
 

  

Abstract—Transient voltage and current stresses are essential 

for the design and protection of multi-terminal DC (MTDC) 

transmission systems, particularly under the short term dynamics 

after severity grid faults. In this paper, we propose a discrete-time 

model for the modular multilevel converter based MTDC 

(MMC-MTDC) system considering the DC side disturbances in 

the system. Based on the piecewise linear modeling, the state 

variables such as the transient voltage on the sub-module (SM), 

arm current, etc., can be calculated analytically for the critical 

short term (within 10 ms) after the severity DC fault while the 

system protection is not yet activated. Parameter sensitivity 

analysis is also performed to give a better system design guideline. 

The estimation results are verified by detailed electromagnetic 

(EMT) circuit simulations and the scaled-down experimental 

laboratory prototype. 

 
Index Terms—Multi-terminal DC transmission system, 

modular multilevel converter, submodule voltage stress, fault 

current analysis, discrete-time model. 

I. INTRODUCTION 

 OWADAYS, the multi-terminal DC (MTDC) transmission 

system is one of the most promising technologies for 

large-scale renewable energy integration and asynchronous 

grid interconnection [1-2]. The modular multilevel converter 

(MMC) is a preferred topology for AC-DC conversion in the 

MTDC system because of its modularity structure, high power 

capacity and high efficiency [3-4].  

However, the external faults and disturbances are inevitable 

in the power grid. The MTDC system should therefore be 

designed and protected properly regarding to the unpredictable 

severity faults. Particularly, an accurate prediction of the 

transient electrical stress in the MTDC system would be helpful 

for the system component selection and the fault ride through 

control [5]. 

Although the system voltage and current can be acquired in 
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the electrical magnetic transient simulations [6-8], it is more 

important to have an analytical model to estimate the voltage 

and current stresses for the system design, protection and 

control. In [9], on the basis of the RLC equivalent circuit, the 

fault clearance principle of a MMC based high voltage DC 

transmission system (MMC-HVDC) is presented along with a 

calculation of the maximum inrush current. In [10], the authors 

adopted an averaged approach and derived the impedance 

model of the MMC system to determine the current in 

steady-state and under short-circuit fault conditions. In [11], the 

equivalent circuits including inductors, capacitors, resistors and 

diodes are established to calculate the transient short-circuit 

current of a DC transmission system based on a voltage source 

converter (VSC). In [12], the capacitance equivalent coefficient 

is proposed, and the transient currents in different cases are 

calculated by taking different equivalent capacitance value for 

a MMC. In [13-14], the RLC equivalent circuit models for the 

MMCs are established to calculate the fault current of a DC 

power grid. In [15], an improved RLC equivalent circuit with 

controlled current source is proposed to calculate the 

short-circuit current of MTDC considering the system control. 

In order to achieve a simple model expression, these methods 

mentioned above are mainly developed based on the constant 

equivalent circuit of the system. 

However, the structure of the system changes after the grid 

fault due to the large disturbance on the system’s operation 

point. Specifically, this structure change will lead to a 

mismatch between the model prediction and practical system 

operation in the early few cycles after the fault occurs 

considering the switching features of the MMC. This mismatch 

could be critical since the protection and control should be 

designed with this fault transient. 

More accurate prediction can be achieved by discrete-time 

modeling preserving the MMC structure. In [16-17], the 

discrete-time model is adopted to analyze the transient 

operation of MMC and the system under AC line faults. 

However, when a DC side fault occurs, a model is still needed 

for the voltage and current estimation considering the variation 

on the capacitor voltage of sub-modules (SMs) and interaction 

between AC current and DC output current of MMC.  

The aim of this study is to address the above challenges. The 

rest of this paper is organized as follows. Section II develops 

the equivalent capacitor model and the model of MTDC. In 

section III, the transient electrical stress calculation method 

under DC bipolar fault is presented.  The theoretical 

calculations from this method are validated by numerical 

simulation and experimental measurements in Section IV. 
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Finally concluding remarks are provided on Section V. 

