:NAD+ ratio blocking the use of 462 

lactate as a gluconeogenic precursor (53). 463 

Several strengths and limitations of the present study deserve comment. First, we used an 464 

efficient case-cohort design nested in a large long-term intervention trial to study a hard clinical 465 

endpoint and its association with multiple plasma metabolites quantified by a validated liquid 466 

chromatography-tandem mass spectrometry (LC-MS) platform. Second, the main novelty and 467 

uniqueness of the present study is the use of repeated measurements of metabolites after 1-year 468 

and the possibility to appraise the effect modification by a well-defined dietary intervention. 469 

Third, this is a longitudinal analysis with a relatively long follow-up, a well-characterized 470 

population and we used blinded assessment of incident T2D cases by a clinical adjudication 471 
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committee. Although the analyses were adjusted for several potential confounders, the 472 

possibility of residual or unmeasured confounding cannot be discounted and reduces our ability 473 

to draw causal conclusions. Moreover, departures from individual randomization in a subset of 474 

the trial participants could affect our results related with differences between the intervention 475 

and control groups (15, 54). However, our results were very similar after using robust estimates 476 

of the variance to correct for potential intracluster correlations and adjusting for propensity 477 

scores to account for small imbalances in baseline covariables. We acknowledge the limitation 478 

derived from the reduced sample size used for pyruvate and hexose diphosphate due to missing 479 

values. Additionally, a potential technical limitation might be related to possible spurious 480 

elevations of lactate or pyruvate (and less likely for other metabolites) because of recent 481 

physical activity, the procedure for blood drawn or pre-analytical treatments (51). However, 482 

there is no reason to think that these procedures may have differentially affected participants 483 

who years later developed T2D and when we repeated the analyses with a metabolite score 484 

without pyruvate and hexose diphosphate, the association between the metabolite score and 485 

T2D became even stronger. Our findings may not be generalizable to other populations and 486 

T2D was a defined secondary endpoint and not the primary endpoint of the PREDIMED trial.  487 

Our results provide a deeper understanding of specific metabolic pathways related to 488 

circulating glycolysis/gluconeogenesis and TCA metabolites in relationship with insulin 489 

resistance and T2D, and how a MedDiet might modulate the association of these metabolites 490 

with T2D risk. In addition, it may shed light into the biological interconnections between 491 

Mediterranean dietary interventions, changes in metabolomics profiles, and the risk of T2D. 492 

Altogether, it may facilitate the development of preventive and early diagnostic strategies for 493 

curbing the T2D epidemic and the adverse consequences of diabetes.  494 
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In conclusion, we have identified a panel of glycolysis/gluconeogenesis and TCA-related 495 

metabolites that was significantly associated with T2D risk in a Mediterranean population at 496 

high cardiovascular risk.  497 

  498 
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Table 1. Baseline participant characteristics according to diabetes status and baseline scores of 
metabolites. 

  
By diabetes incidence  

during follow-up 

 
By extreme quartiles of the  
baseline metabolite score 

 Subcohort1 Incident cases Q1 Q4 
n 691 251 204 252 
Age (years) 66.5 (5.7) 66.4 (5.7) 65.7 (5.4) 66.8 (5.7) 
Sex (% women),  62.8 55.0 59.8 60.3 
Intervention group, %     

MedDiet+EVOO 30.4 29.9 33.3 27.0 
MedDiet+nuts 37.3 33.9 39.7 32.1 
Control 32.3 36.3 27.0 40.9 

Hypertension, % 90.9 96.0 90.2 94.4 
Dyslipidemia, % 85.0 79.7 84.3 85.7 
Smoking, %     

Never 60.9 52.6 55.9 57.5 
Former 22.6 22.3 20.6 18.3 
Current 16.5 25.1 23.5 24.2 

Waist circumference, cm 99.5 (10.7) 103.4 (10.0) 97.9 (11.0) 103.3 (10.1) 
Body mass index, kg/m2 29.9 (3.6)  30.8 (3.3)  29.5 (3.8) 30.8 (3.5) 
Physical activity, METs-min/d 239 (238) 249 (232) 257 (249) 220 (231) 
Education, %     
   Elementary or lower 75.5 76.5 69.1 75.8 
   Secondary or higher 24.5 23.5 30.9 24.2 
Total energy intake, kcal/d 2277 (564) 2327 (622) 2316 (593) 2268 (581) 
Mediterranean diet score2 8.6 (1.9) 8.5 (1.8) 8.8 (1.7) 8.5 (2.2) 
Fasting glucose, mg/dl 99.6 (15.2) 117.2 (17.6) 100.2 (15.4) 108.4 (19.2) 

Abbreviations: MedDiet, Mediterranean diet; EVOO, Extra-virgin olive oil; MET, metabolic equivalent. Values 
are means (SD) or percentages.1 37 cases are included in the randomly selected subcohort. 2 This score is based 
on the 14-item PREDIMED screener of adherence to the Mediterranean Diet.
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Table 2. Incident Type 2 diabetes by baseline glycolysis/gluconeogenesis and TCA fasting plasma metabolites in the PREDIMED trial, 2003–2010 

