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Abstract: In this article, we obtain general bounds and closed formulas for the secure total domination
number of rooted product graphs. The results are expressed in terms of parameters of the factor
graphs involved in the rooted product.
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1. Introduction

Recently, many authors have considered the following approach to the problem of protecting a
graph [1–7]: suppose that one “entity” is stationed at some of the vertices of a (simple) graph G and
that an entity at a vertex can deal with a problem at any vertex in its closed neighbourhood. In general,
an entity could consist of a robot, an observer, a legion, a guard, and so on. Informally, we say that
a graph G is protected under a given placement of entities if there exists at least one entity available
to handle a problem at any vertex. Various strategies (or rules for entities placements) have been
considered, under each of which the graph is deemed protected. As we can expect, the minimum
number of entities required for protection under each strategy is of interest. Among these strategies
we cite, for instance, domination [8,9], total domination [10], secure domination [1], secure total
domination [2], Roman domination [6,7], Italian domination, [11] and weak Roman domination [5].
The first four strategies are described below.

The simplest strategies of graph protection are the strategy of domination and the strategy of
total domination. In such cases, the sets of vertices containing the entities are dominating sets and
total dominating sets, respectively. Typically, a vertex in a graph G = (V(G), E(G)) dominates itself
and its neighbouring vertices. A set S ⊆ V(G) is said to be a dominating set of G if every vertex in
V(G) \ S is dominated by at least one vertex in S, while S is said to be a total dominating set if every
vertex v ∈ V(G) is dominated by at least one vertex in S \ {v}.

The minimum cardinality among all dominating sets of G is the domination number of G,
denoted by γ(G). The total domination number, denoted by γt(G), is defined by analogy. These two
parameters have been extensively studied. For instance, we cite the following books, [8–10].

Let N(v) be the open neighbourhood of v ∈ V(G) and let S ⊆ V(G). In the case of the secure
(total) domination strategy, a vertex v ∈ V(G) \ S is deemed (totally) protected under S ⊆ V(G) if S is
a (total) dominating set and there exists u ∈ N(v) ∩ S such that (S ∪ {v}) \ {u} is a (total) dominating
set. In such a case, in order to emphasise the role of vertex u, we say that v is (totally) protected by u
under S. A set S ⊆ V(G) is said to be a secure (total) dominating set if every vertex in v ∈ V(G) \ S is
(totally) protected under S.

For instance, let G be the graph shown in Figure 1, and suppose that an observer is stationed
at vertex a and another one is stationed at b. In such a case, the graph is under the control of the
observers, as its vertices are (i.e., {a, b} is a dominating set). Now, if the observer stationed at vertex a
moves to any vertex in {c, d, e}, then the graph is under the control of the observers as well. In this
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case, {a, b} is a secure dominating set. Furthermore, if there are three observers and they are stationed
at a, b, and c, then every vertex of the graph (including a, b, and c) is under the control of the observers,
and this property is preserved if the observer stationed at c moves to d or e. Hence, {a, b, c} is a secure
total dominating set.

Figure 1. In this case, {a} is a dominating set, {a, b} is a total dominating set and also a secure
dominating set, while {a, b, c} is a secure total dominating set.

The minimum cardinality among all secure dominating sets of G is the secure domination number
of G, denoted by γs(G). This domination parameter was introduced by Cockayne et al. in [1] and
studied further in a number of works including [12–17]. Now, the minimum cardinality among all
secure total dominating sets of G is the secure total domination number of G, which is denoted by
γst(G). This parameter was introduced by Benecke et al. in [2] and studied further in [3,4,16,18,19].

A secure total dominating set of cardinality γst(G) will be called a γst(G)-set. A similar agreement
will be assumed when referring to optimal sets associated to other parameters used in the article.

The problem of computing γst(G) is NP-hard [18], even when restricted to chordal bipartite
graphs, planar bipartite graphs with arbitrary large girth and maximum degree three, split graphs
and graphs of separability at most two. This suggests finding the secure total domination number for
special classes of graphs or obtaining tight bounds on this invariant. This is precisely the aim of this
article in which we study the case of rooted product graphs.