II. SYSTEM MODELING 

Fig. 1 shows a three-terminal radial MMC-MTDC system. 

The AC sides of the MMCs are connected to different AC grids 

or loads, and the DC side is interconnected by the DC overhead 

lines. The DC line connection point is marked as node 4 and the 

DC current limiting reactor is Lr. The DC overhead lines are 

equivalent as series RL circuits, and the location of fault is 

recorded as the fault node 0, and the fault distance Df is the 

distance from fault node 0 to one terminal station MMC1. Line 

parameters on both sides of the fault node 0 are recorded as R10, 

L10, R40 and L40. The Lr is the DC reactor for protection purpose 

and can be varying according to practical design. Other system 

parameters are listed in Table I. 

A. Modeling of MMC 

The topology of MMC can be shown in Fig. 2. The voltage 

neutral points are denoted as O on the AC side and O’ on the 

DC side. In general, each MMC arm consists of N half-bridge 

sub-modules (HBSMs), an arm inductance L0, and an 

equivalent resistance R0. The HBSM is constructed by two 

IGBTs and a capacitor.  

For this kind of HBSM based MMC topology, the DC fault 

current cannot be blocked due to the fault current path provided 

by the diode in parallel with the IGBT when a fault occurs on 

the DC side. Therefore, the voltage and current stresses should 

be carefully modeled and calculated. 

Here, the sum of the sub-module voltages in each arm is 

expressed as vpj or vnj, where subscripts ‘j’ denote the phase 

sequence of the AC side; subscripts ‘p’ and ‘n’ denote the upper 

and the lower arm respectively. According to the Kirchhoff's 

law, the equations describing the arm currents ipj, inj can be 

expressed as follows. 

0 0

1

2

pj

dc gj pj pj oo

di
L v v v R i v

dt
= − − − +                        (1) 

0 0

1

2

nj

dc gj nj nj oo

di
L v v v R i v

dt
= + − − −                  (2) 

Since the sum of the phase currents in the three-phase 

three-wire AC system is zero, and the phase current is the 

current difference between the upper and lower arms, we have 

the following constraints. 

0ga gb gci i i+ + =                                  (3) 

gj nj pji i i= −                                       (4) 

According to (3) and (4), the neutral point voltage voo’
 can be 

derived by subtracting (1) from (2), is shown as 

, ,

=
6

pj nj

oo

j a b c

v v
v 

=

−
                                   (5) 

In (1) and (2), the arm currents ipj, inj are the state variables, 

and the grid voltage vgj is the input variable. In order to solve 

the state equations, the expressions of the arm voltage vpj, vnj are 

also needed. 

The inserting or bypassing state of SM can be expressed in 

terms of the switching functions Sj,ri, where the subscript ‘r’ 

denotes the upper or the lower arm, and the subscript ‘i’ denotes 

the number of SM. If a SM is inserted, the switching function of 

this SM is equal to 1. Otherwise, the switching function for this 

SM is zero. The, the number of inserted SMs in a MMC arm is 

expressed as 

( ) ( ),

1

N

pj j pi

i

n t S t
=

=                                 (6) 

( ) ( ),

1

N

nj j ni

i

n t S t
=

=                                 (7) 

Due to the nonlinearity of the switching function, it is 

difficult to derived the voltage expression for each capacitor in 

SMs. Here, we use the concept of equivalent capacitor based of 
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Fig. 1. Topology of a three-terminal MMC-MTDC system with possible DC 

line fault. 

TABLE I 

MMC-MTDC SYSTEM PARAMETERS 

Parameters Symbols Value 

DC line voltage Vdc 80 kV 

AC phase voltage peak value Vg1 40 kV 

MMC1 active power PL1 1.6 MW 

Number of arm SMs N 20 

Resistance per kilometer Roh 0.006 Ω 

Inductance per kilometer Loh 0.945 mH 

SM capacitance Csm 9 mF 

MMC sampling frequency fs 5 kHz 

Arm total resistance R0 0.5 Ω 

Arm total inductance L0 5 mH 
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Fig. 2. Topology of a three-phase MMC. The DC side capacitors can be 
equivalent as varying capacitors. 



