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ALONSO SEPÚLVEDA CASTELLANOS AND MARIA BRAS-AMORÓS

Abstract. We determine the Weierstrass semigroup H(P∞, P1, . . . , Pm) at seve-
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1. Introduction

Let X be a non-singular, projective, irreducible, algebraic curve of genus g ≥ 1
over a finite field Fq2 with genus g (X ) and #X (Fq2) rational points. The Hasse-Weil
bound states that ∣∣#X (Fq2)−

(
q2 + 1

)∣∣ ≤ 2qg (X ) .

In the case that #X (Fq2) = q2 + 1+ 2qg (X ), the curve X is called an Fq2-maximal

curve. Maximal curves have been widely studied [16],[28]. We know that every
curve that is covered by an Fq2-maximal curve also turns out to be an Fq2-maximal
curve, see [29].

In [19], Garcia and Stichtenoth presented an example of a maximal curve that
is not Galois, covered by the maximal Hermitian curve. Later, Giulietti and Ko-
rchmáros [21] presented a family of maximal curves which cannot be covered by the
Hermitian curve, the GK-curve. Garcia, Guneri and Stichtenoth [18] present a gen-
eralization of this curve, the GGS-curves. In [35], Tafazolian, Teherán and Torres
presented two families of maximum curves that could not be covered by the Hermit-
ian curve, the Xa,b,n,s and Yn,s curves, and in [4] Beelen and Montanucci construct
another generalization of the GK-curve.

Curves with many rational points have been investigated to construct error-
correcting codes, the so-called algebraic geometric codes (AG codes), introduced by
Goppa [22], [23]. An important part of the study of AG codes are the Weierstrass
semigroups on rational points of the curve because there exists a close connection
between the parameters of one-point AG codes and their duals with the Weierstrass
semigroup at one point on the curve. Weierstrass semigroups have been used to
analyze the minimum distance, as in [25, 27, 15], to analyze the code redundancy
and to determine improved codes, as in [33, 7, 5], to bound the code length, as in
[20], or to analyze the weight hierarchy and the generalized Hamming weights, as
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in [24, 14, 6]. This way, an effort was put to explicitly compute Weierstrass semi-
groups of particular families of curves [8, 9, 32]. The case of one-point, two-point
and multi-point AG codes on the GK maximal curves were studied in [13], [11] and
[36],[3], respectively. In [2], Bartoli, Montanucci and Zini examined one-point AG
codes from the GGS curves, and in [26], Hu and Yang studied multi-point AG codes
on the GGS curves. They explicited bases for Riemann-Roch spaces using a related
set of lattice points and considered the properties from GGS curves to characterize
the Weierstrass semigroup and pure gaps in many rational places. In this contribu-
tion we determine the Weierstrass semigroup in many points of the Xa,b,n,s and Yn,s

curves, using the concept of discrepancy introduced by Duursma and Park in [12].
This paper is organized as follows. Section 2 and Section 3 contain general results

on Weierstrass semigroups, basic facts related to AG codes and the basic proper-
ties of the Fq2n-maximal curves Xa,b,n,s and Yn,s. In Section 4 we describe some
generators of the Weierstrass semigroup at rational points of those curves of the
form P(α,β,0) and in Appendix A and Appendix B we prove that the genera of the
semigroups generated by these generators coincides with the genus of the curve,
thus proving that the described generators are, indeed, all the generators of the
Weierstrass semigroup. In Section 5 we determine the minimal generating set for
the Weierstrass semigroup H(P∞, P1, . . . , Pm), where P1, . . . , Pm are rational points
on the curves with 1 ≤ m ≤ q. Finally, in Section 6 we present some results about
pure gaps and AG codes and we illustrate them with an example of a code with
better relative parameters than comparable one-point AG codes, and an example of
a quasi perfect code.

2. Preliminaries

Let X be a non-singular, projective, irreducible, algebraic curve of genus g ≥
1 over a finite field Fq. Fix m distinct rational points P1, . . . , Pm on X and let
H(P1, . . . , Pm) be the Weiertrass semigroup at P1, . . . , Pm. Define a partial order �
on N

m
0 by (n1, . . . , nm) � (p1, . . . , pm) if and only if ni ≤ pi for all i, 1 ≤ i ≤ m.

For u1, . . . ,ut ∈ N
m
0 , where, for all k, uk = (uk1, . . . , ukm), we define the least upper

bound (lub) of the vectors u1, . . . ,ut in the following way:

lub{u1, . . . ,ut} = (max{u11, . . . , ut1}, . . . ,max{u1m , . . . , utm}) ∈ N
m
0 .

For n = (n1, . . . , nm) ∈ N
m
0 and i ∈ {1, . . . , m}, we set

∇i(n) := {(p1, . . . , pm) ∈ H(P1, . . . , Pm) ; pi = ni}.

Proposition 2.1. [31, Proposition 3] Let n = (n1, . . . , nm) ∈ N
m
0 . Then n is

minimal, with respect to �, in ∇i(n) for some i, 1 ≤ i ≤ m, if and only if n is

minimal in ∇i(n) for all i, 1 ≤ i ≤ m.

Proposition 2.2. [31, Proposition 6] Suppose that 1 ≤ t ≤ m ≤ q and u1, . . . ,ut ∈
H(P1, . . . , Pm). Then lub{u1, . . . ,ut} ∈ H(P1, . . . , Pm).

Definition 2.3. Let Γ(P1) = H(P1) and, for m ≥ 2, define

Γ(P1, . . . , Pm) := {n ∈ N
m : for some i, 1 ≤ i ≤ m,n is minimal in ∇i(n)}.
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Lemma 2.4. [31, Lemma 4] For m ≥ 2, Γ(P1, . . . , Pm) ⊆ G(P1) × · · · × G(Pm) ,
where G(Pi) is the set of gaps in Pi.

In [31], Theorem 7, it is shown that, if 2 ≤ m ≤ q, then H(P1, . . . , Pm) =




lub{u1, . . . ,um} ∈ N
m
0 : ui ∈ Γ(P1, . . . , Pm)

or ((ui)j1, . . . , (ui)jk) ∈ Γ(Pj1, . . . , Pjk)
for some {j1, . . . , jk} ⊂ {1, . . . , m} such that
j1 < · · · < jk and (ui)jk+1

= · · · = (ui)jm = 0,
where {jk+1, . . . , jm} = {1, . . . , m} \ {j1, . . . , jk}






.

Therefore, the Weierstrass semigroup H(P1, . . . , Pm) is completely determined by
the sets Γ(P1, . . . , Pℓ) with 1 ≤ ℓ ≤ m. In [31], Matthews called the set Γ(P1, . . . , Pm)
a minimal generating set of H(P1, . . . , Pm).

3. The curves Xa,b,n,s and Yn,s

3.1. The curve Xa,b,n,s. Let a, b, s ≥ 1, n ≥ 3 be integers such that n is odd.
Let q = pa be a power of a prime number p, b is a divisor of a, s is a divisor of
(qn + 1)/(q + 1) and c ∈ Fq2 with cq−1 = −1. We define the curve Xa,b,n,s over Fq2n

by the affine equations

(1) cyq+1 = t(x) :=

a/b−1∑

i=0

xpib and zM = yq
2

− y ,

where M =
qn + 1

s(q + 1)
. This curve is absolutely irreducible, nonsingular, and maximal

over Fq2n of genus g =
qn+2 − pbqn − sq3 + q2 + (s− 1)pb

2spb
. From Theorem 3.5 in [35],

the curve Xa,b,n,1 cannot be Galois covered by the Hermitian curve Hn : vq
n+1 =

uqn + u over Fq2n provided that b < a. A plane model of Xa,b,n,s is given by the
equation

cz
qn+1

s = t(x)(t(x)q−1 + 1)q+1 .

Let Xa,b,n,s(Fq2n) be the set of Fq2n-rational points of Xa,b,n,s, and we will denote
a rational point P = (α, β, γ) ∈ Xa,b,n,s(Fq2n) by P(α,β,γ), whereas P0 = (0, 0, 0). Let
P∞ be the unique common pole of the functions x, y, z which define the function
field of Xa,b,n,s, then we have the following divisors:

(x− α) = (q + 1)MP(α,β,0) − (q + 1)MP∞ ,with t(α) = cβq+1 and β ∈ Fq2 ,

(2) (y − β) =

q/pb∑

i=1

MP(αi,β,0) −
q

pb
MP∞ ,with t(αi) = cβq+1 and β ∈ Fq2 ,

(z) =

q2∑

j=1

q/pb∑

i=1

P(αi,βj,0) −
q3

pb
P∞ ,with βj ∈ Fq2 and cβq+1

j = t(αi), ∀i = 1, . . . , q/pb .

