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ABSTRACT 58 

Scope: The plasma metabolomics profiles of protein intake has been rarely investigated. 59 

We aimed to identify the distinct plasma metabolomics profiles associated with overall 60 

intakes of protein as well as with intakes from animal and plant protein sources. 61 

Methods and Results: Cross-sectional analysis using data from 1,833 participants at 62 

high risk of cardiovascular disease. Plasma metabolomics analysis was performed using 63 

LC-MS. Associations between 385 identified metabolites and the intake of total, animal 64 

protein (AP) and plant protein (PP), and plant-to-animal ratio (PR) were assessed using 65 

elastic net continuous regression analyses. A double 10-cross-validation (CV) procedure 66 

was used and Pearson correlations coefficients between multi-metabolite weighted 67 

models and reported protein intake in each pair of training-validation datasets were 68 

calculated. A wide set of metabolites was consistently associated with each protein 69 

source evaluated. These metabolites mainly consisted of amino acids and their 70 

derivatives, acylcarnitines, different organic acids and lipid species. Few metabolites 71 

overlapped among protein sources (i.e. C14:0 SM, C20:4 carnitine, GABA and 72 

allantoin) but none of them towards the same direction. Regarding AP and PP 73 

approaches, C20:4 carnitine and dimethylglycine were positively associated with PP but 74 

negatively associated with AP. However, allantoin, C14:0 SM, C38:7 PE plasmalogen, 75 

GABA, metronidazole and trigonelline (N-methylnicotinate) behaved contrary. Ten-CV 76 

Pearson correlations coefficients between self-reported protein intake and plasma 77 

metabolomics profiles ranged from 0.21 for PR to 0.32 for total protein. 78 
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Conclusions: Different sets of metabolites were associated with total, animal and plant 79 

protein intake. Further studies are needed to assess the contribution of these metabolites 80 

in protein biomarkers’ discovery and prediction of cardiometabolic alterations.  81 
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1. INTRODUCTION 82 

Diets with a relatively high content in total dietary protein have been recommended for 83 

body weight (BW) control in the overall population [1] and glycemic control in subjects 84 

with type 2 diabetes (T2D) [2, 3]. However, the potential long-term health benefits and 85 

risks of these diets have been partially explored [4]. Current evidence supports the idea 86 

that cardiovascular disease (CVD) risk can be reduced by adhering to a dietary pattern 87 

rich in plant sources of protein compared with the typical western diet which includes a 88 

high intake of animal-based protein foods that are processed and high in saturated fat 89 

[5]. In the context of the PREDIMED study, we have previously assessed the effect of 90 

long-term high-protein consumption (including its sources and the animal-to-plant ratio) 91 

on BW changes and different causes of death [6]. We showed an U-shape relationship 92 

between total protein (TP) consumption and both total mortality and BW changes, 93 

together with specific associations depending on protein source towards beneficial 94 

effects associated with plant protein consumption. However, the overall differential 95 

impact of protein sources (i.e. animal or plant) and/or their relative proportion on health 96 

is still inconclusive and difficult to isolate [7]. 97 

Once ingested, both sources of protein share metabolic pathways. However, plant and 98 

animal sources have a distinct amino acid composition. In general, plant-based proteins 99 

are lower in essential amino acids (particularly methionine, lysine, and tryptophan) but 100 

provide higher amounts of arginine, glycine, alanine, and serine (non-essential amino 101 

acids) [8]. 102 
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Nowadays, urinary excretion of urea nitrogen is widely used as an adequate biomarker 103 

of total protein (TP) intake, although it suffers from imprecision, collection error and 104 

can only provide information for TP intake, without any consideration from the food 105 

source (e.g. animal or plant protein) [9]. In fact, to obtain the most accurate 106 

measurements, individuals should maintain a constant daily intake and be in nitrogen 107 

balance. Therefore, further research is needed to identify novel reliable biomarkers of 108 

dietary intake of TP – and its different sources – that may be measurable in 109 

plasma/serum. Although it is more invasive for the patient, it is relatively easier to 110 

obtain compared to urine (less burdensome for study participants) and not prone to error 111 

due to incomplete urine collection [10].  112 

Metabolomics is an emerging field aiming to comprehensively measure metabolites and 113 

low-molecular-weight molecules in a biological specimen [11]. To date, few studies 114 

have focused in the identification of metabolites associated with TP intake [12–15] 115 

compared to those specifically focused on meat intake (reviewed in [16]). In fact, 116 

current evidence for these associations comes indirectly from studies evaluating diet 117 

quality indexes [12] or diets varying in glycemic index (GI)/carbohydrate content [13]. 118 

Only two RCTs have explored the metabolomics differences in subjects consuming a 119 

diet with different amount of protein [14, 15]. However, no previous study has explored 120 

the systemic plasma metabolomics profiles associated with the level of protein intake as 121 

well as intakes from animal and plant-sources of protein in a large sample of subjects. 122 

Taking advantage of a comprehensive plasma metabolomics analysis, we hypothesized 123 

that distinct plasma metabolites profiles are associated with the level of protein intake as 124 
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well as the source of proteins, mainly animal and plant food sources. Therefore, the 125 

main aim of the present study was to describe the set of metabolites associated with the 126 

intake of TP, animal protein (AP), plant protein (PP), and plant-to-animal protein ratio 127 