2. Some Notation and Tools

All graphs considered in this paper are finite and undirected, without loops or multiple edges.
The minimum degree of a graph G will be denoted by δ(G), i.e., δ(G) = minv∈V(G) |N(v)|. As usual,
the closed neighbourhood of a vertex v ∈ V(G) is denoted by N[v] = N(v) ∪ {v}. We say that a vertex
v ∈ V(G) is a universal vertex if N[v] = V(G). By analogy with the notation used for vertices, the
open neighbourhood of S ⊆ V(G) is the set N(S) = ∪v∈SN(v), while the closed neighbourhood is the
set N[S] = N(S) ∪ S.

A set S ⊆ V(G) is a double dominating set of G if |N[u] ∩ S| ≥ 2 for every u ∈ V(G).
The double domination number of G, denoted by γ×2(G), is the minimum cardinality among all
double dominating sets of G. The k-domination number of a graph G, denoted by γk(G), is the
cardinality of a smallest set of vertices such that every vertex not in the set is adjacent to at least k
vertices of the set. Such sets are called k-dominating sets.

Remark 1. Every secure total dominating set is a double dominating set and every double dominating set is a
2-dominating set. Therefore, for any graph G with no isolated vertex, γst(G) ≥ γ×2(G) ≥ γ2(G).

By Remark 1, for every secure total dominating set S and every vertex v ∈ S, the set S \ {v} is a
dominating set. Therefore, the following remark holds.

Remark 2. For every graph G with no isolated vertex, γst(G) ≥ γ(G) + 1.

A leaf of G is a vertex of degree one. A support vertex of G is a vertex which is adjacent to a leaf and
a strong support vertex is a support vertex which is adjacent to at least two leaves. A leaf is said to be a
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strong leaf if it is adjacent to a strong support vertex, otherwise it is called a weak leaf. The set of leaves,
support vertices, strong leaves and weak leaves are denoted by L(G), S(G), Ls(G), and Lw(G), respectively.

Remark 3. If D is a secure total dominating set of a graph G, then (S(G) ∪ L(G)) ⊆ D and no vertex of G is
totally protected under D by vertices in S(G) ∪ L(G).

If v is a vertex of a graph H, then the vertex-deletion subgraph H − {v} is the subgraph of H
induced by V(H) \ {v}. In Section 3 we will show the importance of γst(H − {v}) in the study of the
secure total domination number of rooted product graphs. Now we proceed to state some basic tools.

Lemma 1. Let H be a graph with no isolated vertex. If v ∈ V(H) \ (Lw(H) ∪ S(H)), then

γst(H − {v}) ≥ γst(H)− 2.

Furthermore, if γst(H − {v}) > γst(H), then v belongs to every γst(H)-set.

Proof. Assume that v ∈ V(H) \ (Lw(H) ∪ S(H)) and let D be a γst(H − {v})-set. Suppose that
|D| ≤ γst(H)− 3. If |N(v) ∩ D| ≥ 2, then D ∪ {v} is a secure total dominating set of H of cardinality
|D ∪ {v}| ≤ γst(H)− 2, which is a contradiction. Suppose that |N(v) ∩ D| ≤ 1. If v /∈ L(H), then for
every y ∈ N(v) \ D we have that D ∪ {v, y} is a secure total dominating set of H of cardinality
|D ∪ {v, y}| ≤ γst(H)− 1, which is a contradiction. Now, if v ∈ Ls(H), then by Remark 3 we can
conclude that D ∪ {v} is a secure total dominating set of H of cardinality |D ∪ {v}| ≤ γst(H)− 2,
which is a contradiction again. Hence, γst(H − {v}) = |D| ≥ γst(H)− 2.

On the other hand, if there exists a γst(H)-set S such that v /∈ S, then S is a secure total dominating
set of H − {v}, and so γst(H − {v}) ≤ |S| = γst(H). Therefore, if γst(H − {v}) > γst(H), then v ∈ S
for every γst(H)-set S.

If v is a weak leaf of H, then it could be that γst(H) ≥ γst(H − {v}) + 2. For instance, Figure 2
shows the existence of cases in which the gap γst(H)− γst(H − {v}) is arbitrarily large. In Remark 4
we highlight this fact.

Figure 2. A graph H where V(H) is the γst(H)-set. Since {a, b, c, d} forms a γst(H − {v})-set, we have
that γst(H)− γst(H − {v}) = k + 1 for every integer k ≥ 1.