From [35, Proposition 5.1], we have that H(P∞) = 〈 q
pb
M, q3

pb
, (q + 1)M〉.
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3.2. The curve Yn,s. Let n ≥ 3 be an odd integer, let q be a prime power, and let

s ≥ 1 be a divisor of qn+1
q+1

. We define the curve Yn,s over Fq2n by the affine equations

(3) yq+1 = xq + x and zM = yq
2

− y ,

whereM = qn+1
s(q+1)

. This curve is maximal over Fq2n of genus g(Yn,s) =
qn+2−qn−sq3+q2+s−1

2s
.

From [35, Theorem 4.4], we know that the curve Y3,s cannot be covered by the Her-
mitian curve H3 over Fq6, in case q > s/(s + 1). A plane model of Yn,s is given by
the equation

z
qn+1

s = (xq + x)((xq + x)q−1 − 1)q+1 .

Let Yn,s(Fq2n) be the set of Fq2n-rational points of Yn,s, and we will denote a
rational point P = (α, β, γ) ∈ Yn,s(Fq2n) by P(α,β,γ), whereas P0 = (0, 0, 0). Let P∞

be the unique common pole of the functions x, y, z which define the function field
of Yn,s, then we have the following divisors:

(x− α) = (q + 1)MP(α,β,0) − (q + 1)MP∞ ,with αq + α = βq+1 and β ∈ Fq2 ,

(4) (y − β) =

q∑

i=1

MP(αi,β,0) − qMP∞ ,with αq
i + αi = βq+1 and β ∈ Fq2 ,

(z) =

q2∑

j=1

q∑

i=1

P(αi,βj ,0) − q3P∞ ,with βj ∈ Fq2 and βq+1
j = αq

i + αi, ∀i = 1, . . . , q .

From [35, Proposition 5.1], we have that H(P∞) = 〈qM, q3, (q + 1)M〉. For s = 1,
we have that Yn,1 = GGS(X )-curves.

4. The Weierstrass Semigroup H(P(α,β,0))

Proposition 4.1. Let b < a.
The Weierstrass semigroup at P(α,β,0) ∈ Xa,b,n,1(Fq2n) is

H(P(α,β,0)) =

〈
qn + 1− iM − j : 0 ≤ i ≤ pb, 0 ≤ j ≤ qn−3pb − i

qn−2 + 1

q + 1

〉

The Weierstrass semigroup at P(α,β,0) ∈ Yn,1(Fq2n) is

H(P(α,β,0)) =

〈
qn + 1− iM − j : 0 ≤ i ≤ 1, 0 ≤ j ≤ qn−3 − i

qn−2 + 1

q + 1

〉

Proof. For n = 3, we have that

(
(y − β)izj

x− α

)

∞

= (q3 + 1 − iM − j)P(α,β,0) , for

0 ≤ i + j ≤ pb. Then the numerical semigroup containing all linear combinations
with non-negative integer coefficients of these values, i.e, S = 〈q3+1− iM − j : 0 ≤
i + j ≤ pb〉 is contained in H(P(α,β,0)). By the proof in Appendix A, we have that
the genus of the semigroup S is equal to g(X ) and therefore the assertion follows.

For n ≥ 5 odd, we have that

(
(y − β)izj

x− α

)

∞

= (qn + 1 − iM − j)P(α,β,0) , for

0 ≤ iM + jq2 ≤ qn−1pb. Now, the numerical semigroup S ′ = 〈qn + 1− iM − j : 0 ≤
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iM + jq2 ≤ qn−1pb〉 ⊆ H(P(α,β,0)). By the proofs in Appendix B, we have that the
genus of the semigroup S ′ is equal to g(X ) and therefore the assertion follows. We
can observe that if j = 0 then the maximal value for i is pb in 0 ≤ iM+jq2 ≤ qn−1pb.
Furthermore,

j ≤
qn−1pb − i(qn + 1)/(q + 1)

q2
≤ qn−3pb−i

qn + 1

q2(q + 1)
≤ qn−3pb−i

qn−2 + 1

q + 1
+i

q − 1

q2
.

The range of the parameters i, j follows now from the inequality i(q−1)/q2 < 1. �

Remark 4.2. In [2, Proposition 4.3], Bartoli, Montanucci and Zini calculate the

Weierstrass semigroup H(P(α,β,0)) for the curves Yn,1 in a different way. They ob-

served that this semigroup is independent of the choice of α and β by [2, Lemma
8.1].

Example 4.3. For s = 1, n = 3, p = 2, a = 2, b = 1, and c = 1, we have that

q = 4,M = 13, and the affine equations of the curve X2,1,3,1 are y5 = x + x2

and z13 = y16 − y with genus g = 212. In this case H(P∞) = 〈65, 32, 26〉 and

H(P(α,β,0)) = 〈65, 64, 63, 52, 51, 39〉.

Example 4.4. For s = 1, n = 5, p = 2, a = 2, b = 1 and c = 1, we have that

q = 4 and M = 205, and the affine equations of the curve X2,1,5,1 are y5 = x + x2

and z205 = y16 − y with genus g = 3572. In this case H(P∞) = 〈1025, 410, 32〉 and
H(P(α,β,0)) = 〈1025, . . . , 993, 820, . . . , 801, 615, . . . , 609〉.

Example 4.5. For s = 1, n = 3, q = 3, we have M = 7 and the affine equations

of the curve Y3,1 are y4 = x3 + x and z7 = y9 − y with genus g = 99. In this case

H(P∞) = H(P(α,β,0)) = 〈21, 27, 28〉.

Example 4.6. For s = 1, n = 5, q = 2, we have M = 11 and the affine equations

of the curve Y5,1 are y3 = x+ x2 and z11 = y4 − y with genus g = 46. In this case

H(P∞) = 〈33, 22, 8〉 and H(P(α,β,0)) = 〈33, 32, 31, 30, 29, 22, 21〉.

5. The Weierstrass semigroup at certain m+ 1 points on the curve C

Let a, b, n, s = 1, p, q = pa,M =
qn + 1

q + 1
be as above, and let us fix the following

notation:

• C denotes either the curve Xa,b,n,1 in subsection 3.1, or the curve Yn,1 in
subsection 3.2.

• P∞ ∈ C(Fq2n) is the unique common pole of the functions x, y, z which define
the function field of C.

• Pi := P(αi,0,0) ∈ C(Fq2n) for i = 1, . . . , q/pb, and for j = 1, . . . , (q3 − q)/pb, let
Qj = P(αj ,βj ,0) ∈ C(Fq2n) such that βj 6= 0.

In this section, we determine the Weierstrass semigroup H(P∞, P1, . . . , Pm) for
1 ≤ m ≤ q/pb (b = 0 when C = Yn,s).

By the divisor of rational functions (x−αℓ), y and z given by (2) and (4), we have
the following equivalences:

(5) (qn + 1)Pℓ ∼ (qn + 1)P∞ ,
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(6) MP1 + · · ·+MPq/pb ∼ (q/pb)MP∞ ,

(7) P1 + · · ·+ Pq/pb +Q1 + · · ·+Q(q3−q)/pb ∼ (q3/pb)P∞ .

Let 1 ≤ m ≤ q/pb, and let 1 ≤ k ≤ M, 0 ≤ i ≤ q and jℓ ≥ 0 be integers such that

(
q2 −mpb − pb

m∑

ℓ=1

jℓ

)
(qn + 1)− iqM − kq3 > 0 .

So, the divisor

A′ =
1

pb
((qn + 1)(q2 −mpb)− iqM − kq3)P∞ +

m∑

ℓ=1

(iM + k)Pℓ

is effective and by (5), we have that

(8)

1

pb

((
q2 −mpb − pb

m∑

ℓ=1

jℓ

)
(qn + 1)− iqM − kq3

)
P∞+

m∑

ℓ=1

(jℓ(q
n+1)+iM+k)Pℓ ∼ A′ .

Next we state Duursma and Park’s definition of discrepancy [12, Section 5].

Definition 5.1. A divisor A′ ∈ Div(X ) is called a discrepancy for two rational points

P and Q on X if L(A′) 6= L(A′ − P ) = L(A′ − P − Q) and L(A′) 6= L(A′ − Q) =
L(A′ − P −Q).