 N Type 2 
diabetes 

Cases 

Adjusted1 HR per 1 
SD increment2 

(95% CI) 

Adjusted1 HR (95% CI) P for 
trend 

P for 
trend3 

    Quartile 1 Quartile 2 Quartile 3 Quartile 4   

Hexose monophosphate4 889 251 1.23 (1.07 , 1.41) 1.00 (ref) 2.45 (1.62 , 3.69) 1.12 (0.73 , 1.71) 2.37 (1.58 , 3.54) 0.214 0.333 

Hexose diphosphate4 570 166 1.12 (0.93 , 1.33) 1.00 (ref) 0.65 (0.41 , 1.03) 1.74 (1.20 , 2.54) 0.89 (0.57 , 1.41) 0.530 0.619 

3-Phosphoglycerate 887 251 1.13 (0.97 , 1.32) 1.00 (ref) 1.24 (0.85 , 1.82) 1.28 (0.84 , 1.94) 1.27 (0.84 , 1.92) 0.475 0.619 

Phosphoenolpyruvate 885 250 1.13 (0.96 , 1.32) 1.00 (ref) 0.87 (0.58 , 1.30) 0.77 (0.51 , 1.16) 1.40 (0.94 , 2.10) 0.045 0.104 

Pyruvate 780 238 1.31 (1.11 , 1.54) 1.00 (ref) 1.84 (1.21 , 2.82) 1.36 (0.88 , 2.09) 2.12 (1.37 , 3.28) 0.034 0.096 

Lactate 889 251 1.26 (1.07 , 1.48) 1.00 (ref) 0.92 (0.58 , 1.44) 1.70 (1.11 , 2.61) 1.66 (1.06 , 2.59) <0.001 <0.001 

Alanine 889 251 1.25 (1.08 , 1.45) 1.00 (ref) 0.58 (0.37 , 0 .92) 1.16 (0.78 , 1.72) 1.23 (0.83 , 1.83) <0.001 0.001 

Glycerol 3-phosphate 889 251 1.44 (1.24 , 1.67) 1.00 (ref) 1.18 (0.80 , 1.74) 1.29 (0.84 , 1.96) 2.74 (1.83 , 4.09) 0.002 0.007 

Citrate 889 251 1.00 (0.86 , 1.17) 1.00 (ref) 0.89 (0.62 , 1.27) 0.81 (0.54 , 1.22) 0.93 (0.62 , 1.40) 0.866 0.866 

Aconitate 889 251 1.14 (0.98 , 1.33) 1.00 (ref) 1.08 (0.70 , 1.68) 1.11 (0.75 , 1.65) 1.48 (0.98 , 2.23) 0.069 0.138 

Isocitrate 889 251 1.17 (1.01 , 1.36) 1.00 (ref) 1.36 (0.89 , 2.08) 0.95 (0.60 , 1.50) 1.58 (1.04 , 2.40) 0.023 0.080 

Fumarate/Maleate4 889 251 1.02 (0.88 , 1.18) 1.00 (ref) 0.67 (0.43 , 1.03) 0.75 (0.51 , 1.10) 0.96 (0.64 , 1.45) 0.204 0.333 

Malate 889 251 1.04 (0.91 , 1.19) 1.00 (ref) 0.94 (0.64 , 1.39) 1.23 (0.82 , 1.85) 1.14 (0.79 , 1.65) 0.778 0.837 

Succinate 889 251 1.07 (0.93 , 1.25) 1.00 (ref) 1.48 (1.03 , 2.13) 1.38 (0.96 , 2.00) 0.94 (0.60 , 1.49) 0.516 0.619 

Metabolite score5 889 251 1.30 (1.12 , 1.51) 1.00 (ref) 1.11 (0.70 , 1.75) 1.32 (0.86 , 2.01) 1.88 (1.25 , 2.83) 0.001  

1 Adjusted for age (years), sex (male, female), intervention group (MedDiet+EVOO, MedDiet+nuts), body mass index (kg/m2), smoking (never, current, former), leisure-time 
physical activity (metabolic equivalent tasks in minutes/day), dyslipidemia, hypertension, baseline fasting glucose (mean + quadratic term of centered mean) and stratified by 
recruitment center. 2 An inverse normal transformation was applied to raw values. 3 False discovery rate-corrected p-value.4 These metabolites were not chromatographically 
resolved and do not have unique multiple reaction monitoring transitions in mass spectrometry.5 Weighted sum of all metabolites (using regression coefficients as weights 
after applying the leave-one-out cross-validation approach). Weighted proportional hazards Cox regression models were used. Abbreviations: TCA, tricarboxylic acid cycle.  
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1 Adjusted for age (years), sex (male, female), intervention group (MedDiet+EVOO, MedDiet+nuts), body mass index (kg/m2), smoking (never, current, 
former), leisure-time physical activity (metabolic equivalent tasks in minutes/day), dyslipidemia, hypertension, baseline fasting glucose 

