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Abstract Attributed graphs are used to represent patterns composed of sev-
eral parts in pattern recognition. The nature of these patterns can be diverse,
from images, to handwritten characters, maps or fingerprints. Graph edit dis-
tance has become an important tool in structural pattern recognition since
it allows us to measure the dissimilarity of attributed graphs. It is based on
transforming one graph into another through some edit operations such as
substitution, deletion and insertion of nodes and edges. It has two main con-
straints: it requires an adequate definition of the costs of these operations and
its computation cost is exponential with regard to the number of nodes. In this
paper, we first present a general framework to automatically learn these edit
costs considering graph edit distance is computed in a sub-optima way. Then,
we specify this framework in two different models based on neural networks
and probability density functions. An exhaustive practical validation on 14
public databases, which have different features such as the size of the graphs,
the number of attributes or the number of graphs per class have been per-
formed. This validation shows that with the learned edit costs, the accuracy
is higher than with some manually imposed costs or other costs automatically
learned by previous methods.
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1 Introduction

Attributed graphs have been of crucial importance in pattern recognition
throughout more than four decades, [5,35,36], since they have been used to
model several kinds of problems. Interesting reviews of techniques and applica-
tions are [8,48,25,18]. If elements in pattern recognition are modelled through
attributed graphs, error-tolerant graph-matching algorithms are needed that
aim to compute a mapping between nodes of two attributed graphs that min-
imises some kind of objective function. To that aim, one of the most widely
used methods to evaluate an error-correcting graph matching is graph edit
distance (GED) [28,46,45,19,31].

GED is defined as the minimum amount of required distortion to trans-
form one graph into another. To this end, a number of distortion or edit
functions consisting of deletion, insertion, and substitution of nodes and edges
are defined. To quantitatively evaluate the graph transformation, an edit cost
is assigned to each edit operation according to the amount of distortion that
it introduces in the transformation.

Fig. 1: Example of two graphs to be compared. The GED between G and
G′ is the cost of substituting two nodes, deleting a node, inserting a node,
substituting an edge, deleting an edge and inserting an edge.

For instance, in Figure 1, GED(G,G′) is defined such that G is trans-
formed into G′ given the transformation highlighted by the arrows. This is
done by substituting v3 by v′3 and v2 by v′2. Moreover, v1 is deleted and v′1 is in-
serted. The distance is the cost of these operations. That is, SubsNode(v3, v

′
3)+

SubsNode(v2, v
′
2) +DelNode(v1) + InsNode(v′3) + SubsEdge(v3, v2, v

′
3, v
′
2) +

DelEdge(v3, v1)+InsEdge(v′3, v
′
1). Other transformations generate other costs

and so, the distance becomes the minimum of the costs of all transformations.
Thus, the structural and semantic dissimilarity of graphs is only correctly re-
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flected by the GED if the underlying edit costs are defined appropriately and
depending on the application at hand.

The aim of this paper is to learn these edit costs. Figure 2 shows our
general scheme. In a first stage, the learning method presented in this paper
deduces the edit costs that better fit the application at hand given the learning
database. In a second stage, these costs are used the deduce the graph edit
distances between graphs in a pattern recognition application. Since computing
the GED is exponential with regard to the number of nodes, we present a
framework that assumes a sub-optimal computation of it. When the edit costs
have been learned or manually set, the sub optimal GED can be computed
between pairs of attributed graphs by a graph matching algorithm. Note that
it is needed the definition of the approximation of the GED in the learning
stage to be the same as the one in the recognition stage.

Fig. 2: General graph matching scheme.

Seven methods have been presented to learn the edit costs. The optimisa-
tion function (recognition ratio, correspondence accuracy or Dunn index)and
the nature of their edit costs (Real number, Neural network, probability dis-
tribution or constant) are their main characteristics. Section 2.2 explains the
features and differences of these methods.

This paper is structured as follows. In Section 2, we define the attributed
graphs and the GED. We also summarise the learning methods applied to
learn the edit costs and also the methods that embed graphs into vectors. In
Section 3, we explain our general learning framework. In Section 4, we apply
this framework to two specific models. In Section 5, we empirically compare
our method to the seven methods commented before given fourteen databases.
Section 6 concludes the paper.
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This paper is based on a preliminary contribution presented in [38]. The
current paper has been extended with respect to both the theoretic founda-
tion and the experimental validation. On the one hand, the description of the
novel approach as well as the underlying concepts are more detailed as in the
preliminary paper. On the other hand, the experimental evaluation as well
as the discussion has been substantially extended. In particular, we have in-
creased the number of databases to fourteen and also, the number of compared
methods to the seven ones previously commented.

2 Attributed graphs and graph edit distance

Suppose we have a pair of graphs, G and G′. Also suppose the ath node in G
is represented as va and the ith node in G′ is represented as v′i. Similarly, the
edge between the va node and the bb node in G is represented as ea,b. And
finally, the edge between v′i node and the v′j node in G′ is represented as e′i,j .

The GED between two attributed graphs consists of finding the best com-
bination of edit operations that transform one graph into another [44]. Three
operations are considered on the nodes and also on the edges: Substitution,
deletion and insertion. To quantify the quality of each edit operation, a cost is
assigned to them depending on the attributes on the involved nodes or edges.
CS

n (a, i) is the cost of substituting the node va by the node v′i, C
D
n (a) is the

cost of deleting the node va and CI
n(i) is the cost of inserting the node v′i.

Similarly, CS
e (a, i, b, j) is the cost of substituting the edge ea,b by the edge e′i,j ,

CD
e (a, b) is the cost of deleting the edge ea,b and CI

e (i, j) is the cost of inserting
the edge e′i,j . Thus, the GED is defined as the transformation from one graph
into another that obtains the minimum cost.