Lemma 5.2. [36, Lemma 2.6] Let n = (n1, . . . , nm) ∈ H(P1, . . . , Pm). Then n ∈
Γ(P1, . . . , Pm) if only if the divisor A′ = n1P1 + · · · + nmPm is a discrepancy with

respect to P and Q for any two rational points P,Q ∈ {P1, . . . , Pm}.

Lemma 5.3. [17, Noether’s Reduction Lemma] Let D be a divisor, P ∈ C and let K
be a canonical divisor. If dim(L(D)) > 0 and dim(L(K−D−P )) 6= dim(L(K−D)),
then dim(L(D + P )) = dim(L(D)).

Proposition 5.4. The divisor A′ is a discrepancy with respect to P and Q for any

two distinct rational points P,Q ∈ {P∞, P1, . . . , Pm}.

Proof. From the equivalence in (8), we have that there exists a function f ∈ L(A′)
with pole divisor equal to A′. Thus, L(A′) 6= L(A′ − P ) for every rational point
P ∈ {P∞, P1, . . . , Pm}.

Now, we prove that L(K−A′+P ) 6= L(K−A′ +P +Q), where K is a canonical
divisor. Let K = 1

pb
((qn + 1)(q2 − pb)− q3 − pb)P∞, so

K+P+Q−A′ =
1

pb
((qn+1)(q2−pb)−q3−pb)P∞+P+Q−

1

pb
((qn+1)(q2−mpb)−iqM−kq3)P∞

−
m∑

ℓ=1

(iM+k)Pℓ =
1

pb
((qn+1)pb(m−1)+iqM+(k−1)q3−pb)P∞+P+Q−

m∑

ℓ=1

(iM+k)Pℓ .
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Without loss of generality, we can assume that P = P∞ and Q = P1. Thus,

K+P∞+P1−A′ =
1

pb
((qn+1)pb(m−1)+iqM+(k−1)q3)P∞−(iM+k−1)P1−

m∑

ℓ=2

(iM+k)Pℓ ,

and we have that

zk−1yi(x− α2) · · · (x− αm) ∈ L(K + P∞ + P1 − A′) \ L(K + P1 − A′) .

So, L(A′ − P1) = L(A′ − P∞ − P1). Since L(A′) 6= L(A′ − P1) = L(A′ − P∞ − P1),
and L(A′) 6= L(A′ − P∞), it follows that L(A′ − P∞) = L(A′ − P∞ − P1).

Now, if P 6= P∞ and Q 6= P∞, then we can suppose that P = P1 and Q = P2. In
this case, we have that

zk−1yi(x− α3) · · · (x− αm) ∈ L(K + P1 + P2 − A′) \ L(K + P2 − A′) .

As above, we have that L(A′ − P2) = L(A′ − P1 − P2) and that L(A′ − P1) =
L(A′ − P1 − P2). Therefore, the divisor A′ is a discrepancy with respect to P and
Q for any two distinct rational points P,Q ∈ {P∞, P1, . . . , Pm}. �

As a consequence of (8) and Proposition 5.4, we have that the effective divisor

A =
1

pb

((
q2 −mpb − pb

m∑

ℓ=1

jℓ

)
(qn + 1)− iqM − kq3

)
P∞+

m∑

ℓ=1

(jℓ(q
n+1)+iM+k)Pℓ ,

is also a discrepancy with respect to P and Q for any two distinct rational points
P,Q ∈ {P∞, P1, . . . , Pm}.

Theorem 5.5. Let a, b, n, s, p, q,M, P∞, P1, . . . , Pm be as above. For 1 ≤ m ≤ q/pb,
let

Γm+1 =

{(
1

pb

((
q2 −mpb − pb

m∑

ℓ=1

jℓ

)
(qn + 1)− iqM − kq3

)
, j1(q

n + 1) + iM + k

, . . . , jm(q
n + 1) + iM + k

)
; 1 ≤ k ≤ M, 0 ≤ i ≤ q, jℓ ≥ 0 and

(
q2 −mpb − pb

m∑

ℓ=1

jℓ

)
(qn + 1)− iqM − kq3 > 0

}
.

Then, Γ(P∞, P1, . . . , Pm) = Γm+1.

Proof. By Proposition 5.4, we have that the divisor A′ is a discrepancy with respect
to P and Q for any two distinct rational points P,Q ∈ {P∞, P1, . . . , Pm}. By
equivalence (8), we can conclude that the divisor A is also a discrepancy with respect
to P and Q for any two distinct rational points P,Q ∈ {P∞, P1, . . . , Pm}. Therefore,
by Lemma 5.2, we have that Γm+1 ⊆ Γ(P∞, P1, . . . , Pm).

Next, we show that Γ(P∞, P1, . . . , Pm) ⊆ Γm+1. Let n = (n0, n1, . . . , nm) ∈
Γ(P∞, P1 . . . , Pm). By Definition 2.3 and Proposition 2.2, we have that n is minimal
in ∇r(n) for all 0 ≤ r ≤ m. From Lemma 2.4, n = (n0, n1, . . . , nm) ∈ G(P∞) ×
G(P1) × · · · × G(Pm). Note that, as H(Pℓ) = 〈qn + 1 − iM − j : 0 ≤ i ≤ pb, 0 ≤
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j ≤ qn−3(pb − i) + i
qn−3 − 1

q + 1
〉, for all 1 ≤ ℓ ≤ m. Then, by the form of the elements

in G(Pℓ), we have that nℓ = jℓ(q
n + 1) + iℓM + kℓ, for some jℓ ≥ 0, 0 ≤ iℓ ≤ q and

1 ≤ kℓ ≤ M . Let

f =
yq−izM−k

(x− α1)j1+1 · · · (x− αm)jm+1
,

then

(f)∞ =
1

pb

((
q2 −mpb − pb

m∑

ℓ=1

jℓ

)
(qn + 1)− iqM − kq3

)
P∞

+(j1(q
n + 1) + iM + k)P1 + · · ·+ (jm(q

n + 1) + iM + k)Pm .

We conclude that f ∈ H(P∞, P1, . . . , Pm) and, as (f)∞ ∼ A′, then (f)∞ is a dis-
crepancy with respect to P and Q for any rational points P,Q ∈ {P∞, P1, . . . , Pm}.

So, by Lemma 5.2, we have that f = (
1

pb
((
q2 −mpb − pb

∑m
ℓ=1 jℓ

)
(qn + 1)− iqM − kq3

)
,

j1(q
n + 1) + iM + k, . . . , jm(q

n + 1) + iM + k) ∈ Γ(P∞, P1, . . . , Pm).
Thus, f ∈ ∇r(n), for some 0 ≤ r ≤ m, and by Proposition 2.1, it follows that f is

minimal in ∇r(n) for all r, 0 ≤ r ≤ m. Furthermore, by minimality of f and n, we
have that f = n and so Γ(P∞, P1, . . . , Pm) ⊆ Γm+1. �

Example 5.6. Using the values from Example 4.3, we have the following divisors:

(x− αℓ) = 65Pℓ − 65P∞

(y) = 13P1 + 13P2 − 26P∞

(z) = P1 + P2 +Q1 + · · ·+ Q30 − 32P∞

For this curve, taking m = 1, by Theorem 5.5, we have that Γ(P∞, P1) = {(455 −
26i− 65j − 32k, 65j + 13i+ k) : 0 ≤ i ≤ 4, j ≥ 0, and 1 ≤ k ≤ 13}.

Taking m = 2, we have that

Γ(P∞, P1, P2) = {(390− 26i− 32k − 65j1 − 65j2, 65j1 + 13i+ k, 65j2 + 13i+ k) :

0 ≤ i ≤ 4, j1, j2 ≥ 0, and 1 ≤ k ≤ 13} .

Example 5.7. Using the values from Example 4.4, we have the following divisors:

(x− αℓ) = 1025Pℓ − 1025P∞

(y) = 205P1 + 205P2 − 410P∞

(z) = P1 + P2 +Q1 + · · ·+ Q30 − 32P∞

Taking m = 1, by Theorem 5.5, we have that Γ(P∞, P1) = {(7175− 410i− 1025j −
32k, 205i+ 1025j + k) : 0 ≤ i ≤ 4, j ≥ 0 and 1 ≤ k ≤ 205}.