(PR), which could help us to understand in the future the relationship between diet and 128 

cardiometabolic health. Moreover, we aimed to define a set of metabolites overlapping 129 

and unique to each protein approach.  130 
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2. MATERIAL AND METHODS 131 

This study is a cross-sectional analysis of baseline data from two nested case-cohort 132 

studies on cardiovascular disease (CVD) and T2D (NIH-NHLBI-5R01HL118264 and 133 

NIH-NIDDK-1R01DK102896) [17, 18] within the PREDIMED study 134 

(ISRCTN35739639). The PREDIMED study is a large clinical trial carried out in Spain, 135 

aiming to assess the effects of the traditional Mediterranean diet (MedDiet) on the 136 

primary prevention of CVD in a population at high risk of CVD [19]. Participants were 137 

men (55-80 years) and women (60-80 years) without CVD at baseline and fulfilling at 138 

least one of the two following criteria: presence of T2D or three or more major 139 

cardiovascular risk factors: current smoking, hypertension, high low-density lipoprotein 140 

(LDL)-cholesterol, low high-density lipoprotein (HDL)-cholesterol, overweight or 141 

obesity, and family history of premature CVD. The trial protocol was in accordance 142 

with the Helsinki Declaration and was approved by the institutional review boards of all 143 

the centers involved. All participants provided written informed consent. 144 

2.1 Assessment of population characteristics and dietary habits 145 

Body mass index (BMI) was calculated as weight divided by height squared (kg/m2). 146 

Waist circumference (WC) was measured midway between the lowest rib and the iliac 147 

crest using an anthropometric tape. Dietary habits at baseline were evaluated using a 148 

validated, 137-item, semi-quantitative food frequency questionnaire (FFQ) [20]. Daily 149 

food and nutrient intakes were estimated from the FFQ by multiplying the frequency of 150 

consumption by the average portion size. Participants also filled out a general 151 

questionnaire on lifestyle habits, medication use and concurrent diseases, and a 152 
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validated Spanish version of the Minnesota Leisure Time Physical Activity 153 

Questionnaire [21].  154 

2.2 Protein intake assessment 155 

The validity and reproducibility of the FFQ for the measurements of the different 156 

macronutrients have been previously reported [20, 22]. Pearson correlation coefficients 157 

for total protein were 0.55 (unadjusted) and 0.50 (energy-adjusted) between intakes 158 

reported in the FFQ and intakes reported in repeated food records. The intraclass 159 

correlation coefficient (ICC) between total protein intake was 0.71 (unadjusted) and 160 

0.67 (energy-adjusted) [20]. In our study, the level of protein intake was assessed as the 161 

percentage of energy (E%) derived from protein. AP was mainly derived from meat, 162 

poultry, fish and dairy products, whereas PP was derived from legumes, cereals and 163 

nuts. Percentages of energy from AP and PP were also calculated. Finally, we also 164 

derived the plant-to-animal protein ratio. Due to the semi-quantitative basis of the FFQ, 165 

we additionally created categories of protein consumption based on extreme tertiles (T): 166 

T3 versus T1.  167 

2.3 Plasma metabolomics 168 

Fasting (for ≥8 hours) plasma EDTA samples were collected from subjects and stored at 169 

-80°C. Samples for each participant were randomly ordered and analyzed using two 170 

liquid chromatography tandem mass spectrometry (LC-MS) methods to measure polar 171 

metabolites and lipids as described previously [23–25]. Briefly, amino acids (AA) and 172 

other polar metabolites were profiled a Shimadzu Nexera X2 U-HPLC (Shimadzu 173 

Corp.) coupled to a Q-Exactive mass spectrometer (ThermoFisher Scientific). 174 
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Metabolites were extracted from plasma (10 µL) using 90 µL of 74.9:24.9:0.2 175 

(vol/vol/vol) of acetonitrile/methanol/formic acid containing stable isotope-labeled 176 

internal standards [valine-d8 (Sigma-Aldrich) and phenylalanine-d8 (Cambridge Isotope 177 

Laboratories)]. The samples were centrifuged (10 min; 9000 x g; 4°C), and the 178 

supernatants were injected directly on to a 150 x 2-mm, 3-µm Atlantis HILIC column 179 

(Waters). The column was eluted isocratically at a flow rate of 250 µL/min with 5% 180 

mobile phase A (10 mmol ammonium formate/L and 0.1% formic acid in water) for 0.5 181 

min followed by a linear gradient to 40% mobile phase B (acetonitrile with 0.1% formic 182 

acid) over 10 min. MS analyses were carried out using electrospray ionization in the 183 

positive-ion and full-scan spectra were acquired over 70-800 m/z. Lipids were profiled 184 

using a Shimadzu Nexera X2 U-HPLC (Shimadzu Corp.; Marlborough, MA) coupled to 185 

an Exactive Plus orbitrap mass spectrometer (Thermo Fisher Scientific; Waltham, MA). 186 

Lipids were extracted from plasma (10 µL) using 190 µL of isopropanol containing 1,2-187 

didodecanoyl-sn-glycero-3-phosphocholine (Avanti Polar Lipids; Alabaster, AL) as an 188 

internal standard. Lipid extracts (2 µL) were injected onto a 100 x 2.1 mm, 1.7 µm 189 

ACQUITY BEH C8 column (Waters; Milford, MA). The column was eluted 190 

isocratically with 80% mobile phase A (95:5:0.1 vol/vol/vol 10mM ammonium 191 

acetate/methanol/formic acid) for 1 minute followed by a linear gradient to 80% mobile-192 

phase B (99.9:0.1 vol/vol methanol/formic acid) over 2 minutes, a linear gradient to 193 