This graph transformation can be defined through a node-to-node mapping
f between nodes of both graphs. In this way, we represent the mapping from
node va to node v′i as f(a) = i . We suppose both graphs have the same
number of nodes since they have been expanded with new nodes that have
a special attribute. We call these new nodes as Null. To assure all possible
combinations of node deletion, insertion and substitution are considered, each
of the two graphs to be compared is extended by the number of nodes of the
other graph. Thus, the final two graphs have the same number of nodes and
f is imposed to be bijective. Note, the edit operations on the edges (deletion,
insertion or substitution) are forced by the mapping of the nodes that the
edges connect. For instance, an edge has to be deleted if a node connected to
it is deleted. Given the mapping f(a) = i from node va to node v′i, we say that
represents a node substitution if both nodes are not Null. Contrarily, if node
v′i is a Null and va is not, we say that it represents a deletion. Finally, if node
va is a Null and v′i is not, we say that it represents an insertion. Similarly
happens with the edges. The cases that both nodes or both edges are Null
are not considered since they are defined as the costs are always zero. Both
graphs have been extended with a Null node to incorporate a node deletion
and a node insertion.
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In the rest of this section we first summarise how the GED is computed;
then we list the learning models applied to learn the edit cost functions pre-
sented until now; finally we list the embedding methods that transform graphs
into vectors.

2.1 Computing graph edit distance

Computing the GED is cast as a shortest path problem, often implemented
as an A* search algorithm [23,17]. These types of problems are considered to
be NP-complete [20]. Thus, the computational complexity of these methods
is exponential in the number of nodes of the involved graphs. For this reason,
greedy algorithms have been presented that deduce a sub-optimal distance and
mapping between nodes in polynomial time. The main idea is to optimise local
criteria instead of global criteria. For instance, the Graduated assignment [22],
the Bipartite graph matching [32,39–41,34] or the Greedy edit distance algo-
rithm [33,13]. Other algorithms seem to obtain more accurate correspondences
at the expense of increasing the computational cost [1] or [4].

These greedy algorithms define a bi-dimensional matrix in which the num-
ber of rows or columns is related to the graph order and each cell represents
the cost of mapping a pair of nodes (one per graph) and their local structures
(for instance, the connected edges and the nodes connceted to these edges).
Exceptionally, the Believe matching algorithm [37] deduces a node-to-node
mapping in linear computational cost and without the computation of the
bi-dimensional cost matrix, at the expense of needing an initial small set of
node-to-node mappings.

All of these algorithms have the substitution, insertion and deletion costs
of nodes and edges as input parameters. To this end, the edit cost between two
graphs given a specific node-to-node mapping f between nodes of both graphs
is defined as the addition of the substitution, deletion and insertion costs of
their local structures:

EditCostf (G,G′) =
∑

∀Subsf (va,v′
i
)

CS(a, i) +
∑

∀Delf (va)

CD(a) +
∑

∀Insf (v′
i
)

CI(i)

(1)
CS(a, i) denotes the cost of substituting the local structure Sa centred at

node va by the local structure S′i centred at node vi. C
D(a) denotes the cost

of deleting the local structure Sa and CI(i) denotes the cost of inserting the
local structure S′i. These local structure costs depend on the structure itself
and also on the costs on nodes and edges CS

n (a, i), CD
n (a) , CI

n(i), CS
e (a, i, b, j),

CD
e (a, b) and CI

e (i, j). Finally, Subsf , Delf and Insf represent the set of node
substitution, deletion and insertion operations, respectively, carried out to
transform G into G′. The sub-optimal graph edit distance is defined as:

GEDsub−optimal(G,G
′) = min

∀f
(EditCostf (G,G′)) (2)
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2.2 Learning models for graph edit distance

Seven methods have been presented to learn the edit costs, which are sum-
marised in Table 1. Considering the objective function in the learning method,
most of them aims to maximise the recognition ratio or the correspondence
accuracy. Only the first two presented methods have another optimisation
function. Most of them assume the substitution costs are weighted Euclidean
distances and learn the weighting parameters [7,24,12]. Another one, [10], con-
siders the insertion and deletion costs as constants and then applies optimisa-
tion techniques to tune these two parameters. Finally, in [2], the optimisation
method learns the weights of the weighted Euclidean distance and also the
insertion and deletion constant costs. Nevertheless, there are two other papers
that define the edit costs as functions. The first one [30] introduces a prob-
abilistic model of the distribution of graph edit operations that allows them
to derive edit costs. The second paper [29] is based on a self-organising map
model in which the edit costs are the output of a neural network. In both
papers, the learning set is composed of classified graphs and the edit costs are
optimised with regard to Dunn’s index [16]. Except for the algorithm in [10],
these methods need the attributes on the nodes and edges to be real numbers.
If it was not the case, the model has to be adapted, for instance, assigning a
numerical value to each non-numerical value.

The method we present is close to methods [30,29] since it synthesises a
function instead of learning weights or constants. One of the drawbacks of
these methods is the runtime of the learning algorithm since the algorithm
is based on an iterative optimisation criterion in which in each iteration the
GED between all combinations of graphs in the learning set is computed. Our
method avoids this process.

Finally, the seven methods mentioned before deduce, in a sub-optimal way,
the edit costs on nodes and edges, CS

n , CD
n , CI

n, CS
e , CD

e and CI
e . Our method

is the first one that deduces, also in a sub-optimal way, the edit costs on the
stars, CS , CD and CI . This is because we assumed adding some structural
information could make the learning method to return better correspondences
although being sub-optimal the algorithm.