Taking m = 2, we have that

Γ(P∞, P1, P2) = {(6150− 410i− 1025(j1 + j2)− 32k, 205i+ 1025j1 + k, 205i+ 1025j2 + k) :

0 ≤ i ≤ 4, j1, j2 ≥ 0 and 1 ≤ k ≤ 205} .
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Example 5.8. Using the values from Example 4.5, we have the following divisors:

(x− αℓ) = 28Pℓ − 28P∞

(y) = 7P1 + 7P2 + 7P3 − 21P∞

(z) = P1 + P2 + P3 +Q1 + · · ·+Q24 − 27P∞

For m = 1, we have that

Γ(P∞, P1) = {(224− 21i− 28j − 27k, 7i+ 28j + k) : 0 ≤ i ≤ 3, j ≥ 0 and 1 ≤ k ≤ 7} .

For m = 2, we have that

Γ(P∞, P1, P2) = {(196− 21i− 28(j1 + j2)− 27k, 7i+ 28j1 + k, 7i+ 28j2 + k) :

0 ≤ i ≤ 3, j1, j2 ≥ 0 and 1 ≤ k ≤ 7} .

For m = 3, we have that

Γ(P∞, P1, P2, P3) = {(168− 21i− 28(j1 + j2 + j3)− 27k, 7i+ 28j1 + k, 7i+ 28j2 + k,

7i+ 28j3 + k) : 0 ≤ i ≤ 3, j1, j2, j3 ≥ 0 and 1 ≤ k ≤ 7} .

Example 5.9. Using the values from Example 4.6, we have the following divisors:

(x− αℓ) = 33Pℓ − 33P∞

(y) = 11P1 + 11P2 − 22P∞

(z) = P1 + P2 +Q1 + · · ·+Q6 − 8P∞

For m = 1, we have that

Γ(P∞, P1) = {(99− 22i− 33j − 8k, 11i+ 33j + k) : 0 ≤ i ≤ 2, j ≥ 0 and 1 ≤ k ≤ 11} .

For m = 2, we have that

Γ(P∞, P1, P2) = {(66− 22i− 33(j1 + j2)− 8k, 11i+ 33j1 + k, 11i+ 33j2 + k) :

0 ≤ i ≤ 2, j1, j2 ≥ 0 and 1 ≤ k ≤ 11} .

6. Pure Gaps and AG Codes

In [30], Homma and Kim introduced the concept of pure gap. An element (n1, . . . , ns) ∈
N

s
0 is a pure gap at (P1, . . . , Ps) if

ℓ

(
s∑

i=1

niPi − Pj

)
= ℓ

(
s∑

i=1

niPi

)
for some j ∈ {1, . . . , s} .

Carvalho and Torres [10, Lemma 2.5] showed that (n1, . . . , ns) is a pure gap at
(P1, . . . , Ps) if and only if ℓ(

∑s
i=1 niPi) = ℓ(

∑s
i=1(ni − 1)Pi). The authors used this

concept to obtain codes whose minimum distances have bounds better than the
Goppa bound.

Theorem 6.1. [10, Theorem 3.3] Let Q1, . . . , Qn, P1, . . . , Pm be distinct Fq-rational

points of X and assume that m ≤ q. Let (α1, . . . , αm), (β1, . . . , βm) ∈ N
m
0 and set

D = Q1+ · · ·+Qn and G =
∑m

i=1(αi+βi−1)Pi. Let dΩ be the minimum distance of

the code CΩ(D,G). If (α1, . . . , αm), (β1, . . . , βm) are pure gaps at P1, . . . , Pm, then

dΩ ≥ deg(G)− (2g − 2) +m, where g is the genus of X .
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Using the same notation as in Section 5, we calculate the pure gaps at several
points. The following results are stated in the same form as in [36].

Proposition 6.2. [36, Proposition 4.2] Let A =
∑m

ℓ=0 aℓPℓ, where (a0, . . . , am) ∈
Γ(P0, . . . , Pm). Let ℓ ∈ {0, 1, . . . , m}, if L(A−Pℓ) = L(A−2Pℓ), then (a0, a1, . . . , aℓ−1, aℓ−
1, aℓ+1, . . . , am) is a pure gap of H(P0, P1, . . . , Pm).

Corollary 6.3. [36, Corollary 4.3] If 2 ≤ k ≤ M , then ((q2/pb − m)(qn + 1) −
kq3, k, . . . , k, k − 1) is a pure gap of the Weierstrass semigroup H(P∞, P1, . . . , Pm)
on the Xa,b,n,1 curve.

If 2 ≤ k ≤ M , then ((q2 −m)(qn + 1)− kq3, k, . . . , k, k − 1) is a pure gap of the

Weierstrass semigroup H(P∞, P1, . . . , Pm) on the Yn,1 curve.

Proposition 6.4. [36, Proposition 4.4] Let α < 2g−1 and (α, 1, . . . , 1) ∈ G(P∞, P1, . . . , Pm).
If

(1) ∃λ, β, γ ∈ N0, with λ ≥ m, such that λ(qn + 1) + βqM + γq3 = 2g − 1 − α,
or

(2) 2g−2−α ≥ (m−1)(qn+1) and ∃ β, γ ∈ N0 such that βqM+γq3 = 2g−1−α,

then (α, 1, . . . , 1) is a pure gap.

In [1], the authors calculate the pure gaps in Kummer extensions defined by
ym = f(x). The places Q1, . . . , Qr are all the zeros and poles of f(x). They showed
the following theorem, where λi := υQi

(f(x)) denotes the multiplicity of the place
Qi.

Theorem 6.5. [1, Theorem 3.3] Let P1, . . . , Ps ∈ PF be pairwise distinct totally

ramified places in the Kummer extension F/K(x). Then (n1, . . . , ns) ∈ N
s
0 is a pure

gap at (P1, . . . , Ps) if and only if for every t ∈ {0, . . . , m− 1} exactly one of the two

following conditions is satisfied:

(1)
s∑

i=1

⌊
ni + tλi

m

⌋
+

r∑

i=s+1

⌊
tλi

m

⌋
< 0

(2)

⌊
ni + tλi

m

⌋
=

⌊
ni − 1 + tλi

m

⌋
for all i ∈ {1, . . . , s}.

Proposition 6.6. [1, Proposition 3.9] On the Yn,1 curve, let P1 and P2 be two

totally ramified rational points that are different from P∞. Let α ∈ {0, . . . , q2 − 3}
and β ∈ {0, 1}. For n ≥ 5, if

n1 := (β + 1)qn−3(q2 − q + 1) + α(qn + 1) and
n2 := (q2 − 3)(qn + 1) + 3qn−3(q2 − q + 1)− (β + 1)qn−3(q2 − q + 1)− α(qn + 1) ,

then the pair (n1, n2) is a pure gap at (P1, P2).

Proposition 6.7. [1, Proposition 3.10] On the Yn,1 curve, let P∞ be the unique

rational point at infinity and P1 be a totally ramified rational point different from

P∞. For α ∈ {0, . . . , q2 − 2}, the pair

(n1, n2) = (1 + α(qn + 1), 1 + (q2 − 2)(qn + 1) + qn − 2q3 + 1− (1 + α(qn + 1)))

is a pure gap at (P∞, P1).
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Proposition 6.8. On the Xa,b,n,1 curve, let P1 and P2 be two totally ramified rational

points that are different from P∞. Let α ∈ {0, . . . , q
2

pb
− 3} and β ∈ {0, 1}. For

n ≥ 5, if

n1 := (β + 1)qn−3(q2 − q + 1) + α(qn + 1) and

n2 := ( q
2

pb
− 3)(qn + 1) + 3qn−3(q2 − q + 1)− (β + 1)qn−3(q2 − q + 1)− α(qn + 1) ,

then the pair (n1, n2) is a pure gap at (P1, P2).

Proof. The rational points P1 and P2 are zeros of t(x), and so λ1 = λ2 = 1 in

Theorem 6.5. Let t ∈ {0, . . . , qn}. We have that

⌊
n1 + t

qn + 1

⌋
6=

⌊
n1 + t− 1

qn + 1

⌋
if and

only if n1 + t ≡ 0 (mod qn + 1), which is equivalent to
{

t = qn + 1− (qn−1 − qn−2 + qn−3) if β = 0
t = qn + 1− (2qn−1 − 2qn−2 + 2qn−3) if β = 1

Analogously,

⌊
n2 + t

qn + 1

⌋
6=

⌊
n2 + t− 1

qn + 1

⌋
if and only if n2 + t ≡ 0 (mod qn + 1),

which is equivalent to
{

t = qn + 1− (2qn−1 − 2qn−2 + 2qn−3) if β = 0
t = qn + 1− (qn−1 − qn−2 + qn−3) if β = 1

Then we verified the first condition in Theorem 6.5 for these values of t. Indeed,
we have that

⌊
n1 + t

qn + 1

⌋
+

⌊
n2 + t

qn + 1

⌋
+

q

pb
(q − 1)

⌊
t(q + 1)

qn + 1

⌋
+

⌊
−tq3/pb

qn + 1

⌋
=





q2

pb
− 1 + q

pb
(q − 1)(q − 1)

− q3

pb
+ 1

pb
(q2 − q) = −1 if t = qn + 1− (qn−1 − qn−2 + qn−3)

q2

pb
− 2 + q

pb
(q − 1)(q − 2)

− q3

pb
+ 1

pb
(2q2 − 2q) + 1 = −1 if t = qn + 1− (2qn−1 − 2qn−2 + 2qn−3) .