100% mobile phase B over 7 minutes, then 3 minutes at 100% mobile-phase B. MS 194 

analyses were carried out using electrospray ionization in the positive ion mode using 195 

full scan analysis over 200–1100 m/z. Raw data were processed using Trace Finder 196 
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version 3.1 and 3.3 (Thermo Fisher Scientific) and Progenesis QI (Nonlinear Dynamics; 197 

Newcastle upon Tyne, UK). All polar metabolite identities were determined using 198 

reference standards in keeping with the Metabolomics Standard Initiative "Level 1" 199 

designation [26]. Since reference standards are not available for all lipids, representative 200 

lipids from each lipid class were used to characterize retention time and mass to charge 201 

ratio patterns. Since the chromatographic method does not discretely resolve all 202 

isomeric lipids from one another and the mass spectrometry data do not provide specific 203 

information on acyl group composition or position in complex lipids, lipid identities are 204 

reported at the level of lipid class, total acyl carbon content, and total double bond 205 

content. To enable assessment of data quality and to facilitate data standardization 206 

across the analytical queue and sample batches, pairs of pooled plasma reference 207 

samples were analyzed at intervals of 20 study samples. One sample from each pair of 208 

pooled references served as a passive QC sample to evaluate the analytical 209 

reproducibility for measurement of each metabolite while the other pooled sample was 210 

used to standardized at using a “nearest neighbour” approach as previously described 211 

[27]. Standardized values were calculated using the ratio of the value in each sample 212 

over the nearest pooled plasma reference multiplied by the median value measured 213 

across the pooled references. Each method generated a table of results, consisting of 214 

metabolites in rows and study samples in columns. These tables were merged into a 215 

single table prior to analyses. 216 

2.4 Statistical analysis 217 
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Baseline characteristics of study participants were described as means and standard 218 

deviations (SD) for quantitative variables, and percentages for categorical variables. 219 

Missing values of individual metabolites correspond to those determinations that were 220 

below the limit of detection. In individual metabolites with less than 20% of missing 221 

values we imputed them using the random forest imputation approach (“missForest” 222 

function from the “randomForest” R package) as it has been previously recommended 223 

in metabolomics studies [28, 29]. Importantly, different alternatives (e.g., zero value or 224 

half of the lower limit of detection) to this approach were found to generate consistent 225 

results as was previously reported by our research consortium [30]. Next, to conduct the 226 

multivariate analysis, metabolomics data was first centered and scaled using the 227 

standard deviation as the scaling factor (i.e. autoscaling) [31]. Due to the high 228 

dimensionality and collinear nature of the data, Gaussian (i.e. continuous) regression 229 

with elastic net penalty (implemented in the “glmnet” R package) was used to build a 230 

model for TP, AP, PP and PR intake. The elastic net regression combines the penalties 231 

from the Lasso - which drops some metabolite out of the model and assign a larger 232 

coefficient to one of the correlated metabolites whereas the rest are nearly zeroed - and 233 

Ridge - which keeps all the metabolites into the model and assign similar coefficients to 234 

correlated metabolites – regressions, potentially leading to a model which is both simple 235 

and predictive [32, 33].  236 

We performed a 10 cross-validation (CV) approach, splitting the sample into training 237 

(90% of the sample) and validation set 10 independent times, and then within the 238 

training set we performed a further 10-fold CV to find the optimal value of the tuning 239 
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parameter [λ (lambda)] that yielded the minimum mean-squared error (MSE). The 240 

values minMSE and minMSE + 1 standard error (SE) were calculated using argument s 241 

= “lambda.min” or s = “lambda.1se” in the cv.glmnet function (“glmnet” R package), 242 

respectively. In order to report the coefficients from each CV iteration, the lambda 243 

selection in the elastic net continuous regression was evaluated. We selected s = 244 

“lambda.min” as it gives the minimum mean CV error and s = “lambda.1se” - largest 245 

value of lambda such that error is within 1 SE of the minimum - was not deriving a 246 

model for some approaches. Apart from considering the lambda value, we evaluated the 247 

alpha parameter from 0 (i.e., Ridge regression) to 1 (i.e., Lasso regression) in 0.1 248 

increments to test the best scenario for our data. In case of the four approaches, 249 

alpha=0.6 was the model with best predicting accuracy in the validation sets. Weighted 250 

models were constructed for each training-validation dataset pair (90% training and 251 

10% validation) using solely the coefficients for the metabolites obtained from each 252 

elastic net regression in the training set. Ten-CV Pearson correlation coefficients (95% 253 

confidence interval [CI]) were derived considering each protein intake variable and its 254 

corresponding multi-metabolite model within each training-validation dataset. For 255 

reproducibility purposes, regression coefficients are reported using 10 iterations of the 256 

10-CV elastic regression approach in the whole dataset. We ran a principal component 257 

analysis (PCA) using the mean elastic net continuous regression’s coefficients from the 258 

metabolites consistently selected (i.e., 9-10 times) in each of the approaches. A zero 259 

value was assigned whenever a particular metabolite was not found by a specific 260 

approach. Coefficients were centered and scaled prior to PCA analysis. 261 
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Sensitivity analysis were performed using an elastic net logistic regression employing 262 

extreme tertiles (T3 vs T1) of protein intake instead of treating the exposures using 263 

continuous data. Moreover, additional sensitivity analysis adding relevant covariates 264 