2.3 Embedding graphs into vectors

Graphs have some limitations when they are applied to machine learning due
to their intrinsic relational representation. This is because some trivial math-
ematical operations used in the traditional numeric machine learning repre-
sentations have not an equivalence in the graph domain. Given an arbitrary
set of graphs, a possible way to address this problem is to define an embed-
ding function from the graph domain to a vector space [21]. However, defining
such embedding functions is extremely challenging, when the constraints on
time efficiency and preserving the underlying structural information is con-
cerned. Explicit graph embedding is based on defining a function that, given
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Ref. Authors Objective function Learning method

2005

[29]

Neuhaus

Bunke

Average of 8 indices:

Davies-Bouldin, Dunn,

C, Goodman-Krusk,

Calinski-Haraba, Rand,

Jaccard, Fowlkes-Mallo

The method learns a neural network to

define the substitution, deletion and

insertion costs on nodes and edges.

2007

[30]

Neuhaus

Bunke

Dunn Index The method learns a probability density

function to define the substitution,

deletion and insertion costs on nodes

and edges.

2009

[7]

Caetano

McAulery

Cheng

Le

Smola

Correspondence accuracy The method learns the weights of the

weighted Euclidean distance to define

the substitution cost on nodes and

edges. Insertion and deletion of nodes

and edges are not learned and assumed

to be constant

2012

[24]

Leordeanu

Sukthankar

Herbert

Recognition ratio The same than [7].

2015

[10]

Cortés

Serratosa

Correspondence accuracy The method learns the deletion and

insertion costs on nodes and edges as

constants (Real numbers). The

substitution cost is the Euclidean

distance between the attributes on nodes

or on edges.

2016

[12]

Cortés

Serratosa

Correspondence accuracy The same than [7].

2018

[2]

Algabli

Serratosa

Correspondence accuracy The method learns the weights of the

weighted Euclidean distance to define

the substitution cost and also learns the

deletion and insertion costs as constants

on nodes and edges.

Table 1: Learning models for graph edit distance.



8 Pep Santacruz, Francesc Serratosa

a graph, generates a point in an Euclidean space. These embedding functions
are divided into four classes. 1) Graph probing [26] that measures the fre-
quency of specific substructures. 2) Spectral graph theory [6], which analyses
the structural properties of graphs in terms of eigenvectors and eigenvalues.
3) Dissimilarity measurements [15], in which the function depends on its dis-
tance to a selected set of graphs. 4) Geometric deep learning [14], in which the
embedding uses deep neural networks.

Our learning method uses an explicit graph embedding based on graph
probing (Section 3.3). We selected this method since the structural and se-
mantic information contained in a star is limited and the computational cost
of embedding a star is only linear with respect to the number of outgoing edges
per node.

We point out that in the neural-network research field, recursive neural
networks [3] have been recently defined, which are neural networks that allow
structured input and return a structure prediction. They have been successfully
used, for instance, in learning sequences and tree structures. Moreover, non-
parametric small random networks for structures [47] have also been recently
presented, which are based on an implicit embedding of the graphs, realised
via representing the graph as a binary relation. This paper is out of the scope
of these new methods.

3 The proposed learning model

In this section, we first present a general scheme of our learning model and
then we explain the main two steps of this scheme. For simplicity, we have
defined the local structure as a star, although other structures could be used.
Stars are composed of a central node, the adjacent edges and also the nodes
connected to these edges.

There are two main differences between our model and the other seven
models commented above.

- The first one is that we present a general framework that can be partic-
ularized in several techniques, but the other ones present directly one of these
techniques. For this reason, in the rest of the current section, we present a
general model to learn the functions that define edit costs of the GED. This
model opens the door for the learning algorithms to be applied on our model
to learn these costs. In Section 4, we present two concrete techniques of our
model. The first one is based on a probability density function learned through
a multi-distribution Gaussian and the second one is based on a linear model
learned through a neural network.

- The second one is that our general framework learns the edit functions on
the local structures of the graphs, that is, it learns functions CS(a, i), CD(a)
and CI(i). Contrarily, the other ones learn the edit functions on the nodes and
edges, that is, CS

n (a, i), CD
n (a), CI

n(i), CS
e (a, i, b, j), CD

e (a, b) and CI
e (i, j). We

believe that including the local information makes the learning algorithm to
deduce more accurate edit costs. The paper in [2] could be considered somehow
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between both options since it learns the edit costs of nodes and edges (CS
n (a, i),

CD
n (a), CI

n(i), CS
e (a, i, b, j), CD

e (a, b) and CI
e (i, j)) but considering the stars of

the nodes Sa and S′i (the central node va or v′i and their neighbouring edges
and nodes).

3.1 General problem setting

Figure 3 shows the basic scheme of our learning method. We want to learn the
substitution, insertion and deletion costs of stars CS , CD and CI through a
supervised learning method.

- Database: In machine learning, registers of databases are composed of
an element and their class. In our case, the element of the p register in the
database is composed of a pair of graphs (Gp, Gp′) and their ground-truth

correspondence f̂p. These ground-truth correspondences f̂p have been deduced
by an external system (human or artificial) and they are considered to be
the best mappings for our learning purposes. Note that these ground-truth
correspondences are independent of the definition of the edit costs. The aim
of the learning method is to define these edit costs as functions so that the
deduced correspondences become close to the ground-truth correspondences
f̂p for all pairs of graphs Gp, Gp′.

Fig. 3: General machine learning scheme composed of two steps. In the first
one, six sets of stars are defined. In the second one, a supervised learning
algorithm is used. The registers of the database are composed of pairs of
graphs and their ground-truth correspondence.

This representation of the data in the databases is not new at all. It has
been used by the learning methods [2,7,10,12]. Clearly, an expert is needed
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to impose these correspondences, which could be a time-consuming task. This
is the reason why methods [9,11] implemented a graphical human interactive
application to make easier this task. In those cases, the human selected salient
points of the images in which the graph nodes were located. Thus, this database
structure has been used in [9,11] to locate a fleet of robots given only the im-
ages taken from their embedded cameras and some human interaction, when
the completely automatic method failed. Another example of this database
structure is the human identification through fingerprint matching. Given two
fingerprints, a specialist decides which is the best correspondence between
minutiae of these fingerprints. Thus, the specialist knows nothing about the
GED nor edit costs and therefore the correspondence that the specialist de-
cides is not influenced by these parameters. Note this data representation has
the advantage that the data does not need to be previously classified (we do
not need to know the ”class” of the image the robot is looking at) but it is
needed to map some salient points of pairs of images or the nodes of their
graph representations.

