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ABSTRACT: DFT calculations and microkinetic simulations are
applied to the reproduction of previously reported experimental results
on the evolution of product concentration versus time in the
condensation reaction of n-butylamine and benzaldehyde. The
mechanism is complicated by the role played by water impurities as
proton shuttles. Several functionals and other approaches are tested, yet
good agreement is only achieved upon the usage of an adjustment
consisting of a directed biasing of the computed DFT free energies.

Reproduction, understanding, and prediction of exper-
imental results constitute the main goals of applied
computational chemistry. In the early days of computational
chemistry, gas phase calculations on molecular models
corresponding to minimal representations of the system were
performed, and they were able to provide insight about
reactions in liquid phase. These early days are long gone, and
calculations have now become a widely accepted tool in the
determination of mechanisms in organic chemistry.1_3 In fact,
modern computational chemistry, with the available improve-
ments in software and hardware, is now ready to move beyond
mechanistic justification and tackle quantitative agreement
with many of the experimental measurements.” One obvious
remaining challenge is the reproduction of raw kinetic data,
that is, of the experimentally reported evolution in time of the
concentration of the species involved. This is certainly more
demanding than reproducing a reaction time or an activation
barrier, as has been recently discussed for heterogeneous
catalysis,” but it can provide a stronger validation for a
proposed reaction mechanism.

In this study we set ourselves the goal of reproducing
through computational chemistry the kinetic data of a well-
known organic reaction, the condensation between an
aldehyde and an amine. Specifically, we will try to reproduce
the evolution through time of product concentration reported
by di Stefano and co-workers for the reaction between
benzaldehyde and n-butylamine in dichloromethane (Scheme
1).°

This condensation reaction has a long history,”® and
extensive literature is available on its mechanism, including
both experimental’™"" and computational'*~"* studies. There
seems to be a consensus on the mechanism outlined in Scheme
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1, with the reaction going through an hemiaminal intermediate. 44
Barriers for the formation of the intermediate are always found 4s
to be lower than those for its dehydration. If a direct proton/ 46
hydroxyl transfer is considered, prohibitive barriers are found, 47
rendering the inclusion of relay/shuttle molecules mandatory. 48

We computed the free energy of all species involved in the 49
mechanism with a rather standard methodology: B3LYP- so
D3'°7" with RRHO aopproximations for free energy si
corrections, implicit SMD*" solvation for DCM, and reference s2
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Figure 1. Free energy profiles for the formation of the hemiaminal and the dehydration of the hemiaminal without shuttle (black), a single
molecule of water (red), amine (blue), a water dimer (green), or a water-amine adduct (purple). The colored boxes represent the adduct formed by
the species enclosed in the box. The colors of these adducts correspond to the step in the free energy profile. Energies are in kcal mol™.

53 state corrections”" for liquid phase at 1 M and 298.15 K. The
s4 basis set was cc-pVTZ’” for all atoms. Unless otherwise stated,
ss all energy calculations were performed using Gaussian09.”* A
s6 data set collection of all computed structures is available in the
57 io0Chem-BD repository.”* Kinetic simulations were carried out
sg using a python script developed in-house. See the Supporting
s9 Information (SI) for further details.

60 The relevant intermediates and transition states computed
61 for the system are included in the free energy profiles in Figure
62 1. Initially the (formally) simplest mechanism for the
63 noncatalyzed hemiaminal formation and dehydration was
64 calculated (black profile in Figure 1). The obtained barriers
65 (see Figure 1) were clearly too high for a reaction proceeding
66 at room temperature (an overall barrier of 47.7 kcal mol™).
67 This was to be expected, as the reaction is known to require
68 the presence of catalytic amounts of proton shuttles.