(e.g., age, sex, smoking status, case/control status) or food groups showed no alteration 265 

in the coefficients obtained in each model (i.e. not selected in each respective model). 266 

All the analyses were performed using R v.3.4.2 statistical software. These analyses 267 

were based on consistency among CV runs, and therefore any P-value is derived.  268 
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3. RESULTS 269 

A total of 1,833 PREDIMED study participants (778 men and 1,055 women) were 270 

included in the present study. Figure 1 shows the flow chart of study participants. 271 

Characteristics of the participants are summarized in Table 1 for the whole number of 272 

subjects and divided by extreme tertiles of TP intake (T1 with n=613 and T3 with 273 

n=606). This analysis includes 42.4% of male participants with a median age of 67 274 

years [IQR: 62, 72], a BMI of 29.69 kg/m2 [27.43, 32.24] and a prevalence of 26.8% of 275 

T2D. Values from protein intake are as follows: 16.29 E% [14.52, 18.25] for TP, 10.84 276 

E% [9.16, 12.87] for AP, 5.29 E% [4.7, 6.05] for PP and 0.49 [0.39, 0.62] for PR. 277 

3.1 Multi-metabolite model and correlation with protein intake assessments 278 

From the 399 metabolites originally annotated, 11 metabolites were removed due to 279 

high number of missing values (i.e. >20%) and 3 metabolites were removed as being 280 

internal standard, thus 385 metabolites were finally included in all the analysis. Figures 281 

2 and 3 show the mean coefficient value (and SD) for the set of metabolites consistently 282 

selected (9-10 times) in the 10 CV for the four different protein intake measurements. 283 

Table 2 summarizes the number of metabolites found in each approach (positive or 284 

negative) and the Pearson correlation between multi-metabolite model and each protein 285 

intake assessment. Supplementary Table 1 shows the sensitivity analysis using the 286 

argument “lambda.1se”. Values for metabolites’ mean, SD and the times being selected 287 

in each iteration are shown in Supplementary Table 2. As may be observed, the 288 

“lambda.1se” argument generated models with a reduced number of metabolites except 289 

for a null model in case of PR. 290 
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In the TP approach, those metabolites with the highest negative coefficient value were 291 

creatinine, C24:0 ceramide d18:1 and C46:0 triglyceride (TAG), whereas those with the 292 

highest positive coefficient value were creatine, sorbitol and C5:1 carnitine (Figure 293 

2.A). Creatine was also the metabolite with the highest positive value in the AP 294 

approach (Figure 3.A). Uridine was the metabolite with the highest positive coefficient 295 

value in the PP approach, whereas C14:0 sphingomyelin (SM) was the metabolite with 296 

the highest negative coefficient value (Figure 3.B). In fact, C14:0 SM was also the 297 

metabolite with the highest negative coefficient value in the PR approach, whereas 298 

C34:3 phosphatidylcholine (PC) was the metabolite with the highest positive coefficient 299 

value (Figure 2.B). 300 

Correlation between the multi-metabolomic signature and protein intake assessment 301 

differed according to the type of protein (Table 2). Of note, argument “lambda.1se” in 302 

the “cv.glmnet” function generated a reduced value of Pearson correlation and reduced 303 

number of metabolites selected that even derived a null model in case of PR approach 304 

(Supplementary Table 1). Metabolites included in the “lambda.1se” approaches were 305 

also consistently found in its respective “lambda.min” approaches (Supplementary 306 

Table 2). Pearson correlation coefficients (95% CI) sorted by increasing values were: 307 

0.21 (0.17-0.24) for PP, 0.25 (0.20-0.30) for PR, 0.28 (0.23-0.34) for AP and 0.32 308 

(0.25-0.39) for TP. 309 

Sensitivity analysis using extreme tertiles of protein intake (including TP, PR, AP and 310 

PP) in the elastic net logistic regression – using “lambda-min” argument – showed 311 

comparable results in term of metabolites selected (data not shown). 312 
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Different Venn diagrams were created to display the number of unique or overlapping 313 

metabolites identified using the different protein approaches (Figure 4 and 314 

Supplementary Table 3). No overlapping metabolites were found among the four 315 

approaches when considering only positive coefficients (Figure 4.A) or negative 316 

coefficients (Figure 4.C). However, four metabolites (i.e., C14:0 SM, C20:4 carnitine, 317 

GABA and allantoin) were found in the four approaches regardless of the coefficient 318 

sign (Figure 4.B). In an attempt to differentiate the AP and PP approaches, we created 319 

individual Venn diagrams (Figure 4, D to G). Uridine was the unique metabolite with a 320 

positive value found in both AP and PP approaches (Figure 4.D). Creatinine was the 321 

unique metabolite with a negative value found in both AP and PP approaches (Figure 322 

4.E). Only C20:4 carnitine and dimethylglycine were reported with positive coefficients 323 

in PP but negative coefficients in AP (Figure 4.F). Allantoin, C14:0 SM, C38:7 PE 324 

plasmalogen, GABA, metronidazole and trigonelline (N-methylnicotinate) were 325 

reported with negative coefficients in PP but positive coefficients in AP (Figure 4.G).  326 

In order to identify principal components consisting of metabolites more associated with 327 