Remark 4. For any integer k ≥ 1 there exists a graph H having a weak leaf vertex v such that γst(H)−
γst(H − {v}) = k + 1.

In contrast to Remark 4, the following result shows the case where v is a strong leaf.

Lemma 2. Let H be a graph with no isolated vertex. If v ∈ Ls(H), then

γst(H − {v}) = γst(H)− 1.

Proof. Let D be a γst(H)-set, v ∈ Ls(H) and N(v) = {sv}. By Remark 3 we deduce that D \ {v}
is a secure total dominating set of H − {v} and so γst(H − {v}) ≤ |D \ {v}| ≤ γst(H) − 1. Now,
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let D′ be a γst(H − {v})-set. Since sv ∈ S(H − {v}), by Remark 3 we have that sv ∈ D′ and no
vertex of H − {v} is totally protected by sv under D′, which implies that D′ ∪ {v} is a secure total
dominating set of H and, as a result, γst(H)− 1 ≤ |D′ ∪ {v}| − 1 = |D′| = γst(H − {v}). Therefore,
γst(H − {v}) = γst(H)− 1.

Lemma 3. For any graph H having a universal vertex v,

γst(H) = γ(H − {v}) + 1.

Proof. Let D be a γ(H − {v})-set. Since v is a universal vertex of H, it is straightforward that D ∪ {v}
is a secure total dominating set of H. Thus, γst(H) ≤ |D ∪ {v}| = γ(H − {v}) + 1.

From now on, suppose that γst(H) ≤ γ(H − {v}) and let S be a γst(H)-set. We differentiate the
following two cases.
Case 1. v ∈ S. In this case, as |S| ≤ γ(H − {v}), we deduce that S \ {v} is not a dominating set
of H − {v}. Hence, there exists a vertex y ∈ V(H − {v}) such that N(y) ∩ S = {v}, which is a
contradiction, as S is a 2-dominating set, by Remark 1.
Case 2. v /∈ S. In this case, S is a secure total dominating set of H − {v} and so γst(H − {v}) ≤ |S| ≤
γ(H − {v}), which is a contradiction with Remark 2.

Therefore, the result follows.

3. The Case of Rooted Product Graphs

Given a graph G of order n(G) and a graph H with root vertex v, the rooted product graph G ◦v H
is defined as the graph obtained from G and H by taking one copy of G and n(G) copies of H and
identifying the ith vertex of G with the root vertex v in the ith copy of H for every i ∈ {1, 2, . . . , n(G)}.

If H or G is a trivial graph, then G ◦v H is equal to G or H, respectively. In this sense, hereafter we
will only consider graphs G and H of order greater than or equal to two.

For every x ∈ V(G), Hx ∼= H will denote the copy of H in G ◦v H containing x. The restriction
of any set S ⊆ V(G ◦v H) to V(Hx) will be denoted by Sx, and the restriction to V(Hx − {x}) will be
denoted by S−x . Hence, V(G ◦v H) = ∪x∈V(G)V(Hx) and for every γst(G ◦v H)-set S we have that

γst(G ◦v H) = |S| = ∑
x∈V(G)

|Sx| = ∑
x∈V(G)

|S−x |+ |S ∩V(G)|.

Theorem 1. For any graphs G and H with no isolated vertex and any v ∈ V(H),

γst(G ◦v H) ≤ n(G)γst(H).

Furthermore, if v /∈ S(H), then

γst(G ◦v H) ≤ γst(G) + n(G)γst(H − {v}).

Proof. Let D be a γst(H)-set and S ⊆ V(G ◦v H) such that Sx is the subset of V(Hx) induced by D
for every x ∈ V(G). Since S is a secure total dominating set of G ◦v H, we deduce that γst(G ◦v H) ≤

∑
x∈V(G)

|Sx| = n(G)γst(H).

Now, assume that v /∈ S(H). Let W be a γst(H − {v})-set and S′ ⊆ V(G ◦v H) \ V(G) such
that S′x is the subset of V(Hx − {x}) induced by W for every x ∈ V(G). Since for any γst(G)-set X,
we have that X ∪ S′ is a secure total dominating set of G ◦v H, we deduce that γst(G ◦v H) ≤ |X ∪ S′| =
γst(G) + n(G)γst(H − {v}).
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We now proceed to analyse three cases in which it is not difficult to give closed formulas for
γst(G ◦v H). Specifically, we consider the cases in which the root vertex v is a support vertex, a strong
leaf, or a universal vertex.