 

[12] to represent the charging and discharging process of the 

DC capacitors in MMC structure and the capacitance of the 

equivalent capacitor is described. 

B. Modeling of Capacitor in SMs 

The total arm voltage is the sum of voltages on the inserted 

SM capacitors. Assuming that the SM capacitors is sharing the 

total DC voltage, the arm voltage can be expressed as 

( )pj pj smpj
v n t v=                                  (8) 

( )nj nj smnj
v n t v=                                  (9) 

where vsmpj denotes the upper arm SM capacitor voltage of 

j-phase, and vsmnj denotes the lower arm SM capacitor voltage 

of j-phase. 

 According to the definition of equivalent capacitor, the SM 

voltage charging and discharging process can be expressed as 

smpj

epj pj

dv
C i

dt
=                                (10) 

smnj

enj nj

dv
C i

dt
=                                (11) 

where Cepj stands for the upper arm equivalent capacitor of 

j-phase and Cenj is the lower arm equivalent capacitor of the 

same phase. 

Since the voltage balancing algorithm is adopted in MMC, it 

is equivalent to connecting the N SM capacitors of the same 

arm in parallel. Thus, the SM equivalent capacitor after 

reaching voltage balance is increased by N times. However, the 

value of the equivalent capacitance is not only affected by the 

voltage balancing algorithm, but also by the nearest level 

modulation (NLM) algorithm according to which the sum of 

the inserted SMs is always N for one phase, but the number of 

inserted SMs in each arm varies with the AC output voltage. 

Therefore, the value of the equivalent capacitance of each arm 

is also changing. Therefore, the equivalent capacitor circuit can 

be represented by Fig. 3 and the equivalent capacitor of one arm 

is 

( )
sm

epj

pj

NC
C

n t
=                                 (12) 

( )
sm

enj

nj

NC
C

n t
=                                 (13) 

Similar with the equivalent capacitor method described in [8], 

the proposed SMs capacitor equivalence here also satisfies 

the energy conservation principle. 

( ) 2 21
t

2 2
pj epj sm sm sm

N
n C v C v=                         (14) 

By adopting this equivalent capacitor concept, the arm 

voltage can be expressed as the capacitor voltage associated 

with the switching function. Although the state-space model of 

MMC has been obtained, it is expressed by the switching 

function making it difficult to be solved analytically. In order to 

find the analytical solution of the state equations, the switching 

function of the NLM algorithm also must be discretized. 

C. Piecewise Analysis 

In order to make the time-varying capacitor circuit solvable, 

the piecewise analysis method is applied to time-varying 

capacitors according to the characteristics of NLM. Here, a 

three-phase five-level MMC (3p-5L-MMC) is adopted as a 

derivation example, in which 24 operation states should be 

considered in the calculation. A higher level piecewise analysis 

method can be performed in the same way.  

According to the modulation principle, if the number of 

inserted SMs changes, the MMC switches to a next stage and 

the switching function increases or decreases by 1. 

For the ease of calculation, we use δjm to replace the upper 

and the lower arm switch function in (6) and (7). 

   ( )jm pj jm
n t =                                  (15) 

( )jm nj jm
N n t− =                              (16) 

When the modulation ratio is 1, the voltage angle during the 

m-th stage can be expressed as follows. 

1 2
arccos

2 2
am

am

N

N





− −

=

  
                       (17) 

The duty cycle corresponding to each stage of a MMC can be 

calculated as the same method mentioned in [17]. For 

three-phase MMC, the modulation reference voltages of phase 

B is delayed by 2π/3 with respect to phase A, while that of 

phase C is delayed by 4π/3. Thus, the corresponding different 

stages and changing instants of three-phase five-level MMC 

can be easily found. The stage switching times of the three 

phases are ordered and are respectively denoted as θ1, θ2... θm. 