TP, AP, PP and/or PR, we additionally created a PCA based on the mean coefficients’ 328 

value from the metabolites selected by the different protein intake approaches using its 329 

respective elastic net continuous regression (Supplementary Figure 1). In this first 330 

PCA, principal component #1 accounted 53.9% of the variability, whereas the second 331 

principal component accounted 35.5% of the variability. Moreover, principal 332 

component #1 seemed useful to discriminate PP approach from TP, AP and PR 333 

approaches, whereas the second allowed the discrimination of the PR approach. In the 334 
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PCA biplot we observed groups of metabolites clustered close to the four different 335 

approaches (Supplementary Figure 1). Moreover, we also reported an obvious close 336 

proximity between TP and AP approaches considering the high contribution of AP to 337 

TP intake. To solve this issue, we conducted a second PCA excluding PR approach 338 

from the PCA (Supplementary Figure 2). We showed a clear separation between 339 

TP/AP and PP approaches using the first principal component (82.1% of the 340 

variability), whereas the second component (17.9% of the variability) allowed the 341 

discrimination between the TP and AP approaches. Supplementary Table 4 shows 342 

information related to the most relevant metabolites (based on Venn diagrams and 343 

PCAs) reported in our analyses.  344 
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4. DISCUSSION 345 

In the present analysis, we have identified a broad range of plasma metabolites 346 

associated with TP consumption and/or sources of protein using a combined CV 347 

procedure within the elastic net continuous regression. Venn diagrams and PCAs 348 

allowed the definition of clusters of metabolites associated with each protein source. 349 

The identified multi-metabolite models exhibited differing significant Pearson 350 

correlation coefficients with their intake values. 351 

Few studies have assessed circulating plasma or serum metabolomics of diets varying in 352 

TP intake [12–15]. A total of 1,336 male Finnish smokers were used to identify 353 

biomarkers of dietary patterns (e.g. Healthy Eating Index (HEI) 2010) by using serum 354 

metabolomics [12]. Metabolites associated with TP were mainly related to free FAs (not 355 

analyzed in our study) and AA derivatives (e.g. 3-methylhistidine and creatine) [12]. 356 

Mirroring their results, we also found a positive association between TP intake and 357 

creatine. A recent 10-week RCT conducted also in elderly males consuming differing 358 

amounts of protein and using a non-targeted polar plasma metabolomics analysis 359 

showed comparable results in terms of TP intake [15]. Researchers ascribed all the 360 

modulatory effects to protein anabolism without sign of influence on other pathways 361 

related with metabolic health. 362 

In another RCT, 21 subjects with overweight/obesity were studied during a 4-week 363 

weight stability phase according to a crossover design of 3 diets differing in protein 364 

content [13]. Among the plasma metabolites positively associated with protein, they 365 

reported alpha-hydroxybutyrate, creatine, several TAGs species and uridine, whereas 366 
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those negatively associated with TP were C18:2 LPE, C40:6 PC and C56:8 TAG. We 367 

also reported a positive association between TP and uridine (also in AP and PP 368 

approaches) and creatine (also positive in AP but negative in PP). However, we only 369 

reported C53:3 TAG positively associated with TP in our study. 370 

A recent cross-sectional study identified serum metabolites associated with dietary 371 

protein intake in 674 subjects with CKD - and differing in glomerular filtration rate - 372 

with ages ranging from 18-70 years [14]. They found 130 metabolites when comparing 373 

low-protein diet versus moderate-protein diet, and 32 metabolites when compared very-374 

low-protein diet versus low-protein diet. Independently of the glomerular filtration rate, 375 

a total of 11 metabolites were significantly associated with TP intake including 3-376 

methylhistidine, N-acetyl-3-methylhistidine, creatine, kynurenate and different 377 

plasmalogens. Remarkably, the half-lives of 1- and 3-methylhistidine together with 378 

other metabolites are reported to be approximately 12 hours; thus, they are solely 379 

considered short term biomarkers of red meat intake [34]. Our plasma metabolomics 380 

approach did not cover most of these metabolites. However, we found similar results in 381 

terms of positive associations of TP with creatine and with same carbon number PE and 382 

PC plasmalogens albeit with different unsaturation profile.  383 

One limitation common to previous studies is that they have not distinguished sources 384 

of protein intake as plant/animal protein, which is important to try to understand why 385 

the effects on health are different depending on the type of protein consumed. By 386 

comparing the four different approaches we found few overlaps and many approach-387 

specific metabolites. Most of the overlaps were found between TP and AP, probably 388 
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because the high AP compared to PP intake in our population. We reported four 389 

metabolites simultaneously and positively or negatively associated with the four protein 390 

approaches. C14:0 SM, GABA and allantoin were positively associated with AP and 391 