Multivariable linear regression models were used 

Table 3. Baseline and one-year changes in HOMA-IR Index (95% confidence intervals) by quartiles of baseline 
glycolysis/gluconeogenesis and TCAmetabolites in the PREDIMED trial, 2003–2010 

 
 

Baseline HOMA-IR  1 year change of HOMA-IR 

 Adjusted1 mean difference 
(95%CI) 

P for trend Adjusted1 mean difference 
(95%CI) 

P for trend 

Hexose monophosphate     
Q1 0 (ref.) 0.431 0 (ref.) 0.575 
Q2  -0.12 (-0.52 , 0.28)   -0.40 (-0.91 , 0.12)  
Q3  -0.41 (-0.82 , 0.01)   -0.26 (-0.80 , 0.28)  
Q4  0.10 (-0.30 , 0.49)   -0.16 (0.68 , 0.37)  

Pyruvate     
Q1 0 (ref.) <0.001 0 (ref.) 0.502 
Q2  0.12 (-0.35 , 0.58)   0.09 (-0.52 , 0.69)  
Q3  0.37 (-0.09 ,  0.83)   0.27 (-0.32 , 0.87)  
Q4  0.61 (0.15 , 1.07)   0.36 (-0.25 , 0.97)  

Lactate     
Q1 0 (ref.) <0.001 0 (ref.) 0.015 
Q2  0.16 (-0.23 , 0.56)   0.55 (0.02 , 1.09)  
Q3  0.94 (0.55 , 1.34)   0.68 (0.14 , 1.22)  
Q4  1.03 (0.62 , 1.43)   0.70 (0.17 , 1.24)  

Alanine     
Q1 0 (ref.) 0.003 0 (ref.) 0.027 
Q2  0.24 (-0.18 , 0.66)   0.19 (-0.37 , 0.75)  
Q3  0.61 (0.20 , 1.02)   0.27 (-0.27 , 0.80)  
Q4  0.57 (0.16 , 0.98)   0.69 (0.15 , 1.23)  

Glycerol 3-phosphate     
Q1 0 (ref.) 0.075 0 (ref.) 0.075 
Q2  0.31 (-0.10 , 0.72)   0.49 (-0.05 , 1.04)  
Q3  0.11 (-0.29 , 0.52)   0.74 (0.21 , 1.28)  
Q4  0.27 (-0.14 , 0.67)   0.58 (0.03 , 1.12)  
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Table 4. Incident Type 2 diabetes by 1-year changes in glycolysis/gluconeogenesis and TCA metabolites stratified by intervention group in the 
PREDIMED trial, 2003–2010 

 Control group Mediterranean diet groups (2 groups) P for 
interaction 

P for 
interaction3 

 N Type 2 
diabetes 

Cases 

Adjusted HR1 per 1 
SD increment2 

(95% CI) 

N Type 2 
diabetes 

Cases 

Adjusted HR1 per 1 
SD increment2 

(95% CI) 

Hexose monophosphate 210 58 1.62 (1.15 , 2.28) 446 99 1.47 (1.13 , 1.90) 0.821 0.945 

3-Phosphoglycerate 210 58 2.01 (1.39 , 2.91) 445 99 1.44 (1.03 , 2.00) 0.876 0.945 

Lactate  210 58 2.18 (1.31 , 3.63) 446 99 1.63 (1.22 , 2.17) 0.899 0.945 

Citrate 210 58 1.53 (1.11 , 2.11) 446 99 1.14 (0.90 , 1.45) 0.118 0.314 

Aconitate 210 58 2.14 (1.45 , 3.17) 446 99 1.54 (1.15 , 2.06) 0.945 0.945 

Isocitrate 210 58 2.96 (1.87 , 4.68) 446 99 1.13 (0.89 , 1.44) 0.025 0.169 

Fumarate 209 58 1.33 (0.94 , 1.88) 446 99 1.35 (1.05 , 1.73) 0.429 0.857 

Malate 210 58 1.51 (1.06 , 2.17) 446 99 1.03 (0.79 , 1.33) 0.042 0.169 

Metabolite score4 2010 58 3.57 (1.54 , 4.27) 446 99 1.10 (0.84 , 1.44) 0.071  

1 Adjusted for baseline metabolites (or metabolite score), age (years), sex (male, female), intervention group (MedDiet+EVOO, MedDiet+nuts), body mass index (kg/m2), 

smoking (never, current, former), leisure-time physical activity (metabolic equivalent tasks in minutes/day), dyslipidemia, hypertension, baseline fasting glucose (mean + 

quadratic term of centered mean) and stratified by recruitment center. 2 An inverse normal transformation was applied to raw values. 3 False discovery rate-corrected p-values. 

4Weighted sum of all metabolites (using regression coefficients as weights after applying the leave-one-out cross-validation approach). Weighted proportional hazards Cox 

regression models were used. 