69 We discarded benzaldehyde and the DCM solvent as
70 potential shuttles because of their low Brensted acidities.
71 Two other molecules present in the media seem more
72 promising: n-butylamine and water, which are generated as
73 side products and are very likely to be present as an impurity
74 from the beginning. We considered them, as well as some
75 possible dimers, as proton shuttles, and this resulted in the
76 other four free energy profiles presented in Figure 1. The
77 results confirm the generally accepted idea on the reaction: the
78 presence of the shuttle can lower the overall barrier to values
79 below 25.0 kcal mol™!, which are far more reasonable. The
80 values of the barriers are indeed comparable to those of
81 previous computational studies and barriers. It is worth

mentioning that reactant—shuttle adducts do not correspond s2
to minima in free energy and are thus not isolable. From s3
comparison of the different shuttles, the lowest barrier is s4
achieved with the water dimer (in green), followed by the ss
water—amine adduct (in purple). 86

The results in Figure 1 and the discussion above follow the 87
general scheme usually applied in computational organic ss
chemistry and provide a qualitatively reasonable picture. The so
goal of the current work is to go one step further and evaluate 90
the ability of the calculations to reproduce experimentally o1
reported evolution of imine concentration through time. To do 92
so, a microkinetic simulation was carried out using the free 93
energy profiles in Figure 1. We obtained the rate constants 94
from the computed free energy barriers through application of 95
the Eyring equation and used the experimental data as initial 96
concentrations. We considered an initial water impurity of 1 97
mM which is ca. 10 times smaller than the water impurity of 98
Sigma-Aldrich’s “100%” deuterated dichloromethane.” 99

The initial results were underwhelming. The evolution of 100
imine concentration according to the direct application of the 101
free energy profiles is included in Figure 2 (purple lines). The 102 £2
product concentration remains negligible (below 107¢ M) 103
during the 5000 s of simulated time. The agreement with 104
experiment is poor, as the calculated imine concentration 10s
evolution does not resemble the experimental one, represented 106
by the black dots in the figure. 107

We next considered the adjustment of the DFT results in 108
order to improve agreement with experiment. This technique
consists of introducing some small modification in the 110
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Figure 2. Hypotheses H1 and H2 (above and below respectively) and
their effect on the concentration profiles. The plot above corresponds
to a systematic and simultaneous reduction of the energies of all
transition states in which the C—N and C=N bonds are formed. The
plot below corresponds to a systematic and simultaneous increase in
the energy of all calculated species.

computed values and has been applied recently with success in
computational homogeneous catalysis.”*~**

We approached the problem by testing two simple
hypotheses for adjusting the values in the free energy profiles.
The first hypothesis (H1) was “Assume the energies of all TSs
are overestimated X kcal mol™"”, and the second hypothesis
(H2) was “Assume that each QM energy has a systematic
underestimation of Y kcal mol™"”. We notice that the change of
all QM energies will affect the relative energy of steps involving
changes in molecularity. Relative energies remain constant only
when the number of molecules remains unchanged. We
applied each hypothesis with a wide range of values for the
adjustment parameter. The results of their application on the
microkinetic simulations are presented in Figure 2. It is clear
that hypothesis HI does not work. On the other hand, the
results for hypothesis H2 are very good. We can see that the
profile with a “systematic adjustment” of 3.2 kcal mol™’
provides a good fit to the experimental values.

After the adjustment, our results are consistent with the
observed kinetics of product formation. Moreover, the
simulation also gives information on the evolution of the
concentrations of all species involved in the reaction. The
qualitative picture is that the steps through transition states
TS2NW and TS2WW control the overall kinetics (purple and
green path respectively in Figure 1). In a first stage the reaction
is controlled by TS2NW, and as time passes and water
concentration increases TS2WW starts to gain control. This
shift is due to the concentration effects, which is a major result
of the microkinetic simulations not achievable by the
traditional free energy profiles. A more detailed discussion is
provided in the SI

The main result of this work is the validation of the concept
that raw kinetic data can be reproduced from computational
data by using an adjustment of the computed free energy

profiles. We cannot answer at this point why this specific
adjustment and why this particular value. This may be related
to the controversial issue of entropy corrections in solution,
which we have recently discussed elsewhere.”” In this sense, we
can also add that a 3.2 kcal mol™ correction is quite smaller
than those proposed by most commonly used treatments.