- First step: In the first step of our scheme (Section 3.2), six different sets of
stars are defined given the database registers composed of two graphs and their
ground-truth correspondence. TrueSubstitution: The stars that are mapped
by the ground-truth correspondences. FalseSubstitution: The stars that are
not mapped. TrueDeletion: The stars that the ground-truth correspondences
impose that have to be deleted. FalseDeletion: The stars that do not have to
be deleted. TrueInsertion: The stars that the ground-truth correspondences
impose that have to be inserted. FalseInsertion: The stars that do not have
to be inserted. Stars of both graphs can appear in several sets.

- Second step: In the second step of our scheme (Section 3.3), our machine
learning model deduces functions CS , CD and CI , given the six sets of stars.
It is based on embedding the stars into vectors and applying classical machine
learning algorithms on these vectors. We like our graph matching algorithm to
deduce node-to-node correspondences that would be close to the ground-truth
correspondences.

Note several correspondences may be optimal for graph edit distance (Equa-
tion 2) in the learning databases. Thus, some of them might not be the ground-
truth correspondence. If the learning method optimised the graph edit dis-
tance, then it might happen that the learned costs could generate correspon-
dences that, although been optimal, are not the ground-truth correspondence.
In our learning method, the ground-truth correspondence is implicitly con-
sidered in the embedding procedure and the optimisation procedure tends to
deduce correspondences close to it. Thus, the fact of having several optimal
correspondences does not influence on our method since they are considered
as other correspondences that the method does not want to optimise.
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Fig. 4: Ground-truth correspondence f̂p from Gp to Gp′. The non mapped
nodes are deleted (the two ones that belong to Gp) or inserted (the two ones
that belong to G′p)

3.2 Defining the six sets of stars

In this section, we define the six sets of stars introduced in the previous section.
The following rules concern to the whole registers in the database, supposing
that the p register in the database is composed of a pair of graphs (Gp, Gp′)

and their ground-truth correspondence f̂p. Moreover, we suppose that Sp
a ∈ Gp

and Sp
i
′ ∈ Gp′. The three first sets are defined by the explicit application

of the ground-truth correspondences. The three last ones are defined by the
combinations of mappings not allowed by the ground-truth correspondences.

TrueSubstitution: Composed of all pairs of stars {Sp
a , S

p
i
′} that the ground-

truth correspondence imposes Subsf (va, v
′
i).

TrueDeletion: Composed of stars Sp
a that the ground-truth correspondence

imposes Delf (va).

TrueInsertion: Composed of stars Sp
i
′

that the ground-truth correspon-
dence imposes Insf (v′i).

FalseDeletion: Composed of all combinations of pairs of stars {Sp
a , S

p
j
′}

that j 6= i and also all combination of pairs of stars {Sp
b , S

p
i
′} that b 6= a if the

ground-truth correspondence imposes Subsf (va, v
′
i).

FalseDeletion: Composed of all stars Sa
p that the ground-truth correspon-

dence imposes Subsf (va, v
′
i).

FalseInsertions: Composed of all stars Sp
i
′

that the ground-truth corre-
spondence imposes Subsf (va, v

′
i).

Figure 5 shows the classes of pairs of stars previously defined, given the
substitutions, deletions and insertions of the example in Figure 4.



12 Pep Santacruz, Francesc Serratosa

Fig. 5: Representation of the six classes given by the example in Figure 4.

3.3 Embedding stars into vectors

The aim of this paper is to present a model to learn costs CS , CD and CI

based on a classical machine-learning method. As commented in Section 2.3,
classical machine learning methods need the prototypes to be represented as
vectors (points in a vector space) instead of graphs. Nevertheless, the new
papers published on this field define neural networks such that the input can
be defined as a graph. Considering that we are not going to use recursive neural
networks [3] neither small random networks [47], we first need to embed the
stars into vectors and then model the edit costs as functions that the input
parameters are vectors. Thus, the domain of these functions is a point in a
vector space (in the case of deletions and insertions) or two points (in the
case of substitutions) and the co-domain is a Real number. The embedding
has to encode the stars into equal-sized vectors. For this reason, we define the
embedding function as Φ that maps a star Sa into a point Ea in a T dimension
space. It is given as φ(Sa) = Ea. The value T is detailed above.

Considering the types of embedding functions summarised in Section 2.3
and that stars are small graphs with similar structure, we decided to define
the embedding function Φ as a function in the first class: Graph probing. We
discarded the embedding functions based on the spectral graph theory because
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they need the graphs to be much larger than stars and also we discarded the
functions based on deep learning because the number of samples were too low.
Finally, the dissimilarity measurements methods were also discarded since they
need a set of graphs (or stars in our case) to be used each time the embedding
is computed.

Figure 6 graphically shows the embedding of the star Sa. The first N
elements are the attributes on the nodes and the next one is the number of
nodes of the star, nSa

. The next cells are filled by the histograms generated by
the attributes on the external nodes and the attributes on the external edges.
Histograms hv(i)(Sa) and he(i)(Sa) represent histograms generated by the ith

attribute on the nodes and edges, respectively. Moreover, N and M are the
number of attributes on the nodes and edges, respectively. Finally, Ñ and M̃
are the number of bins of the node and edge histograms, respectively.

This representation has been inspired by the one presented in [26]. In that
case, the model embedded a whole graph into a vector. Since we want to
embed a star, which is a specific structure of a graph, we have somehow used
their embedding model. Thus, we have that the number of dimensions of the
Euclidean space is T = N + 1 + Ñ ∗N + M̃ ∗M .