�

Remark 6.9. The parameters of the AG codes over the curves Xa,b,n,1 and Yn,1

cannot be compared with the parameters of the codes in MinT’s tables [34] since the

size of the corresponding alphabet is too large. However, the relative parameters of

these codes can be compared with the relative parameters of the AG codes constructed

from the GGS curves or induced by them. Given a [n, k, d]Fq
linear code, we have

that the relative parameters are k/n the rate and d/n the relative minimum distance,

and by the Singleton bound we have that k
n
+ d

n
≤ 1 + 1

n
.

Example 6.10. Consider the curve Y5,1 in Example 4.6 over F210. By Proposition

6.6, taking α = 1 we have that (34, 50) is a pure gap at P∞, P1. By Theorem 6.1, we

have that the two-point code CΩ(D, 67P∞ + 99P1) has minimum distance dΩ ≥ 78,
hence yielding a [3967, 3846,≥ 78]210 code. This code has better relative parameters

than the corresponding one-point AG code [3968, 3846,≥ 77]210 given in [2, Table 1].
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Example 6.11. Consider the curve X2,1,3,1 over F46 given in Example 4.3. By

Proposition 6.4, it follows that (230, 1) is a pure gap at P∞, P1. By Theorem 6.1,

we have that the two-point code CΩ(D, 459P∞+P1) has minimum distance dΩ ≥ 40,
hence yielding a [n = 31231, k = 30982, d ≥ 40] code. The bound on the minimum

distance is better than the one corresponding to the one-point AG code given in

[35, Corollary 5.5 (2)], defined over the same curve, whose Feng-Rao bound for the

minimum distance is δFR(249) = 39, hence yielding a [n = 31232, k = 30982, d ≥ 39]
code.

Example 6.12. Consider the curve X1,1,3,1 of genus g = 3 over F26. We have

that H(P∞) = 〈3, 4〉 and as the pole divisor (z/y2)∞ = 5P0, (z2/y3)∞ = 7P0

then H(P0) = 〈3, 5, 7〉. For this curve, by Theorem 5.5, we have that Γ(P∞, P0) =
{(5, 1), (1, 2), (2, 4)}. Take the divisor G = 4P∞ + P0. Using the Magma software,

one can see that the two-point AG code CΩ(D, 4P∞+P0) has parameters [111, 108, 3].
This code is quasi perfect.
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[28] Korchmáros, G., Torres, F.: On the genus of a maximal curve. Mathematische Annalen 323(3),
589–608 (2002)

[29] Lachaud, G.: Sommes d’eisenstein t nombre de points de certaines courbes algébriques. CR.
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[34] Schmid, W.C., Schürer, R.: MinT. http://mint.sbg.ac.at/

http://dx.doi.org/10.1016/S0166-218X(02)00441-9
http://dx.doi.org/10.1109/18.335972
http://dx.doi.org/10.1016/j.jpaa.2008.11.013
http://dx.doi.org/10.1109/18.651015
http://dx.doi.org/10.1109/18.476245
https://doi-org.sabidi.urv.cat/10.1007/978-3-540-24633-6_2
http://dx.doi.org/10.1109/18.796393
http://mint.sbg.ac.at/
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Appendix A. Genus of S

In this section we will determine the genus of the semigroup S generated by
{q3 + 1 − iN − j : 0 ≤ i + j ≤ pb}, with q = (pb)r, for a prime number p, some

positives integers b, r, with r ≥ 2, and N = q3+1
q+1

.

For this purpose we will first consider the numerical semigroup SP,N,K generated
by {KN + aN − j : 0 ≤ j ≤ a ≤ P}, where P , N , K are positive integers with
P | N − 1, P | K − 1, K < N . Notice that S = SP,N,K with K = q + 1 − pb and
P = pb, with a playing the role of pb−i, and j, N playing their own role. The required

conditions hold, indeed, P | N −1 since N −1 = q3+1
q+1

−1 = (q2− q+1)−1 = q2− q

and, similarly, P | K − 1.

A.1. Characterization. With the same notation as before, for an integer M ≥ 0,

let SM
P,N,K = {MKN+aN−j : 0 ≤ j ≤ a ≤ MP} and let S̃M

P,N,K = {MKN+aN−j :
max{0, (M − 1)P −K + 1} ≤ a ≤ MP, 0 ≤ j ≤ min{a,N − 1}}. It is obvious that

SP,N,K = ∪M≥0S
M
P,N,K and that S̃M

P,N,K ⊆ SM
P,N,K . Now, any element in SM

P,N,K is

in at least one set S̃M ′

P,N,K for some M ′ ≤ M . This can be proved by induction on
M . For M = 0 and for M = 1 it is straightforward. For M > 1, suppose that an
element of SM

P,N,K is ℓ = MKN + aN − j for some particular 0 ≤ j ≤ a ≤ MP .

If a ≥ (M − 1)P −K + 1 and j ≤ N − 1 then ℓ ∈ S̃M
P,N,K . Otherwise, if 0 ≤ a <

(M−1)P −K+1, then ℓ = (M−1)KN +(K+a)N−j = (M−1)KN +a′−j with
a′ = K + a ≤ (M − 1)P and 0 ≤ j ≤ a ≤ a′, so ℓ ∈ SM−1

P,N,K and the result follows by
induction. If a ≥ (M−1)P−K+1 but j > N−1, then suppose thatQ is the quotient
of the division of j by N . Then ℓ = MKN +(a−Q)N − (j−QN) = MKN +a′−j′

with a′ = a−Q ≥ a− j ≥ 0, and a′ ≤ a ≤ MP . Furthermore, j′ = j −QN , which
is the remainder of the division of j by N , and which is between 0 and N − 1. So,

ℓ ∈ S̃M
P,N,K. Consequently, we also have SP,N,K = ∪M≥0S̃

M
P,N,K.

Now, S̃M
P,N,K ⊆ [(M − 1)(K + P )N + 1,M(K + P )N ]. Indeed, the minimum

of S̃M
P,N,K is at least (M − 1)(KN + PN) + 1 since the elements in S̃M

P,N,K satisfy
MKN + aN − j ≥ MKN + ((M − 1)P −K + 1)N − N + 1 = MKN +MPN −
PN − KN + N − N + 1 = (M − 1)(K + P )N + 1. On the other hand, the

maximum of S̃M
P,N,K is at most M(K + P )N since the elements in S̃M

P,N,K satisfy
MKN + aN − j ≤ MKN +MPN − 0 = M(K + P )N .

In particular, the sets S̃M
P,N,K are disjoint and, so, SP,N,K = ⊔M≥0S̃

M
P,N,K .

Let M0 =
K−1
P

+ 1, M1 =
N−1
P

, M2 =
K+N−2

P
.

https://doi-org.sabidi.urv.cat/10.1016/j.jpaa.2015.08.010
https://doi-org.sabidi.urv.cat/10.1007/s00574-017-0059-3


15

A.2. Conductor of SP,N,K. Now we are ready to determine the Frobenius number
of SP,N,K, that is, its largest gap. The conductor of SP,N,K is then the non-gap of
SP,N,K right after its Frobenius number.

Observe that S̃M = ∪a≥max{0,(M−1)P−K+1}Ia with Ia = {MKN +aN − j : 0 ≤ j ≤
min{a,N − 1}}. Since j ranges from 0 to min{a,N − 1}, there are gaps between
the intervals Ia and Ia−1 if and only if min{a,N − 1} < N − 1, i.e., if and only if

a < N − 1. Since in S̃M
P,N,K a ranges from max{0, (M − 1)P −K + 1} to PN , the

inequality a < N − 1 occurs in S̃M
P,N,K if and only if (M − 1)P −K + 1 < N − 1,

that is, if and only if M ≤ N+K−2
P

.