For the sake of completeness, we examined the possibility of
“improving” the kinetic model or the free energy profile
without using the adjustment reported above. We computed
free energy profiles with BP86-D3, PBEPBE-D3 (generally
known as PBE0-D3), PBE1PBE-D3, M06-D3, M06-2X-D3,
and wB97X-D. From those, PBEPBE-D3 and MO06-2X-D3
were chosen to run microkinetic simulations, yet B3LYP-D3
stood as the best fit (see SI).

We carried out a final attemgt to obtain better energies by
using the DLPNO-CCSD(T)*" method, with corresponding
matching auxiliary basis functions, Tight SCF cutoff, and
Normal PNO defaults, as implemented in the ORCA4.0
package.”’ To our surprise, the agreement with experiment was
substantially worse than with B3LYP-D3. Table 1 collects

Table 1. Effect of Solvation in the Potential Energy”

B3LYP-D3/cc-pVTZ DLPNO/cc-pVTZ
species AE,,. AE 4 — AE,,. AE,,. AE.q — AE,,.
TS2 43.0 -5.5 52.2 -7.1
TS2W 20.8 —6.0 29.7 —6.4
TS2N 16.2 0.5 20.2 1.3
TS2WW —-10.5 4.6 0.3 4.7
TS2NW —=5.2 3.1 5.2 3.7
Hemiaminal =5.7 1.8 -89 2.1
Imine + Water 0.2 -1.2 -2.7 -0.5

“Energies in kcal mol™. Single-point calculations on B3LYP-D3/cc-
pVTZ geometries optimized in solvent.

some potential (referred by some as electronic) energy values
for selected points in the potential energy surface. The
DLPNO-CCSD(T) values for potential energy barriers in
vacuum are ca. 10 kcal mol™ higher than the B3LYP-D3
values. This result was not modified by extensions of the basis
set to cc-pVQZ or cc-pVSZ (see SI). Solvation effects are
significant, as expected for these systems containing electro-
static interactions, but the relative effect of the solvation AE 4
— AE,, is similar for both methods and cannot compensate
the change in potential energy. Therefore, DLPNO-CCSD(T)
barrier heights taken at face value render the calculated
mechanism much slower, which is not compatible with
experiment.

We definitely trust DLPNO-CCSD(T) gas phase potential
energies more than the B3LYP-D3 ones. Thus, we are skeptical
of the effect of solvation on the relative energies, which is also
reported in Table 1. It might be argued that due to
experimental information contained in the fitting of DFT
functionals, SMD might be better at reproducing the solvent-
phase potential energy surface with B3LYP-D3. We are not
sure how to interpret this DLPNO-CCSD(T) result, but we
think it is important to put forward a word of caution for cases
where high accuracy in solution is required.

In summary, we have shown that modern computational
chemistry is able to reproduce raw kinetic data for an organic
process using pure theoretical values, but that the treatment
remains far from trivial even for a relatively simple process such
as the condensation of an aldehyde and an amine to form an

https://dx.doi.org/10.1021/acs.orglett.0c00367
Org. Lett. XXXX, XXX, XXX—XXX

145
46

—

—_

65
66
67
68
69
70
71
72

T

—

74
7S
76
177
78
79
80
81
82
83
84
85
86
187
88
89
90
91
92

[EP—

o

—_ = = e


http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.0c00367/suppl_file/ol0c00367_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.0c00367/suppl_file/ol0c00367_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.0c00367/suppl_file/ol0c00367_si_001.pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
pubs.acs.org/OrgLett?ref=pdf
https://dx.doi.org/10.1021/acs.orglett.0c00367?ref=pdf

Organic Letters

pubs.acs.org/OrgLett

193 imine. The usage of a kinetic model is nicely complemented by
194 the use of a relatively minor a posteriori adjustment of the
195 computed free energy values. This energy adjustment coupled
196 with simulations is a possible solution to fill the gap between
197 computational end experimental results. Further work will be
198 necessary to confirm the general validity of these results, but
199 the results look promising for a further expansion of the
200 application of computational chemistry.
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