Thus, the duty ratio of the m-th step is  

1m m m
d  

−
= −                             (18) 

It is worth noticing that the voltage and current stresses 

would be very critical for the system during the short term 

(within 10 ms) after the severe fault occurs, since the system 

protection would not be activated immediately. Also, the 

power/voltage control may not be able to adjust in such a short 

time scale. Therefore, the modulation duty cycles can be simply 

developed according to the regular NLM. In longer time scale, 

the control of MMC could be considered. However, in this 

paper, only the critical short time estimation will be discussed. 

III. TRANSIENT VOLTAGE AND CURRENT ESTIMATION 

Assuming that the line capacitance can be ignored, the load 

on the DC side of MMC is a series circuit of resistance and 

inductance. The sum of DC inductance is denoted as Ld and the 

sum of DC resistance as Rd. The expression of the DC side 

voltage vdc is 

, ,

, ,

=

pj

j a b c

dc pj d d

j a b c

d i

v i R L
dt

=

=

− −


                     (19) 

Substituting (5) and (19) into (1) and (2), and combining 
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Fig. 3. Equivalent capacitor circuit. 



 

with (10) and (11), the state equation of the MMC-MTDC 

system can be obtained as 

( ) ( ) ( )x t Ax t Bu t= +&                           (20) 

where x(t)= [ipa, ina, ipb, inb, ipc, inc, vsmpa, vsmna, vsmpb, vsmnb, vsmpc, 

vsmnc]T is the vector of state variables and u(t)=[vga, vgb, vgc]T is 

the vector of external input parameters.  

Applying the piecewise analysis, each stage of the state 

matrix A can be expressed as 

m

m

m

F U
A

L O

 
=  

 
                              (21) 

where O is a 6×6 null matrix. The expressions of the other 

matrices appearing in (21) are given in (26) to (28). The matrix 

B can be expressed as (29). 

The time-varying capacitor system is decomposed into m 

LTI systems in the piecewise analysis and can be solved by 

varies analytical methods. In this paper, we introduces a 

commonly used analytical algorithm for discrete-time systems 

[17], [18]. For the LTI system, the time-domain solution of (20) 

can be expressed as follows 

         ( ) ( ) ( )0 0 0
( )

m m
x t t t x t t t B = − + −                (22) 

where t0 is an appropriate initial time, and x(t0) denotes the 

initial condition of x(t) at time instant t0. 

During the MMC working process, the coefficients of matrix 

A are different at different switching stages of each line period. 

But the solution can be obtained with the initial state defined in 

the previous stage. Here, with respect to each stage of a line 

period, the matrix A is varying but takes the sequence of A1, A2 

... to A24, for this 3p-5L-MMC. The corresponding matrices 

m(t) and m(t) then are as follows. 
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We denote x(tn) as the initial state value within the n-th 

period. The final value of each stage can be derived as 
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In the above expression, 

1

( )
m

n r s

r

x t d T
=

+   represents the 

vector of state variables at the end of the m-th stage during the 

n-th period which is also the initial value of the (n+1)-th time 

period of the MMC modulation. Therefore, the state variables 

including the voltage and current can be calculated according to 

(25) without solving the differential equations. 

Based on the above discrete-time modeling, the transient 

voltage and current stresses estimation process can be briefly 

listed as follows.  

1) When a DC fault occurs, the DC line topology is reformed. 

According to the method in [14], the DC network can be 

simplified as shown in Fig. 4 after the fault. The corresponding 

resistance of rf10 and rf40 can be written as 
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             (31) 

where Rf0 is the fault resistance. The disturbance occurring time 

tn is also recorded. 

 2) After the fault occurs, the output of NLM is still regular in 

a sinusoidal way. The duty ratio of each stage can be denoted as 

d’m according to (17) and (18). 