TP, whereas negatively associated with PP and PR. The inverse scenario was exhibited 392 

by C20:4 carnitine. 393 

C14:0 SM was previously found positively associated with TP [13] and positively 394 

associated with increasing protein consumption [14]. This SM has been recently 395 

negatively correlated with the scale of aging vigor in epidemiology (SAVE) score, thus 396 

reduced C14:0 SM values are associated with frailty [35]. Importantly, it has been 397 

negatively associated to the empirical dietary inflammatory pattern (EDIP) score, 398 

reflecting a putative anti-inflammatory role [36]. GABA was also positively associated 399 

with high TP and fat intake in a clinical trial, but the results were inconsistent with those 400 

measured in the Framingham Heart Study, where GABA was only positively correlated 401 

with carbohydrate intake [13]. It has been seen that GABA is released by β-cells in a 402 

glutamine dose-dependent manner whereas glucose induces inhibition of its release to 403 

the extracellular medium [37–39]. To increase TP intake, it is necessary to reduce the 404 

consumption of other macronutrients, such as carbohydrates, a situation that could 405 

enhance GABA production and release from beta-cells. GABA is a well-known 406 

inhibitory neurotransmitter in the brain, but it seems to be also involved in the reduction 407 

of the local immune and inflammatory responses [40]. Finally, allantoin was positively 408 

correlated with TP and AP and negatively with PR and PP. This metabolite is produced 409 

from urate in animals (excluding humans), plants and bacteria and it is considered a 410 
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marker of oxidative stress. Although little is known about the association between 411 

quantity and quality of protein intake and oxidative stress, it seems that diets rich in 412 

animal-based foods lead to this condition [41], which could explain the observed 413 

associations. Interestingly, urate was found inversely associated with both TP and PP. 414 

However, sorbitol and the isomer fructose-glucose-galactose were positively associated 415 

with TP and AP, whereas negatively associated with PR. Of note, sorbitol is converted 416 

to fructose when metabolized in the liver producing biochemical effects similar to those 417 

of fructose on hepatic adenosine phosphate levels in humans, and can therefore increase 418 

uric acid production [42]. This may explain the positive association between sorbitol 419 

and fructose-glucose-galactose with TP and AP, and the negative association of urate 420 

with PP. However, high levels of serum sorbitol have been reported in individuals with 421 

T2D compared with those without the disease [43]. In our study, individuals with a 422 

higher consumption of TP were more likely to have T2D than those with a lower 423 

consumption.  424 

Total carnitine, together with C4 and C5:1 carnitines were positively associated with TP 425 

but negatively associated with PR. Carnitine can be obtained from the diet – mainly 426 

from meat and dairy products – or endogenously synthesized from lysine and 427 

methionine. Importantly, dietary carnitine correlates with plasma concentrations and it 428 

has been reported that individuals consuming high AP diets have higher plasma 429 

carnitine levels than those consuming low amounts [44]. Carnitine participates in the 430 

transport of fatty acids (FA) for their β-oxidation in the mitochondria, a procedure 431 

where it is transformed to acylcarnitines. The accumulation of acylcarnitines could 432 
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reflect alterations in the FA oxidation process, which could promote the development of 433 

metabolic diseases [45, 46]. Surprisingly, a polyunsaturated carnitine (C20:4) was found 434 

inversely associated to TP and AP, and positively to PR and PP. Further studies are 435 

needed to assess to which extend protein intake could modify carnitine-related 436 

metabolites. 437 

Creatine was the metabolite most positively associated with TP and AP, whereas 438 

negatively associated with PR. Previous clinical trials also reported creatine as a marker 439 

of TP [14]. Animal protein foods are considered the main sources of creatine [47]. 440 

Therefore, it is not surprising that low levels of creatine were observed in vegetarians 441 

[48] in a cross-sectional study, results that are supported by a clinical trial where women 442 

switching from omnivore to vegetarian diet experimented a reduction in creatine levels 443 

after 3 months of intervention [49]. Creatinine – a breakdown product of creatine 444 

phosphate in muscle – was found negatively associated with TP, AP and PP. These 445 

results are in line with previous findings which reported a negative correlation between 446 

TP intake and serum creatinine [50]. Since a positive association exists between TP 447 

intake and urinary excretion of creatinine, the reported negative association could be 448 

due to the enhanced creatinine clearance. In fact, urinary, but not serum/plasma 449 

creatinine, has been suggested as a biomarker of meat consumption [16, 51]. 450 

Some metabolites were solely identified in the PR approach or in combination with PP 451 

approach (e.g., NMMA and malate). In fact, a wide set of metabolites were positively 452 

associated with PR and not found in any other approach. It comprised: i) essential AAs 453 

such as phenylalanine and threonine; ii) AAs’ derivatives such as N-oleoyl glycine; iii) 454 
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other molecules such as gentisate, acetylcholine, niacinamide and different lipid species 455 

such as C16:1 LPC, C36:4 PC-A, and saturated TAGs (C42, C48 and C51). The health 456 

implications of these findings should be further investigated. 457 

This approach has some drawbacks that deserve comment. First, as it has been 458 

performed in older adults at high CVD risk from a Mediterranean area, the 459 

generalizability of the findings to other populations may be limited. Moreover, due to 460 

the cross-sectional design, causation cannot be inferred. Even though we included in the 461 

analysis a relatively large sample size that was analyzed using a validated FFQ, we 462 

cannot exclude misclassification bias. Moreover, we did not distinguish the different 463 

sources of animal protein, which may have a distinct impact on health. Additionally, a 464 

measure of total urinary nitrogen excretion was not available for our subjects of study, 465 

which did not allow us to assess the correlation with our metabolites. Even though 466 

elastic net regression derived a relatively simple and predictive model, we cannot 467 

completely disregard a lack of specific metabolites into the models due to putative 468 

multicollinearity. Moreover, as we only included annotated metabolites, we cannot 469 

assure that a multi-metabolite model based on untargeted metabolites will not 470 

outperform ours. Strengths of the present study include the use of a multi-metabolomics 471 

approach to analyze a wide range of metabolite compounds; we have cross-internally 472 