Fig. 6: Embedding of star Sa into the vector Ea .

Then, given the six sets defined in the previous section, our method defines
three matrices as shown in Figure 7.

- The SubstitutionMatrix has three main columns. The first one has the
vectors Ea calculated by the embedding function given the first stars Sa of the
pairs of stars in the sets TrueSubstitution or FalseSubstitution. Similarly,
the second column has the vectors Ei

′ calculated by the embedding function
given the second stars Si

′ of the pairs of stars in the same sets. Finally, there is
a one in the third column if the pair of stars belongs to the TrueSubstitution
set and a zero if it belongs to the FalseSubstitution set.

- The DeletionMatrix has two main columns: The first one has the vectors
Ea calculated by the embedding function given the the stars Sa in the sets
TrueSubstitution or FalseSubstitution. There is a one in the second column
if Sa belongs to the TrueDeletion set and there is a zero if it belongs to the
FalseDeletion set.

- Similarly occurs with the InsertionMatrix but considering the stars S′i
in the sets TrueInsertion or FalseInsertion.

DeletionMatrix, InsertionMatrix and SubstitutionMatrix are used to
learn the edit functions CD, CI and CS , respectively. The first column in
the DeletionMatrix and InsertionMatrix and the first two columns in the
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Fig. 7: The three matrices used to learn the edit costs. The last column of
them is the information of the classes the points belong to.

SubstitutionMatrix are the input data of the machine learning method, whereas
the last column of them is the class to be learned. Note that these functions
are learned independently.

4 Particularization of our learning framework

In the previous sections, we have presented a general framework to learn the
edit functions. Although this framework could be concretized into different
methods, we present, in this section, only two different particularizations. After
these edit functions having been learned, several graph-matching algorithms
could be applied that use these edit functions in the classification process. In
the experimental evaluation, we computed the GED by the bipartite graph-
matching algorithm [39]. In this case, adapting the algorithm only means how
CS , CD and CI are defined in it. In the original definition of the algorithm,
these costs were computed considering that stars are graphs with a specific
structure.

In the next two sub-sections, we show how we deduce the edit costs.
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4.1 Neural Network

We model CS by a regression function learned through an artificial neu-
ral network, NNS . In the learning phase, the machine learning is fed by
SubstitutionMatrix (the first columns are the data and the last column is
the ideal output of the substitution function). When the neural network NNS

has learned the regression function, the substitution cost CS(Sa, S
′
i) is com-

puted as one minus the output of this neural network, NNS . We want the cost
to be low if the output of the neural network is close to 1 (the ground-truth
correspondence imposes that the stars have to be substituted). That is, the
neural network regression deduces the stars have to be substituted.

CS(Sa, S
′
i) = 1−Output(NNS , [Ea, E

′
i]) (3)

We model CD by another regression function based on an artificial neural
network, NND, in a similar way than CS . Nevertheless, in this case, we fed
the machine learning by DeletionMatrix. The first columns are the data and
the last column is the ideal output of the deletion function.

CD(Sa) = 1−Output(NND, [Ea]) (4)

Similarly occurs with the insertion cost CI but using the information of
InsertionMatrix. The first columns are the data and the last column is the
ideal output of the insertion function.

CI(S′i) = 1−Output(NN I , [E′i]) (5)

The method in [29] is similar to this particularisation except for it deduces
the costs on nodes and edges but not the costs on stars. Thus, six matrices
are defined, instead of our three matrices. Three matrices to define the costs
of substitution, deletion and insertion on the nodes and three more for the
costs on the edges. The embedding is simpler and it is only composed of the
attributes on nodes and edges and there are not histograms. Then, in [29], we
have Ea = λv(va) and E′i = λv(v′i). Similarly happens for the edges.

4.2 Probability density distribution

We define CS by two probability density functions based on a mixture of
Gaussians, PdfTrueS and PdfFalseS . The first density function is modelled
by columns that have the information of Ea and E′i in the SubstitutionMatrix,
but only using the rows that have a 1 in the last column (the ground-truth
correspondence imposes that the stars have to be substituted). The second
density function is modelled in a similar way but only using the rows that
have a 0 in the last column (these combinations of stars do not appear in the
ground-truth correspondence).

Thus, the substitution cost CS(Sa, S
′
i) is defined as the subtraction of the

probabilities obtained from these probability density functions (Equation 6).
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Constant 1 is needed to assure the cost is always positive. We want the cost
to be low if the probability obtained from the set TrueSubstitution is high or
the probability obtained from the set FalseSubstitution is low.

CS(Sa, S
′

i) = 1−Prob(PdfTrueS , [Ea, E
′
i]) +Prob(PdfFalseS , [Ea, E

′
i]) (6)

Functions CD and CI are modelled in a similar way. Nevertheless, matrices
DeletionMatrix and InsertionMatrix are used. Thus, we have:

CD(Sa) = 1− Prob(PdfTrueD, [Ea]) + Prob(PdfFalseD, [Ea]) (7)

CI(S′i) = 1− Prob(PdfTrueI , [E′i]) + Prob(PdfFalseI , [E′i]) (8)

In the same way as the neural network case, the method in [30] is similar
to this particularisation except for it deduces the costs on nodes and edges
but not the costs on stars. Again, the embedding is simpler, and it is only
composed of the attributes on nodes and edges and there are not histograms.

5 Experimental evaluation

The presented method has been validated using fourteen databases, which are
available at [42]. All of them were used to test other learning methods and were
previously published, for instance, the ones that belong to the public graph
repository Tarragona Graphs [27]. The main characteristic of these databases
is that their registers are not only composed of a graph and its class, but they
are composed of a pair of graphs and a ground-truth correspondence between
them, as well as their class. This register structure is useful to analyse and
develop graph matching algorithms and to learn their parameters in a broad
manner. Tables 2, 3, and 4 shows the main features of the fourteen databases.