 3) The matrices A of each stage after a DC disturbance can be 

calculated as Af,1, Af,2,... Af,m according to the equation (21) and 

(26)-(28) with respect to the switching state of each SMs. The 

corresponding state transition matrices f,m(t) and discrete-time 

input matrices f,m(t) are calculated as (23)-(24) and indicated 

as f,1, f,2,... f,m and  f,1,  f,2 ,...  f,m. 

 4) The value of the state variable at the time of the short 

circuit x(t’n) is adopted as the initial value for the stress 

estimation. The final values in every stage, after the DC 

disturbance, can be expressed as 

( ) ( )
1

, ,

1 1

( )
m m

f n r s f m m s n r s f m m s

r r

fx t d T d T x t d T d T B 
−

= =

     + = + +
 
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 

    

(32) 

where 
1

( )
m

f n r s

r

x t d T
=

 +   represents the vector of state variables 

which can be voltage or current state of the system. 

After the state transition matrix and input matrix of each 

stage are determined, the state variables can be obtained by 

matrix algebraic operations instead of solving the differential 

equation. 

In a summary, using the derived discrete-time expression of 

the MMC-MTDC, the value of state variables can be accurately 

calculated after a DC disturbance. These state variables include 

not only the system AC and DC current of MMC-MTDC, but 

also the sub-module voltage and the arm current in the 

converter which cannot be described by the RLC equivalent 

model. The steps are briefly summarized in Fig. 5. 

IV. SIMULATION AND EXPERIMENT VERIFICATION 

In order to verify the above analysis and calculation method, 

detailed electromagnetic (EMT) simulations in MATLAB 

Simulink software and experiment of a MMC prototype are 

performed. The system topology and parameters in the 

simulation is the same as that depicted in Fig. 1 and Table I. 

A. DC side Transient Voltage and Current Stresses 

As shown in Fig. 1, when a DC fault occurs at fault node 0, 

the DC side transient current and voltage stresses can be 

calculated and verified. In Fig. 6, the protecting DC reactor Lr is 

5 mH and the fault distance is 5 km from the MMC1 station. 

The fault time is recorded as time 0 on the x-axis. The results of 

the traditional RLC equivalent circuit method are indicated by 

dashed curves. The theoretical calculation results are indicated 

by the dots. The EMT simulation results are represented by 

solid lines showing a remarkable agreement with the estimated 

analytical results.  

Fig. 6 (a) shows the DC side current. The values from the 

RLC equivalent method are slight larger than the ones from the 

EMT simulation results at the beginning of the fault and then 

smaller than the ones from EMT simulation results. This is 

because the RLC equivalent method takes a large capacitance 

value and does not consider the influence of the AC system feed 

current. The current obtained during the discharge stage of the 

capacitor is large, and there is no source of energy during the 

AC system feed stage. 

Fig. 6 (b) shows the DC side voltage for different value of Rf0. 

When a DC fault occurs in the three-terminal 

MTDC system, record the DC fault time t,
n and 

the value of the state variable x(t,
n)

Determine the corresponding post-fault circuit 

parameters according to  (30) and (31)

Determine the duty cycle d 
m in (18) and the 

inserted SM number δjm of each stage 

Determine the system matrices Af,m in (21) and 

calculate the corresponding matrices Φf,m(dmTs) 

and Ψf,m(dmTs) of each stage in (23) and (24)

Calculate the state variable final value of each 

stage according to (32) and save the result
 

Fig. 5. The flow chart of post-fault voltage and current stresses calculation.  
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Fig. 4. Simplified equivalent circuit of DC network for fault current calculation 
with fault resistance. 



 

In this figure, the maximum error of DC current calculated by 

the RLC equivalent method is about 1 kA, and the maximum 

error of DC voltage exceeds 10 kV within the critical postfault 

time of 10 ms. However, the proposed discrete-time method 

still maintains high precision. The reason is that, in the 

proposed model, the capacitor discharging is performed 

noticing the sub-module switching due to the modulation. 

Meanwhile, by considering the modulation, the power transfer 

of the AC side of the MMC station is also taken into account. 