validated our results; and we have performed different sensitivity analysis to assess the 473 

role of other putative confounders, such as sex and dietary factors, into the selected 474 

metabolites.  475 
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In conclusion, our findings show that TP, AP, PP and PR consumption are associated 476 

with distinct sets of plasma metabolites mainly related to AAs and their derivatives, 477 

together with acylcarnitines, different organic compounds, and lipid species, which are 478 

the reflection of changes in metabolic pathways potentially implicated in disease 479 

prevention or development. Some of these metabolites have been discovered as markers 480 

of protein consumption in other epidemiologic studies. In the current study, we 481 

provided a deeper understanding of the metabolic response to protein intake providing 482 

new functional insight to its potential role in health. The extent to which the sets of 483 

metabolites associated with protein intake we identified in the study are associated with 484 

health outcomes remains to be evaluated.  485 
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FIGURES CAPTION 664 

Figure 1. Flow-chart of study participants.  665 

*, Unrealistic energy intake is defined as out of the range 800-4000 Kcal/day in males and 500-3500 666 

Kcal/day in females. ┼, subjects with a set of ≥20% of metabolites with missing values. Abbreviations: 667 

CVD, cardiovascular disease; FFQ, food frequency questionnaire; T2D, type 2 diabetes. 668 

Figure 2. Coefficients (mean and SD) for the metabolites selected 9-10 times in the 10-cross 669 

validation of the continuous elastic regression for total protein and plant-to-animal protein ratio. 670 

Mean and SD of the set of the metabolites selected 9-10 times in the ten times iterated 10-fold-cross 671 

validation of the elastic continuous regression procedure (using lambda.min) employing the whole dataset 672 

of subjects (n=1,833). Metabolites with negative coefficients are plotted in the left part, whereas those with 673 

positive coefficients are shown in the right part. A), Total protein (E%); B), plant-to-animal protein ratio. 674 

Abbreviations: 2PY, N-methyl-2-pyridone-5-carboxamide; CE, cholesteryl ester; CV, cross-validation; 675 

DAG, diacylglycerol; E%, energy percentage; GABA, gamma-aminobutyric acid; LPC, 676 

lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; MAG, monoacylglycerol; NMMA, N-677 

methylmalonamic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; 678 

SM, sphyngomyeline; TAG, triglyceride. 679 

Figure 3. Coefficients (mean and SD) for the metabolites selected 9-10 times in the 10-CV of the 680 

continuous elastic regression for animal protein and plant protein. 681 

Mean and SD of the set of the metabolites selected 9-10 times in the ten times iterated 10-fold-CV of the 682 

elastic continuous regression procedure (using lambda.min) employing the whole dataset of subjects 683 

(n=1,833). Metabolites with negative coefficients are plotted in the left part, whereas those with positive 684 

coefficients are shown in the right part. Abbreviations: 2PY, N-methyl-2-pyridone-5-carboxamide; CE, 685 

cholesteryl ester; CV, cross-validation; DAG, diacylglycerol; E%, energy percentage; GABA, gamma-686 

aminobutyric acid; LPE, lysophosphatidylethanolamine; MAG, monoacylglycerol; NMMA, N-687 
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methylmalonamic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; 688 

SM, sphyngomyeline; TAG, triglyceride. 689 

Figure 4. Venn diagram displaying the number of unique or overlapping metabolites identified 690 

using the different protein intake approaches by means of the elastic net continuous regression. 691 

A), considering only metabolites with negative coefficients; B), considering metabolites with both 692 

positive and negative coefficients; C), considering only metabolites with positive coefficients; D), 693 

considering only metabolites with positive coefficients; E), considering only metabolites with negative 694 

coefficients; F), considering only metabolites with negative coefficients in AP and positive coefficients in 695 

PP; G), considering only metabolites with positive coefficients in AP and negative coefficients in PP. 696 

Abbreviations: AP, animal protein; GABA, gamma-aminobutyric acid; PP, plant protein; PR, plant-to-697 

animal protein ratio; SM, sphyngomyeline; TP, total protein. Supplementary Table 2 contains the 698 

metabolites belonging to each group. Four metabolites (i.e. C14:0 SM, C20:4 carnitine, GABA and 699 

allantoin) were found in the four approaches regardless of the coefficient sign (B). Any metabolite was 700 

found in the four approaches when considering only positive (A) or only negative coefficients (C). 701 

Uridine was the unique metabolite with a positive value found in both AP and PP approaches (D). 702 

Creatinine was the unique metabolite with a negative value found in both AP and PP approaches (E). 703 

C20:4 carnitine and dimethylglycine were reported with positive coefficients in PP but negative 704 

coefficients in AP (F). Allantoin, C14:0 SM, C38:7 PE plasmalogen, GABA, metronidazole and 705 

Trigonelline (N-methylnicotinate) were reported with negative coefficients in PP but positive coefficients 706 

in AP (G).  707 
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Table 1. Characteristics of study subjects and according to extreme tertiles (T1 and T3) of total protein 709 
intake. 710 

Data shows median [IQR] or number (%). CVD, cardiovascular disease; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated 711 
fatty acids; SFA, saturated fatty acids.  712 

Characteristics All subjects (n=1,833) T1 (n=613) T3 (n=606) 

Sociodemographic and medication variables 

Age (years) 67 [62, 72] 68 [62, 72] 67 [62, 71] 