We have measured the quality of the learning algorithms through the accu-
racy of the returned correspondence. The accuracy of a graph matching given
a pair of graphs is defined as the inverse of the normalised Hamming distance
between the returned correspondence and the ground-truth correspondence.
The returned accuracy of a learning method is the mean of all the accura-
cies computed in a database. We have experimentally validated our learning
method given a methodology composed of two steps. In the first one, we have
learned the edit costs given our method and other published ones. In the sec-
ond one, we have applied the general scheme presented in Figure 2, in which
the graph matching was the Bipartite graph matching [40], and we have de-
duced the accuracies of the returned correspondences. The accuracy is defined
as the inverse of the normalised hamming distance between the returned cor-
respondence and the ground-truth correspondences f̂p for all pairs of graphs
(Gp, Gp′). The returned accuracy of a learning method is the mean of all the
accuracies computed in a database.
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First Experiment

House

90

Hotel

90

House

1

Hotel

1
Noise Rotate Shear

Graph

Learn 8 8 37 68 68 68 68

Test 6 6 36 66 66 66 66

Val. 8 8 74 66 66 66 66

Corr.

Learn 4 4 37 34 34 34 34

Test 3 3 36 33 33 33 33

Val. 4 4 37 33 33 33 33

Num. of classes 1 1 1 1 1 1 1

Num. of attrib 60 60 60 60 60 60 60

Description SIFT

Avg. num. nodes 30 30 30 30 35 35 35

Avg. num. edges 156 154 156 152.7 180.6 183.8 185.7

Max. nodes 30 30 30 30 35 35 35

Max. edges 158 156 158 158 184 184 186

Max. D./I. 0 0 0 0 0 0 0

Avg. null D./I. 0 0 0 0 0 0 0

Table 2: Main features of the fourteen databases, first experiment. The first
row shows in which experiment the databases have been used.

Our method has been tested through four different specifications: Neural
Network (NN), Probability density function (PDF), Neural Network without
histograms (NNnoHis) and Probability density function without histograms
(PDFnoHis). In the last two options, the embedded domain does not have the
histograms. That is, the vector shown in Figure 6 is only composed of the
first N + 1 bins. Tables 5 and 6 show the technical specifications that have
achieved the best results. Considering the neural network experiments, symbol
− means that this experiment was no tested. The whole neural networks have
three layers. The three numbers in a cell are the number of neurons of the
input layer, the hidden layer and the output layer. Considering the probability
density distributions, we only could synthesise them in the case of PDFnoHis
in the second round of experiments.

Tables 7, 8 and 9 show the accuracy of the databases in Tables 2, 3, and
4 given the four particularizations of our method and the methods in [45,
7,24,12,2,10,30,29]. The values in these methods have been extracted from
the experimental sections of those papers, for this reason, some cells are not
filled. We have also added the results presented in [27]. In that paper, authors
present some accuracy results that the edit costs have been manually imposed
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Second Experiment

Letter

High

Letter

Med

Letter

Low

Graph

Learn 750 750 750

Test 750 750 750

Val. 750 750 750

Corr.

Learn 37500 37500 37500

Test 37500 37500 37500

Val. 37500 37500 37500

Num. of classes 15 15 15

Num. of attrib 2 2 2

Description (x,y)

Avg. num. nodes 4.6 4.6 4.6

Avg. num. edges 6.2 6.4 9

Max. nodes 8 9 9

Max. edges 12 14 18

Max. D/I. 4 5 5

Avg. null D./I. 0.4 0.4 0.4

Table 3: Main features of the fourteen databases, second experiment. The first
row shows in which experiment the databases have been used.

as constants, given two different configurations of the Bipartite graph matching
algorithm. One configuration that the edit costs are computed through the
stars and another one that the edit costs are computed through the degree (a
star without the external nodes).

Note that our method implemented as a probability density function with-
out the histograms in the embedded vector is almost similar to the method
presented in [29], except for we also embed the number of edges that the star
has and some implementation details that we do not know because they do not
appear in that publication. Similarly happens with our method implemented
as a neural network without the histograms in the embedded vector and the
method presented in [30].

We have performed three rounds of experiments. The difference between
them is the type of ground-truth correspondences that the databases have.

- In the first round of experiments, we have used the first seven databases
in Tables 2, 3, and 4. In these databases, the ground-truth correspondences
do not have deletion nor insertion operations. Then, it is not possible for
the learning methods to learn these edit functions. Thus, they are useful to
analyse how the learning algorithms deduce the substitution cost CS without
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Third Experiment

Boat
East

Park

East

South
Resid

Graph

Learn 5 5 5 5

Test 5 5 5 5

Val. - - - -

Corr.

Learn 25 25 25 25

Test 25 25 25 25

Val. - - - -

Num. of classes 1 1 1 1

Num. of attrib 64 64 64 64

Description SURF

Avg. num. nodes 50 50 50 50

Avg. num. edges 278.4 276 278.8 276.4

Max. nodes 50 50 50 50

Max. edges 282 280 282 278

Max. D/I. 50 47 50 50

Avg. null D./I. 32 34 37 32

Table 4: Main features of the fourteen databases, third experiment. The first
row shows in which experiment the databases have been used.