Let MF = N+K−2
P

. The last gap of SP,N,K will then be the gap previous to Ia with

a = N − 2 in S̃MF

P,N,K, that is, the Frobenius number will be MFKN + aN − a − 1

for a = N − 2, i.e. K+N−2
P

KN + (N − 2)N −N + 1 = K+N−2
P

KN +N2 − 3N + 1.
Simplifying by means of Sage we obtain that the conductor of SP,N,K is

c =
N2K +NK2 +N2P − 2NK − 3NP + 2P

P
.

A.3. Genus. Let M0 =
K−1
P

+ 1, M1 =
N−1
P

, M2 =
K+N−2

P
= M0 +M1 − 1.

• If 0 ≤ M ≤ M0 then SM
P,N,K = S̃M

P,N,K and #S̃M
P,N,K =

∑MP
a=0(a + 1) =∑MP+1

b=1 b = (MP+1)(MP+2)
2

.

• IfM0 < M ≤ M1 then #S̃M
P,N,K =

∑MP
a=(M−1)P−K+1(a+1) =

∑MP+1
(M−1)P−K+2 b =

(MP+1)(MP+2)
2

− (MP−P−K+1)(MP−P−K+2)
2

. This is because if M ≤ M1, then
MP ≤ N − 1, so j will always range from 0 to a.

• If M > M1 then #([(M − 1)(K + P )N + 1,M(K + P )N ] \ S̃M
P,N,K) =

∑N−2
a=(M−1)P−K+1(N − a − 1) =

∑N−(M−1)P+K−2
b=1 b =

(N−MP+P+K−2)(N−MP+P+K−1)
2

. This is because if M > M1 then MP > N−1
and so at some point a = N−1. In this case, [(M−1)(K+P )N+1,M(K+

P )N ] \ S̃M
P,N,K = {MKN + aN − j : (M − 1)P −K +1 ≤ a ≤ N − 2, a+1 ≤

j ≤ N − 1}.

Now, using the formulas
∑n

M=1M = n(n+1)
2

and
∑n

M=1M
2 = n(n+1)(2n+1)

6
we get to

the final count of the genus:

g = (M1(P +K)N)

−
M1∑

M=1

(MP + 1)(MP + 2)

2

+

M1∑

M=M0+1

(MP − P −K + 1)(MP − P −K + 2)

2

+

M2∑

M=M1+1

(N −MP + P +K − 2)(N −MP + P +K − 1)

2

= (M1(P +K)N)
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−
1

12
P 2M1(M1 + 1)(2M1 + 1)−

3

4
PM1(M1 + 1)−M1

+
1

12
P 2(M1(M1 + 1)(2M1 + 1)−M0(M0 + 1)(2M0 + 1))

+
1

4
P (3− 2P − 2K)(M1(M1 + 1)−M0(M0 + 1))

+
1

2
(P +K − 1)(P +K − 2)(M1 −M0)

+
1

12
P 2(M2(M2 + 1)(2M2 + 1)−M1(M1 + 1)(2M1 + 1))

+
1

4
P (−2(P +K +N) + 3)(M2(M2 + 1)−M1(M1 + 1))

+
1

2
(P +K +N − 1)(P +K +N − 2)(M2 −M1)

=
N2K +NK2 +N2P +NKP − 3NK − 3NP + P + 1

2P

A.4. Back to the originary problem. If we take N = q3+1
q+1

, K = q + 1 −

pb, P = pb, then the genus is g = q5−q3pb−q3+q2

2pb
, while the conductor is c =

q5−2q3pb+q2p2b−q2pb−qp2b+q2+qpb+p2b−pb

pb
.

Appendix B. Genus of S ′

Suppose we have q = pa, b | a, b 6= a, n odd, n ≥ 3. Let M = qn+1
q+1

= qn−1 −

qn−2 + qn−3 − qn−4 + · · · − q +1. We want to prove that the genus of the semigroup

S ′ = 〈qn + 1− iM − j : 0 ≤ iM + jq2 ≤ qn−1pb〉 is qn+2−pbqn−q3+q2

2pb
.

B.1. Definition of S ′ revisited.

Lemma B.1. If n ≥ 3,

S ′ =

〈
k(qn−1 − qn−2) + ℓ : q + 1− pb ≤ k ≤ q + 1 and qn−3(q − pb) ≤ ℓ ≤ k

qn−2 + 1

q + 1

〉

Equivalently, by setting A = qn−1 − qn−2, k0 = q + 1− pb, k1 = q + 1, ℓ0 = qn−3(q−

pb) + 1, ℓ1 =
qn−2+1
q+1

, the semigroup S ′ is S ′ = 〈kA+ ℓ : k0 ≤ k ≤ k1, ℓ0 ≤ ℓ ≤ kℓ1〉 .

Proof. We can rewrite S ′ as S ′ = 〈(q + 1− i)M − j : 0 ≤ iM + jq2 ≤ qn−1pb〉. The

integer i is then bounded as 0 ≤ i ≤ ⌊ qn−1pb

M
⌋. The quotient and the remainder of

the division of qn−1pb by M are, respectively, pb and pb(qn−2 − qn−3 + · · · + q − 1)
(since this remainder is between 0 and M − 1). Consequently, 0 ≤ i ≤ pb. Now,
setting k = q + 1 − i, the bounds for k are q − pb + 1 ≤ k ≤ q + 1. Hence, since
iM = (q + 1− k)M = (q + 1)M − kM = qn + 1− kM ,

S ′ = 〈kM − j : q − pb + 1 ≤ k ≤ q + 1 and 0 ≤ qn + 1− kM + jq2 ≤ qn−1pb〉
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Finally, we want to replace the bounds for qn + 1 − kM + jq2 by bounds on j.
Reorganizing them, we obtain

kM − qn − 1 ≤ jq2 ≤ kM − qn + qn−1pb − 1 = kM − qn−1(q − pb)− 1.

Since k ≤ q + 1, the lower bound is non-positive. So, 0 ≤ jq2

As for the upper bound on j, j ≤
⌊
kM−qn−1(q−pb)−1

q2

⌋
=

⌊
kqn−1−kqn−2+kqn−3−···+kq2−kq+k−qn−1(q−pb)−1

q2

⌋
=
⌊
k qn−2+1

q+1
+ −kq+k−1

q2
− qn−3(q − pb)

⌋
=

⌊
k qn−2+1

q+1
− qn−3(q − pb)− 1 + q2−k(q−1)−1

q2

⌋
. By the bounds on k we deduce that

0 ≤ q2−k(q−1)−1
q2

≤ pb(q−1)
q2

< 1. So,

S ′ = 〈kM − j : q + 1− pb ≤ k ≤ q + 1 and 0 ≤ j ≤ k
qn−2 + 1

q + 1
− qn−3(q − pb)− 1〉

Let now ℓ = k qn−2+1
q+1

− j. Notice that kM − j = k(M − qn−2+1
q+1

) + ℓ = k(qn−1 −

qn−2) + ℓ. The bounds of ℓ are qn−3(q − pb) + 1 ≤ ℓ ≤ k qn−2+1
q+1

. �

Let G = {kA + ℓ : k0 ≤ k ≤ k1, ℓ0 ≤ ℓ ≤ kℓ1} and let mG = {a1 + · · ·+ am : ai ∈
G}. Define Bm = [(m− 1)(qn + 1) + 1, m(qn + 1)] ∩mG.

Lemma B.2. The following statements hold.

(1) S ′ = {0} ∪
⋃

m≥1 mG,

(2) S ′ = {0} ∪ ⊔m≥1Bm.

Proof. First of all, notice that mG = [mk0A+mℓ0, mk0(A+ ℓ1)]︸ ︷︷ ︸
mk0ℓ1−mℓ0+1

∪

[(mk0 + 1)A+mℓ0, (mk0 + 1)(A+ ℓ1)]︸ ︷︷ ︸
(mk0+1)ℓ1−mℓ0+1

∪ · · · ∪ [mk1A+mℓ0, mk1(A+ ℓ1)]︸ ︷︷ ︸
mk1ℓ1−mℓ0+1

(1) The first part is obvious and follows from the definitions.
(2) For the second part, it is obvious that the sets Bm are disjoint and it is

obvious the inclusion ⊇. Let us prove for all m the inclusion S ′ ∩ [(m −
1)(qn + 1) + 1, m(qn + 1)] ⊆ Bm by induction on m.
First of all we need to see that S ′ ∩ [1, qn +1] = B1. The smallest element

of 2G is 2(k0A + ℓ0) = 2((q + 1 − pb)(qn−1 − qn−2) + qn−3(q − pb) + 1) =
2(qn+1−pb(qn−1−qn−2+qn−3)) = qn+1+(qn+1−2pb(qn−1−qn−2+qn−3)) >
qn + 1 + (qn + 1 − 2pb q

n+1
q+1

) ≥ qn + 1 if 2pb ≤ q + 1, which is a consequence

of the fact that pb < q.
Now suppose m > 1. Since the maximum of mG is m(qn + 1), we have

mG ⊆ [0, m(qn+1)]. Now it will suffice to see that mG∩[0, (m−1)(qn+1)] ⊆
(m− 1)G and the result will follow by induction.