Male sex, N (%) 778 (42.4%) 355 (57.9%) 155 (25.6%) 

Body mass index (kg/m2) 29.69 [27.43, 32.24] 29.4 [27.26, 31.92] 29.88 [27.5, 32.33] 

Waist circumference (cm) 100 [93, 107] 101 [95, 107] 99 [92, 106] 

Cholesterol (mg/dL) 209.44 [187.12, 235.32] 210.34 [187.99, 236.44] 210 [186.86, 236.21] 

Triglycerides (mg/dL) 116.76 [89.05, 157.03] 120.97 [91.84, 163.11] 113.12 [85.97, 151.3] 

HDL-C (mg/dL) 50.39 [43.97, 57.77] 49.41 [43.48, 56.98] 51.67 [44.67, 59.59] 

Type 2 Diabetes, N (%) 492 (26.8%) 131 (21.4%) 197 (32.5%) 

Hypercholesterolemia, N (%) 1408 (76.8%) 471 (76.8%) 469 (77.4%) 

Hypertension, N (%) 1599 (87.2%) 531 (86.6%) 527 (87%) 

Family history of CVD, N (%) 451 (24.6%) 132 (21.5%) 172 (28.4%) 

Smoking, N (%) [yes] 287 (15.7%) 134 (21.9%) 61 (10.1%) 

Cardiac medication, N (%) 164 ( 8.9%) 59 (9.9%) 47 (7.9%) 

Hypotensive medication, N (%) 1382 (75.4%) 459 (75%) 462 (76.5%) 

Cholesterol lowering medication, N (%) 852 (46.5%) 273 (44.6%) 291 (48.1%) 

Nutritional variables 

Total protein intake (% energy/d) 16.29 [14.52, 18.25] 13.84 [12.9, 14.53] 19.19 [18.26, 20.37] 

Animal protein intake (% energy/d) 10.84 [9.16, 12.87] 8.5 [7.29, 9.38] 13.77 [12.7, 15.12] 

Plant protein intake (% energy/d) 5.29 [4.7, 6.05] 5.24 [4.65, 5.89] 5.44 [4.73, 6.18] 

Plant-to-animal protein ratio 0.49 [0.39, 0.62] 0.63 [0.51, 0.79] 0.39 [0.32, 0.48] 

P14 questionnaire 9 [7, 10] 9 [7, 10] 9 [8, 10] 

Total protein intake (g/d) 90.66 [77.75, 105.3] 84.54 [72.33, 99.96] 96.93 [82.98, 110.11] 

Total carbohydrate intake (g/d) 231.34 [187.85, 279.6] 259.61 [215.91, 318.92] 203.53 [164.83, 240.9] 

Fat (g/d) 97.8 [78.43, 115.32] 106.62 [91.54, 126.01] 81.74 [66.78, 101.56] 

MUFA (g/d) 49.03 [36.88, 58.56] 55.18 [45.71, 63.91] 38.45 [31.5, 50.46] 

SFA (g/d) 24.5 [19.47, 30.18] 26.17 [21.62, 31.99] 21.86 [17.44, 27.37] 

PUFA (g/d) 14.47 [11.22, 19.04] 16.7 [12.82, 21.62] 12.36 [9.43, 15.84] 

Total energy intake (Kcal/d) 2229.77 [1907.69, 2617.85] 2477.15 [2138.42, 2874.52] 1992.23 [1684.98, 2296.31] 

Vegetable intake (g/d) 311 [233, 405] 288 [219.5, 368.67] 332.67 [245.96, 437.21] 

Legume intake (g/d) 16.57 [12.57, 25.14] 16.57 [12.57, 25.14] 16.57 [12, 25.14] 

Grain intake (g/d) 216.43 [166.14, 291.21] 236.33 [176.79, 309.79] 192.02 [148.71, 260.36] 

Dairy intake (g/d) 326.31 [228.1, 550] 275.71 [207.14, 449.52] 367.74 [265.8, 599.49] 

Meat intake (g/d) 130.57 [97.71, 164.86] 108.57 [75.1, 140.48] 149.05 [120, 186.61] 

Fish intake (g/d) 97.14 [65.43, 129.24] 81.33 [53.33, 112.86] 110.76 [80.29, 145.38] 

Nuts intake (g/d) 6.29 [0, 14.86] 6.29 [2, 17.14] 4.29 [0, 12.86] 

Egg intake (g/d) 25.71 [8.57, 25.71] 25.71 [8.57, 25.71] 25.71 [8.57, 25.71] 
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Table 2. Pearson correlation coefficients for the different protein intake assessments. 713 

Assessments 

Pearson 

correlation 

coefficient (95% 

CI) 

with 

metabolomic 

signature 

Total 

metabolites 

consistently 

found to be 

associated* 

# of metabolites 

with negative 

coefficients 

# of metabolites 

with positive 

coefficients 

Total protein (E%) 0.32 (0.25-0.39) 44 22 22 

Plant-to-animal protein ratio 0.25 (0.20-0.30) 52 23 29 

Animal protein (E%) 0.28 (0.23-0.34) 39 22 17 

Plant protein (E%) 0.21 (0.17-0.24) 48 22 26 
* obtained 9 or 10 times in the cross-validation procedure for the elastic net continuous approach using 714 
“lambda.min” option in the “cv.glmnet” function (“glmnet” R package). Abbreviations: CI, confidence, 715 
interval; E%, energy percentage; NA, not available. 716 
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