Theorem 2. The following statements hold for any graphs G and H with no isolated vertex.

(i) If v ∈ S(H), then γst(G ◦v H) = n(G)γst(H). Furthermore, |Dx| = γst(H) for every γst(G ◦v H)-set
D and every x ∈ V(G).

(ii) If v ∈ V(H) is a universal vertex, then γst(G ◦v H) = n(G)γst(H).
(iii) If v ∈ Ls(H), then γst(G ◦v H) = γ(G) + n(G)(γst(H)− 1).

Proof. Let D be a γst(G ◦v H)-set. Let us first consider the case where v ∈ S(H). Since x ∈ S(G ◦v H)

for every x ∈ V(G), by Remark 3 we deduce that Dx is a secure total dominating set of Hx, and as a
consequence |Dx| ≥ γst(Hx) for every x ∈ V(G). Hence, γst(G ◦v H) = ∑x∈V(G) |Dx| ≥ n(G)γst(H).
Now, if |Dx| ≥ γst(Hx) + 1 for some x ∈ V(G), then γst(G ◦v H) > n(G)γst(H), which contradicts
Theorem 1. Therefore, (i) follows.

Let us now consider the case where v /∈ S(H) is a universal vertex. Let x ∈ V(G). If x ∈ Dx,
then Dx is a secure total dominating set of Hx and, as a result, |Dx| ≥ γst(Hx). Now, if x /∈ Dx,
then D−x is a secure total dominating set of Hx − {x}, and so Remark 2 and Lemma 3 lead to |Dx| ≥
γst(Hx − {x}) ≥ γ(Hx − {x}) + 1 = γst(Hx). Hence, γst(G ◦v H) = ∑x∈V(G) |Dx| ≥ n(G)γst(H)

and (ii) follows by Theorem 1.
From now on we assume that v ∈ Ls(H). Let sx ∈ V(Hx) be the support of x in Hx for every

x ∈ V(G). Since x ∈ Ls(Hx), we have that sx ∈ S(Hx −{x})∩D. Hence, by Remark 3 we deduce that
D−x is a secure total dominating set of Hx−{x}, and by Lemma 2 we have that |D−x | ≥ γst(Hx−{x}) =
γst(H)− 1. Moreover, since N(x) ∩ Dx = {sx} for every x ∈ V(G), by Remark 1 it follows that every
vertex in V(G) \D has to have a neighbour in V(G)∩D, which implies that V(G)∩D is a dominating
set of G. Therefore, γst(G ◦v H) = |D| = |D ∩V(G)|+

∣∣∣∪x∈V(G)D−x
∣∣∣ ≥ γ(G) + n(G)(γst(H)− 1).

It remains to show that γst(G ◦v H) ≤ γ(G) + n(G)(γst(H)− 1). To this end, let X be a γ(G)-set,
Y a γst(H − {v})-set, and W ⊆ V(G ◦v H) \V(G) such that Wx is the subset of V(Hx − {x}) induced
by Y for every x ∈ V(G). Notice that sx ∈ Wx. In order to show that S = X ∪W is a secure total
dominating set of G ◦v H, we only need to observe that every vertex in V(G) \ S is totally protected
under S by any neighbour in X, while every w ∈ V(Hx) \Wx is totally protected under S by some
neighbour in Wx. Thus, γst(G ◦v H) ≤ |S| = γ(G) + n(G)γst(H − {v}), and by Lemma 2 we deduce
that γst(G ◦v H) ≤ γ(G) + n(G)(γst(H)− 1) . Therefore, (iii) follows.

Given two graphs G and G′, the corona graph G � G′ can be seen as a rooted product graph
G ◦v H where H is the join (The join graph G′ + G′′ is the graph obtained from G′ and G′′ by joining
each vertex of G′ to all vertices of G′′) graph K1 + H and v is the vertex of K1. Therefore, Lemma 3 and
Theorem 2 (ii) lead to the following result on corona graphs.

Theorem 3. If G is a graph with no isolated vertex, then for every nontrivial graph G′,

γst(G� G′) = n(G)(γ(G′) + 1).