Notice thatmG is the union of the sets of the form Sm,k̃ = [k̃A+mℓ0, k̃(A+

ℓ1)] for some k̃ satisfying mk0 ≤ k̃ ≤ mk1, while (m−1)G is the union of sets

of the form S
(m−1),

˜̃
k
[˜̃kA +mℓ0,

˜̃k(A+ ℓ1)] for some ˜̃k satisfying (m− 1)k0 ≤

˜̃k ≤ (m− 1)k1.
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Suppose that a ∈ mG ∩ [0, (m− 1)(qn + 1)]. If a ∈ Smk̃ with mk0 ≤ k̃ ≤
(m−1)k1, then, since Sm,k̃ ⊆ Sm−1,k̃, we have a ∈ Sm−1,k̃ ⊆ (m−1)G. On the

other hand, if a ∈ Sm,k̃ ∩ [0, (m−1)(qn+1)] with (m−1)k1 < k̃ ≤ mk1, then

a ≥ k̃A+mℓ0 > (m− 1)k1A+ (m− 1)ℓ0. So, a ∈ Sm−1,(m−1)k1 ⊆ (m− 1)G.

�

B.2. Number of gaps by intervals. Let Cm = [(m−1)(qn+1)+1, m(qn+1)]\Bm.
In this section we wonder what are the elements in Cm. As before, we split the
elements in mG into (not necessarily disjoint) blocks of the form Sm,k̃ = [k̃A +

mℓ0, k̃(A+ ℓ1)] for some k̃ satisfying mk0 ≤ k̃ ≤ mk1.

Lemma B.3. (1) Suppose that mk0 < k ≤ mk1. Then the gaps between Sm,(k−1)

and Sm,k are contained in [(m − 1)(qn + 1) + 1, m(qn + 1)] if and only if

k ≥ max (mk0 + 1, mq +m− q)
(2) max (mk0 + 1, mq +m− q) = mk0 + 1 if and only if m ≤ M1 := pa−b.

Proof. (1) Suppose that mk0 < k ≤ mk1. Then the gaps between Sm,(k−1) and

Sm,k are contained in [(m−1)(qn+1)+1, m(qn+1)] if and only if (k−1) q
n+1
q+1

≥

(m− 1)(qn + 1), that is, if and only if k ≥ (m− 1)(q+ 1)+ 1 = mq +m− q.
(2) max (mk0 + 1, mq +m− q) = mk0+1 if and only if mq+m−q ≤ m(q+1−

pb)+1, that is, if and only if −q ≤ −mpb+1, i.e., mpb ≤ q+1. Now observe
that the quotient of the Euclidean division of q + 1 by pb is pa−b while the
remainder is 1. So, the statement follows.

�

Lemma B.4. (1) Suppose that mk0 < k ≤ mk1. Then there are gaps between

Sm,(k−1) and Sm,k if and only if k ≤ min
(
mk1,

qn−q−1+m(q+1)(qn−3(q−pb)+1)
qn−2+1

)
.

(2) If n > 3, min
(
mk1,

qn−q+m(q+1)(qn−3(q−pb)+1)
qn−2+1

)
= mk1 if and only if m ≤

M2 := (q − 1)pa−b.

(3) If n = 3, min
(
mk1,

qn−q+m(q+1)(qn−3(q−pb)+1)
qn−2+1

)
= mk1 if and only if m ≤

M̃2 := (q − 1)pa−b − 1.

Proof. (1) Suppose that mk0 < k ≤ mk1. Then there are gaps between Sm,(k−1)

and Sm,k if and only if (k−1)(A+ℓ1) ≤ kA+mℓ0−2, equivalently, (k−1)ℓ1 ≤

mℓ0−2+A, equivalently, k ≤ mℓ0−2+A
ℓ1

+1 = (q+1)m(qn−3(q−pb)+1)−2+qn−1−qn−2

qn−2+1
+

1 = m(q+1)(qn−3(q−pb)+1)−q−2+qn−qn−2+qn−2+1
qn−2+1

= qn−q−1+m((q+1)qn−3(q−pb)+1)
qn−2+1

.

(2) min
(
mk1,

qn−q−1+m(q+1)(qn−3(q−pb)+1)
qn−2+1

)
= mk1 if and only if m(q + 1) ≤

qn−q−1+m(q+1)(qn−3(q−pb)+1)
qn−2+1

, that is, if and only if m(qn−1 + qn−2 + q + 1) ≤

qn− q−1+m(q+1)(qn−3(q−pb)+1), i.e., m(qn−1+ qn−2+ q+1) ≤ qn− q−
1+m(qn−2(q−pb)+qn−3(q−pb)+q+1), i.e., 0 ≤ qn−q−1−mpb(q+1)qn−3,
i.e., m ≤ ⌊ qn−q−1

pb(q+1)qn−3 ⌋
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Here we notice that the Euclidean division of qn− q−1 by qn−2pb+ qn−3pb

has quotient (q − 1)pa−b and remainder qn − q − 1 − (q − 1)pa−b(qn−2pb +
qn−3pb) = qn − q − 1− qn − qn−1 + qn−1 + qn−2 = qn−2 − q − 1.
So, the statement follows.

(3) It can be proved as the previous item.
�

Lemma B.5. If (q − 1)pa−b + 1 ≤ m ≤ qpa−b − 1 then
qn−q−1+m(q+1)(qn−3(q−pb)+1)

qn−2+1
is

not an integer and ⌊ qn−q−1+m(q+1)(qn−3(q−pb)+1)
qn−2+1

⌋ = q2 − q +m(q − pb + 1).

Proof.
qn−q−1+m(q+1)(qn−3(q−pb)+1)

qn−2+1
= qn−q+1

qn−2+1
+ m (q+1)(qn−3(q−pb)+1)

qn−2+1
= q2 − q2+q+1

qn−2+1
+

m(q − pb + 1)−mpb q
n−3−1

qn−2+1
= q2 − q +m(q − pb + 1) + q − q2+q+1

qn−2+1
−mpb q

n−3−1
qn−2+1

.

Now, it is enough to see that 0 ≤ q − q2+q+1
qn−2+1

−mpb q
n−3−1

qn−2+1
< 1.

On one hand, q− q2+q+1
qn−2+1

−mpb( q
n−3−1

qn−2+1
) ≥ q− q2+q+1

qn−2+1
−(qpa−b−1)( (q

n−3−1)pb

qn−2+1
) = q−

q2+q+1
qn−2+1

− (qn−3−1)q2−pb(qn−3−1)
qn−2+1

= q− q2+q+1
qn−2+1

− qn−1−q2−qn−3pb+pb

qn−2+1
= q+−qn−1+qn−3pb−pb+q+1

qn−2+1
=

q+qn−3pb−pb+q+1
qn−2+1

= 2q+pb(qn−3−1)+1
qn−2+1

> 0.

On the other hand, q− q2+q+1
qn−2+1

−mpb q
n−3−1

qn−2+1
≤ qn−1+q−q2−q−1−(qpa−b−pa−b+1)(qn−3pb−pb)

qn−2+1
=

qn−1−q2−1−qpa−b(qn−3pb−pb)+pa−b(qn−3pb−pb)−(qn−3pb−pb)
qn−2+1

= qn−1−q2−1−qn−1+q2+qn−2−q−qn−3pb+pb

qn−2+1
=

−1+qn−2−q−qn−3pb+pb

qn−2+1
= qn−2+1−(2+q+(qn−3−1)pb)

qn−2+1
< 1.

�

Lemma B.6. Suppose that mk0 < k ≤ mk1. Then the number of gaps between

Sm,(k−1) and Sm,k is m(qn−3(q − pb) + 1)− k qn−2+1
q+1

+ qn+1
q+1

− 1.

Proof. The number of gaps between Sm,(k−1) and Sm,k is kA + mℓ0 − (k − 1)(A +
ℓ1)− 1 = mℓ0 − kℓ1 + A + ℓ1 − 1, which yields the formula in the statement. �

Lemma B.7. (1) There are gaps that are at least (m−1)(qn+1)+1 and which

are smaller than the elements in Sm,mk0 if and only if m ≤ pa−b = M1.