Number of neurons per layer

Algorithm
First

Experiment

Second

Experiment

Third

Experiment

NN

NNS 1321-500-2 45-45-2 1409-500-2

NND - 23-23-2 705-352-2

NNI - 23-23-2 705-352-2

NNnoHis

NNS 122-122-2 5-5-2 130-130-2

NND - 3-3-2 65-65-2

NNI - 3-3-2 65-65-2

Table 5: Configuration of the neural networks and probability density functions
in the four specifications of our method: NN and NNnoHis. ’-’ means that we
were not able to define the model.
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Number of Gaussian distributions

Algorithm
First

Experiment

Second

Experiment

Third

Experiment

PDF

PdfTrueS - 2 -

PdfTrueD - 1 -

PdfTrueI - 1 -

PDFnoHis

PdfTrueS - 2 -

PdfTrueD - 1 -

PdfTrueI - 1 -

Table 6: Configuration of the neural networks and probability density functions
in the four specifications of our method: PDF and PDFnoHis. ’-’ means that
we were not able to define the model.

influence of the insertion and deletion costs, CD and CI . This first round of
experiments is useful to fairly compare our framework to the methods [7,24,
12,30,29], which only learn the substitution costs.

When the substitution costs have been learned, the pattern recognition
model applies the graph matching algorithm with the learned substitution
costs CS and the insertion and deletion costs CD = Inf and CI = Inf .
These values are set to force the graph matching algorithm to return the
correspondences without insertion and deletion operations, similarly to the
ground-truth correspondences.

The first we realise is that our method with the neural network (NN) and
the one in [30] (which is the same as our method but without embedding
the number of edges per node and the histograms) obtains the maximum
accuracy (all the node-to-node mappings are properly assigned). Moreover, the
algorithm that computes the probability density method is not able to deduce
the multimodal Gaussian function and returns “ill conditioned”. We believe
it is not possible to deduce the Gaussian functions due the graph nodes have
a high number of attributes (thus the multimodal Gaussian has 1321 and 122
dimensions in the first experiment, and 1409 and 130 in the third experiment)
but the number of correspondences per class is low (see Tables 2, 3, and 4).

- In the second round of experiments, we analyse the complete method
(learning the substitution, deletion and insertion functions), but using graphs
that have less attributes to void the “ill conditioned” in the probability density
function. In this case, we have used the Letter databases presented in Tables
2, 3, and 4, which their graphs have only two attributes in the nodes and their
correspondences have insertions and deletions. Our method has been compared
to the methods that learn the substitution, deletion and insertion costs, which
are [2,10,30,29,27].
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First Experiment

Algorithm
House

90

Hotel

90

House

1

Hotel

1
Noise Rotate Shear

PDF i.c. i.c. i.c. i.c. i.c. i.c. i.c.

NN 1 1 1 1 1 1 1

PDFnoHis i.c. i.c. i.c. i.c. i.c. i.c. i.c.

NNnoHis 1 1 1 1 1 1 1

[29] i.c. i.c. i.c. i.c. i.c. i.c. i.c.

[30] 1 1 1 1 1 1 1

[7] 0.85 0.90 - - 0.67 0.98 0.57

[24] - - 1 0.98 - - -

[12] 0.77 0.79 1 1 0.81 0.45 0.82

[2] 1 1 0.88 0.97 0.99 1 1

[27] Star - - - - - - -

[10] Degree - - - - - - -

[10] - - - - - - -

[45] Cvd = 1

Cve = 1
- - - - - - -

[45]Cvd = .5

Cve = .5
- - - - - - -

Table 7: Accuracies deduced by the methods referenced in the first column
given the fourteen databases. The cells marked with a ”−” are values not given
in the original papers. ”i.c” means ”ill conditioned” (the learning method is not
able to generate the Gaussian function). The first four rows show the accuracies
of our method considering four adaptations (NN and PDF are Neural network
and Probability density function methods: NNnoHis and PDFnoHis are the
same adaptations but without the histograms in the embedding vector). First
experiment.

Similarly to the first round of experiments, the neural network with his-
tograms is the one that achieves the highest accuracy. Moreover, our method
with the probability density functions continues not being able to deduce the
Gaussian function. Nevertheless, our method without the information of the
histograms is able to synthesise the Gaussian functions and return some re-
sults similar to other methods. In these databases, it seems as the histograms
positively contribute to the learning process since our method with neural
networks returns a higher accuracy than the one in [30]. Finally, authors of
paper [27] claims that their presented results are the best ones that they had
computed, given different combinations of edit costs. Our method obtains bet-
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Second Experiment

Algorithm
Letter

High

Letter

Med

Letter

Low

PDF i.c. i.c. i.c.

NN 0.91 0.90 0.98

PDFnoHis 0.83 0.76 0.93

NNnoHis 0.89 0.87 0.97

[29] 0.80 0.75 0.90

[30] 0.86 0.87 0.91

[7] - - -

[24] - - -

[12] - - -

[2] 0.82 0.70 0.85

[27] Star 0.89 0.90 0.97

[10] Degree 0.87 0.85 0.97

[10] - - 0.71

[45] Cvd = 1

Cve = 1
- - -

[45]Cvd = .5

Cve = .5
- - -

Table 8: Accuracies deduced by the methods referenced in the first column
given the fourteen databases. The cells marked with a ”−” are values not given
in the original papers. ”i.c” means ”ill conditioned” (the learning method is
not able to generate the Gaussian function). The first four rows show the ac-
curacies of our method considering four adaptations (NN and PDF are Neural
network and Probability density function methods: NNnoHis and PDFnoHis
are the same adaptations but without the histograms in the embedding vec-
tor). Second experiment.

ter or similar results in the three databases, although the difference is not so
important.

- In the third round of experiments, we analyse the complete method (learn-
ing the substitution, deletion and insertion functions), as we did in the second
round of experiments, but graphs have a larger number of attributes. We used
the databases in the last four columns in Tables 2, 3, and 4, in which graphs
have 64 attributes. We compared our method to the ones presented in [45,10,
30,29]. Figure 8 shows the correspondence deduced by [10] given two images
of the Boat database and two images of the Letter database. In both cases,
there are correct and wrong node-to-node mappings.
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Third Experiment

Algorithm Boat
East

Park

South

Park
Resid

PDF i.c. i.c. i.c. i.c.