Therefore, the over-simplification in the RLC model is 

avoided. 

When the fault resistance is set as constant (Rf0=0.1Ω), the 

relationship between the DC current value at 10 ms after the DC 

fault with various DC reactor values and the fault distance is 

shown in Fig. 7. It can be seen that the DC current would 

increase significantly when the DC reactor is getting smaller 

and the fault is geographically close to the MMC station. 

B. AC side Transient Voltage and Current Stresses 

When a DC fault occurs, the AC side of the system will also 

be influenced, especially the current on each arm of the 

converter and voltage on the SMs. These stresses would be 

critical since they affect the power device design and protection 

directly. However, the RLC model would fail to estimate it 

since the detailed structure is ignored. 

In Fig. 8, we compare the simulation and discrete-time 

model calculation results. The fault point is 50 km away from 

MMC1 station. The DC reactor inductance is 50 mH and its 

resistance is 0.1 Ω.  

Fig. 8 shows the results of AC current, upper arm SM 

capacitor voltage and upper arm current with the calculation 

results in the dots and the EMT simulation results in the solid 

lines.  

In Fig. 8 (a), the SM capacitor voltage drops after the 

discharging process starts during the DC fault. The calculation 

results estimated by the discrete-time model are consistent with 
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Fig. 8. Comparison of the estimation results and electromagnetic simulation 
within 20 ms after a DC fault occurs. (a) upper arm SM capacitor voltage vsmp; 

(b) AC side current ig; (c) upper arm current ip. 
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Fig. 6. Comparison of the estimation results and electromagnetic simulation 
within 10 ms after DC fault. (a) DC side current idc; (b) DC side voltage vdc. 
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Fig. 7. DC current value (10 ms after fault) with DC reactor and fault distance 
change. 

TABLE II 

PEAK VALUE OF PHASE CURRENTS AFTER FAULT 

tfault/s iga/kA igb/kA igc/kA ipa/kA ipb/kA ipc/kA 

0.300 1.958 5.100 -3.502 -2.471 -5.052 0.250 

0.304 -4.747 3.189 -1.689 0.733 -3.506 -6.107 

0.310 -1.958 -5.099 3.501 -6.364 0.897 -3.760 

 

 



 

the detailed circuit simulations.  

Fig. 8 (b) and (c) shows the calculated current on the AC line 

and the upper arm. The above voltage and current stresses 

would be varying due to the modulation on the SMs. Therefore, 

the stresses should be calculated for each arm of the converter, 

and also for different fault time. In Fig. 8, the three phase 

results are shown. And for different fault time, the peak values 

of currents are listed in Table II. Apparently, the worst case 

should be considered in the design. 

The system parameters also influence the voltage and current 

stresses. Fig. 9 shows the calculation results of arm current on 

the phase-A under different SM capacitance and total arm 

inductance. It is shown that the peak value of the fault current 

can be reduced with larger arm total inductance and SM 

capacitance. From the analytically calculated results, the 

voltage and current stresses in the system can be evaluated in 

the initial design, which can be helpful for choosing the system 

parameters. 

C. Computation Load 

The state transition matrices m(t) and m(t) are related to the 

system parameters and the duty ratio of each stage. After the 

fault occurs, the state transition matrices of the corresponding 

stage are pre-solved, and the state transition matrices and the 

initial value of the corresponding stage are multiplied 

according to (25). For each stage, the solution of the state 

variables only needs to perform matrix multiplication once to 

get the initial value of the next stage.  

For one specific fault, the system structure and parameters 

can be predicted by the system designer or operator. Therefore, 

the state transition matrices m(t) and m(t) of different periods 

can be derived based on the system discrete-time model. As for 

different periods, the only difference in parameter calculation is 

the initial value of the state variable. The computational 

complexity only increases linearly with the number of levels. 