(2) If m ≤ pa−b = M1, then the number of gaps between (m− 1)(qn +1)+ 1 and

Sm,mk0 is qn −mpb(qn−1 − qn−2 + qn−3).

Proof. (1) There are gaps that are at least (m − 1)(qn + 1) + 1 and which are
smaller than the elements in Sm,mk0 if and only if mk0A+mℓ0 ≥ (m−1)(qn+
1)+2. This is equivalent to m(q+1−pb)(qn−1−qn−2)+m(qn−3(q−pb)+1) ≥
(m− 1)(qn + 1) + 2, that is, if and only if mqn −mqn−1 +mqn−1 −mqn−2 −
mqn−1pb+mqn−2pb+mqn−2−mqn−3pb+m ≥ mqn+m− qn−1+2, which is
equivalent to qn−1 ≥ mpb(qn−1− qn−2+ qn−3) i.e., m ≤ ⌊ qn−1

pb(qn−1−qn−2+qn−3)
⌋.

Here we remark that the Euclidean division of qn − 1 by pb(qn−1 − qn−2 +
qn−3) has quotient pa−b and remainder qn − 1− (qn − qn−1 + qn−2) = qn−1 −
qn−2 − 1. So, the result follows.

(2) It follows from the formula mk0A+mℓ0 − (m− 1)(qn + 1)− 1 and a similar
simplification as before.

�
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Lemma B.8. Let M3 = qpa−b−1. The set Cm is not empty if and only if m ≤ M3.

Proof. It is clear that for m < M2, Cm 6= ∅. For m ≥ M2, Cm 6= ∅ if and only if

qn − q − 1 +m(q + 1)(qn−3(q − pb) + 1)

qn−2 + 1
≥ m(q + 1)− q.

This is equivalent to qn−q−1+m(q+1)(qn−3(q−pb)+1− (qn−2+1)) ≥ −q(qn−2+
1), which in turn is equivalent to qn − 1 − m(q + 1)(pbqn−3) ≥ −qn−1, i.e., m ≤

⌊ (q+1)qn−1−1
(q+1)pbqn−3 ⌋ = qpa−b − 1. �

Corollary B.9. S ′ = ⊔M3

m=1Bm

Theorem B.10. The genus of S ′ is qn+2−pbqn−q3+q2

2pb
.

Proof. By Lemma B.1, Lemma B.2, Lemma B.3, Lemma B.4, Lemma B.5, Lemma B.6,
Lemma B.7, Lemma B.8, and Corollary B.9, it easily follows that the genus of S ′ is

M1∑

m=1

(
qn −mpb(qn−1 − qn−2 + qn−3)

)

+
M1∑

m=1

mk1∑

k=mk0+1

(
mqn−3(q − pb) +m− k

qn−2 + 1

q + 1
+

qn + 1

q + 1
− 1

)

+

M2∑

m=M1+1

mk1∑

k=mq+m−q

(
mqn−3(q − pb) +m− k

qn−2 + 1

q + 1
+

qn + 1

q + 1
− 1

)

+

M3∑

m=M2+1

q2−q+m(q−pb+1)∑

k=mq+m−q

(
mqn−3(q − pb) +m− k

qn−2 + 1

q + 1
+

qn + 1

q + 1
− 1

)

= M1q
n − pb(qn−1 − qn−2 + qn−3)M1(M1 + 1)/2

+

(
qn + 1

q + 1
− 1

)


M1∑

m=1

mk1∑

k=mk0+1

1 +

M2∑

m=M1+1

mk1∑

k=mq+m−q

1 +

M3∑

m=M2+1

q2−q+m(q−pb+1)∑

k=mq+m−q

1




+ (qn−3(q − pb) + 1)




M1∑

m=1

m

mk1∑

k=mk0+1

1 +

M2∑

m=M1+1

m

mk1∑

k=mq+m−q

1 +

M3∑

m=M2+1

m

q2−q+m(q−pb+1)∑

k=mq+m−q

1




−
qn−2 + 1

q + 1




M1∑

m=1

mk1∑

k=mk0+1

k +

M2∑

m=M1+1

mk1∑

k=mq+m−q

k +

M3∑

m=M2+1

q2−q+m(q−pb+1)∑

k=mq+m−q

k




= M1q
n − pb(qn−1 − qn−2 + qn−3)M1(M1 + 1)/2

+

(
qn + 1

q + 1
− 1

)
(A+B + C)

+ (qn−3(q − pb) + 1) (D + E + F )

−
qn−2 + 1

q + 1
(G+H + I) ,
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where

A =

M1∑

m=1

mk1∑

k=mk0+1

1 =

M1∑

m=1

(mk1 −mk0) = (k1 − k0)
M1(M1 + 1)

2

B =

M2∑

m=M1+1

mk1∑

k=mq+m−q

1 =

M2∑

m=M1+1

(mk1 −mq −m+ q + 1)

= (q + 1)(M2 −M1) + (k1 − q − 1)

M2∑

m=M1+1

m

= (q + 1)(M2 −M1) + (k1 − q − 1)(
M2(M2 + 1)−M1(M1 + 1)

2
)

C =

M3∑

m=M2+1

(q2 −mpb + 1) = (q2 + 1)(M3 −M2)− pb(
M3(M3 + 1)−M2(M2 + 1)

2
)

D =

M1∑

m=1

m(mk1 −mk0) = (k1 − k0)

M1∑

m=1

m2 = (k1 − k0)(
M1(M1 + 1)(2M1 + 1)

6
)

E =

M2∑

m=M1+1

m(mk1 −mq −m+ q + 1) = (q + 1)

M2∑

m=M1+1

m+ (k1 − q − 1)

M2∑

m=M1+1

m2

= (q + 1)(
M2(M2 + 1)−M1(M1 + 1)

2
) + (k1 − q − 1)

M2(M2 + 1)(2M2 + 1)−M1(M1 + 1)(2M1 + 1)

6

F =

M3∑

m=M2+1

m(q2 −mpb + 1)

= (q2 + 1)(
M3(M3 + 1)−M2(M2 + 1)

2
)− pb(

M3(M3 + 1)(2M3 + 1)−M2(M2 + 1)(2M2 + 1)

6
)

G =

M1∑

m=1

(
mk1(mk1 + 1)−mk0(mk0 + 1)

2
) =

k1 − k0

2

M1∑

m=1

m+
k21 − k20

2

M1∑

m=1

m2

=
k1 − k0

2

M1(M1 + 1)

2
+

k21 − k20
2

M1(M1 + 1)(2M1 + 1)

6

=
(k1 − k0)m(m+ 1)

4
+

(k21 − k20)M1(M1 + 1)(2M1 + 1)

12

H =

M2∑

m=M1+1

(
mk1(mk1 + 1)− (m(q + 1)− q − 1)(m(q + 1)− q)

2
)

= −
q(q + 1)

2
(M2 −M1) + (

k1 + (2q + 1)(q + 1)

2
)
M2(M2 + 1)−M1(M1 + 1)

2

+
k21 − (q + 1)2

2

M2(M2 + 1)(2M2 + 1)−M1(M1 + 1)(2M1 + 1)

6

= −
q(q + 1)

2
(M2 −M1) +

(k1 + (2q + 1)(q + 1))(M2(M2 + 1)−M1(M1 + 1))

4

+
(k21 − (q + 1)2)(M2(M2 + 1)(2M2 + 1)−M1(M1 + 1)(2M1 + 1))

12

I =

M3∑

m=M2+1

q2−q+m(q−pb+1)∑

k=mq+m−q

k
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=

M3∑

m=M2+1

(
(q2 − q +m(q − pb + 1))(q2 − q + 1 +m(q − pb + 1))− (m(q + 1)− q − 1)(m(q + 1)− q)

2

)

=
(q2 − q)(q2 − q + 1)− q(q + 1)

2
(M3 −M2)

+
((q − pb + 1)(2q2 − 2q + 1) + (q + 1)(2q + 1))(M3(M3 + 1)−M2(M2 + 1))

4
((q − pb + 1)2 − (q + 1)2)(M3(M3 + 1)(2M3 + 1)−M2(M2 + 1)(2M2 + 1))

12

A Sage simplification of this leads to

= 1/2qn+1pa−b − 1/2qn − 1/2q2pa−b + 1/2qpa−b =
qn+1pa−b − qn − q2pa−b + qpa−b

2
�

We remark here that the result does not vary if we replace M2 = (q − 1)pa−b by
M ′

2 = (q − 1)pa−b − 1.
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