NN 0.14 0.15 0.18 0.17

PDFnoHis i.c. i.c. i.c. i.c.

NNnoHis 0.44 0.56 0.40 0.55

[29] i.c. i.c. i.c. i.c.

[30] 0.44 0.56 0.40 0.55

[7] - - - -

[24] - - - -

[12] - - - -

[2] 0.16 0.13 0.07 0.15

[27] Star - - - -

[10] Degree - - - -

[10] 0.22 0.21 0.20 0.20

[45] Cvd = 1

Cve = 1
0.32 0.31 0.29 0.36

[45]Cvd = .5

Cve = .5
0.34 0.34 0.29 0.45

Table 9: Accuracies deduced by the methods referenced in the first column
given the fourteen databases. The cells marked with a ”−” are values not given
in the original papers. ”i.c” means ”ill conditioned” (the learning method is
not able to generate the Gaussian function). The first four rows show the ac-
curacies of our method considering four adaptations (NN and PDF are Neural
network and Probability density function methods: NNnoHis and PDFnoHis
are the same adaptations but without the histograms in the embedding vec-
tor). Second experiment.

Our method based on neural networks but without using the information
of the histograms is the one that obtains the best results. We suppose that,
since the number of neighbours is very low (5 in average) and the number
of attributes is 64, the histograms become too sparse to be useful for the
learning algorithm (although fuzzy methods were tested on the histograms).
As it happened in the first experiments, the learning algorithm is not able to
deduce the probability density functions since the number of dimensions is too
high and the number of correspondences is too low. In this experiment, the
manually imposed edit costs (the last two rows in Tables 7, 8 and 9) achieved
better results than the learning method presented in [10].
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First Experiment Second Experiment Third Experiment

Edit Operations SUB INS, DEL, SUB INS, DEL, SUB

Type of graphs Many attributes Few attributes Many attributes

Number of graphs Low High Low

PDF i.c. i.c. i.c.

NN 1 0.93 0.16

PDFnoHis i.c. 0.84 i.c.

NNnoHis 1 0.91 0.48

[29] i.c. 0.81 i.c.

[30] 1 0.88 0.40

[7] 0.79 - -

[24] 0.99 - -

[12] 0.80 - -

[2] 0.97 0.79 0.12

[27] Star - 0.92 -

[10] Degree - 0.89 -

[10] - 0.71 0.20

[45] Cvd = 1

Cve = 1
- - 0.32

[45]Cvd = .5

Cve = .5
- - 0.35

Table 10: Mean accuracies deduced by methods referenced in the first column
given the fourteen databases (in bold the highest values per column). The
blank cells are values not given in the original papers. ”i.c” means ”ill condi-
tioned” (the learning method is not able to generate the Gaussian function).
NN and PDF are neural network and probability density function methods.
NNnoHis and PDFnoHis are the same adaptations but without the histograms
in the embedding vector.

Table 10 summarises the experimental validation. In the first three rows, we
highlight the edit operations considered by the ground truth correspondence
(Insertion, Deletion and Substitution), the number of attributes on the nodes
(two quality values: Many and Few) and the number of graphs used to learn the
model (two quality values: Low and High). We consider these three features are
crucial to be considered while deciding which method has to be used in a real
application. Columns in the table represent the three rounds of experiments,
which have been selected considering these features. Finally, values in the cells
are the mean accuracies per each round of experiments.
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(a) Two images of the Boat database. Wrong mappings appear in black lines and the correct
ones in white lines.

(b) Two images of the Letter database. Wrong mappings appear in black dash lines and the
correct ones in solid black lines.

Fig. 8: Two examples of mappings.

With these three rounds of experiments, we conclude:

- The neural network, NN, returns the best accuracies when the number
of attributes is high or the number of graphs used to train the model is high
(first and second round of experiments).

- Our method (neural network: NN or probability density function: PDF)
cannot be used when we wish to learn the insertion, deletion and substitution
costs, the number of attributes is high but the number of graphs in the learning
stage is low (third round of experiments). In this case, NN returned poor results
and PDF was not able to define the model.

- The neural network without embedding the histograms, NNnoHis, returns
competitive accuracies in the three rounds of experiments.

- It seems as the histograms do not have to be included in the embedded
vector when they are too sparse (graphs with many attributes and database
with few graphs).
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6 Conclusions

Edit costs functions are application dependent and usually set manually based
on maximising the accuracy in the recognition process. Lately, some methods
have been presented to automatically learn these functions. We have proposed
a general framework to learn the substitution, deletion and insertion costs
based on minimising the hamming distance between the deduced correspon-
dences and the ground-truth correspondences. Moreover, we have concretised
our framework on two models, one based on neural networks and the other one
based on multimodal probability density functions. Our model has the main
advantage that it is defined as a general framework, in which several learning
methods can be adapted, and also it is defined such as the three most used edit
operations, viz. substitution, deletion and insertion are independently learned.

We have tested our framework on fourteen public databases, in which their
graphs and also their ground-truth correspondences have different character-
istics, and we have empirically deduced that the neural network achieves the
highest accuracy. Nevertheless, we conclude that deciding to include or dis-
card the information of the histograms in the embedded vector depends on the
sparsity of this vector. The probability density function method has obtained
poor results. It may happen that it is due to the number of correspondences
in the database is too low being the number of dimensions too high.

We leave, as a future work, to test our model with huge graphs and with
larger number of graphs in the databases. To do so, we could use the algo-
rithm presented in [43] that generates pairs of graphs with a ground-truth
correspondence in almost linear cost. With these graphs, we could synthesise
a large database of huge graphs and analyse the performance of the probabil-
ity density function constructed with much more data. Moreover, using this
new database, the classical neural network methods could be converted into
a deep neural networks. Finally, other neural network-based approaches could
be applied, like recursive neural networks or graph neural networks.
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