The simulation platform used in this paper is equipped with 

the 2.60 GHz Intel(R) core CPU, 4GB RAM and 64-bit with 

Windows 8 operating system. The EMT simulation time step is 

10 μs and the total duration is 0.5 s. The calculation time of the 

EMT simulation, the RLC equivalent method and the 

discrete-time method are listed in Table III. When the number 

of SMs increases, the EMT simulation time increases 

significantly, while the discrete-time method calculation time 

increases with the system voltage levels. For the 21 levels 

system, the computation burden is reduced by two orders 

comparing to the EMT simulation, with acceptable calculation 

accuracy. 

D. Scale-Down Experiment 

Under the laboratory conditions, we built a single-phase 

five-level MMC prototype and simulated the fault condition 

with a smaller load resistor on the DC side. The parameters of 

the MMC prototype are listed in Table IV. The hardware 

prototype is shown in Fig. 10 and the MMC prototype 

controller is RT-lab. The fault time in the experiment takes 

place at the zero crossing of the AC current and the fault 

resistance Rf is set as 6.7 Ω. Due to the NLM algorithm of the 

single-phase five-level MMC, the calculation process of one 

cycle is divided into eight stages. The discrete-time model of 

the single-phase five-level MMC and the duty cycle of each 

stage are described in detail in [19]. 

Fig. 11 depicts the discrete-time calculation results and the 

experiment results. The calculated results of each stage are also 

listed in Table V. Comparing Fig. 11 and Table V, the 

calculation and experiment results of the DC current peak are 

4.45A and 4.5A, respectively. The calculation and experiment 

results of the upper bridge arm current peak are -8.28A and 

-7.5A, respectively. The error between experiment and 

calculation is within 10%. It can be observed that the proposed 

RT-lab
Controller

Sampling 
circuit

Sub-
modules

 
Fig. 10. The prototype of single-phase MMC 

TABLE III 

CALCULATION LOAD COMPARISON 

Method 
EMT 

simulation 

Equivalent 

RLC method 

Discrete-time 

method 

Time(5-level) 14.93s 0.529s 0.785s 

Time(9-level) 53.39s 0.536s 1.872s 

Time(21-level) 643.04s 0.686s 4.293s 
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Fig. 9. Peak value of phase A upper arm current after fault (within 10 ms) with 

arm total inductance and SM capacitance change. 

TABLE IV 

EXPERIMENT PARAMETERS OF SINGLE-PHASE MMC 

Symbols Value Symbols Value 

Vdc /V 30 L0 /mH 4 

fs /Hz 50 R0 /Ω 0.3 

ZL /Ω 15 Vg /V 17 

N 4 Csm /mF 3 

 



 

discrete-time method can reflect the variation of the transient 

voltage and current in the experiment prototype with the preset 

circuit parameters. 

V. CONCLUSION 

In this paper, a novel discrete-time-based transient voltage 

and current stress estimation method is proposed for predicting 

the transient SM capacitor voltage, arm current and line current 

under DC bipolar faults in MTDC system. By using an 

equivalent capacitor, the proposed model can reflect the 

dynamics of internal state variables such as the SM capacitor 

voltage and the arm current. Detailed comparisons show that 

the proposed discrete-time method is more accurate than the 

traditional RLC model, and much lower computation burden. 

The method is also robustness to parameter changes. The 

proposed method and related parameter sensitivity analysis can 

be used for MTDC parameter design and protection. 
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Fig. 11. Calculation and experiment results of single-phase MMC. (a) DC 

current idc (A); (b) Upper arm SM capacitor voltage vsmp (V); (c) Upper arm 

current ip (A). 

TABLE V 

CALCULATED RESULTS OF EACH STAGE AFTER FAULT 

m 1 2 3 4 5 6 7 8 

idc(A) 4.45 3.99 3.90 3.91 3.96 3.63 3.59 3.66 

vsmp(V) 5.07 9.20 10.0 9.59 8.98 8.98 7.70 5.48 

ip(A) -2.09 3.06 -0.53 -3.08 -5.15 -7.07 -8.28 -7.43 

 

 