As we will see later, the behaviour of γst(G ◦v H) changes depending on whether the root vertex
v is a weak leaf or not. First we proceed to consider the cases where the root vertex is not a weak leaf.

Lemma 4. Let S be a γst(G ◦v H)-set and x ∈ V(G). If v /∈ Lw(H), then the following statements hold.

• |Sx| ≥ γst(H)− 2.
• If |Sx| = γst(H)− 2, then N[x] ∩ Sx = ∅.
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Proof. Let x ∈ V(G). Notice that every vertex in V(Hx) \ (S ∪ {x}) is totally protected under S
by some vertex in Sx. Now, suppose that |Sx| ≤ γst(H)− 3 and let y ∈ N(x) ∩ V(Hx). If y /∈ Sx,
then Sx ∪ {x, y} is a secure total dominating set of Hx of cardinality at most γst(H)− 1, which is a
contradiction. Assume that N(x) ∩ V(Hx) ⊆ Sx. If N(x) ∩ V(Hx) = {y}, then x ∈ Ls(Hx) and y ∈
S(G ◦v H). Thus, by Remark 3 no vertex in V(Hx) is totally protected by y under S, and so Sx ∪ {x} is
a secure total dominating set of Hx of cardinality at most γst(H)− 2, which is a contradiction. Finally,
if |N(x) ∩V(Hx)| ≥ 2, then Sx ∪ {x} is a secure total dominating set of Hx and, as above, we arrive to
a contradiction. Therefore, |Sx| ≥ γst(H)− 2.

Now, assume that |Sx| = γst(H)− 2. First, suppose that x ∈ S. Notice that if N(x) ∩V(Hx) ⊆ Sx,
then Sx is a secure total dominating set of Hx, which is a contradiction. Hence, there exists y ∈
(N(x)∩V(Hx)) \ Sx, and so Sx ∪{y} is a secure total dominating set of Hx and |Sx ∪{y}| = γst(H)− 1,
which is a contradiction. Thus, x /∈ S. Now, suppose that N(x) ∩ Sx 6= ∅. If there exists z ∈
(N(x) ∩V(Hx)) \ Sx, then Sx ∪ {z} is a secure total dominating set of Hx and |Sx ∪ {z}| = γst(H)− 1,
which is a contradiction. Now, if N(x) ∩ V(Hx) ⊆ Sx, then one can easily check that Sx ∪ {x} is a
secure total dominating set of Hx, which is a contradiction again, as |Sx ∪ {x}| = γst(H)− 1. Therefore,
N(x) ∩V(Hx) ∩ S = ∅.

From Lemma 4 we deduce that if v /∈ Lw(H), then any γst(G ◦v H)-set S induces a partition
{AS,BS, CS} of V(G) as follows.

AS = {x ∈ V(G) : |Sx| ≥ γst(H)},

BS = {x ∈ V(G) : |Sx| = γst(H)− 1},

CS = {x ∈ V(G) : |Sx| = γst(H)− 2}.

The following corollary is a direct consequence of Theorem 2 (i).

Corollary 1. Let S be a γst(G ◦v H)-set. If BS ∪ CS 6= ∅, then v /∈ S(H).

Lemma 5. Let S be a γst(G ◦v H)-set, where v /∈ Lw(H). If CS 6= ∅, then γst(H − {v}) = γst(H)− 2.

Proof. By Lemma 4, if x ∈ CS, then N[x] ∩ Sx = ∅, which implies that S−x is a secure total dominating
set of Hx − {x} of cardinality |S−x | = |Sx| = γst(Hx)− 2. Hence, x /∈ S(Hx) and γst(Hx − {x}) ≤
|S−x | = γst(Hx)− 2. Notice that Lemma 2 leads to x /∈ Ls(Hx). Thus, by Lemma 1 we conclude that
γst(Hx − {x}) = γst(Hx)− 2. Therefore, the result follows.

The following result states the intervals in which the secure total domination number of a rooted
product graph can be found.

Theorem 4. Let G and H be two graphs with no isolated vertex. At least one of the following statements holds
for every v ∈ V(H) \ Lw(H).

(i) γst(G ◦v H) = n(G)γst(H).
(ii) n(G)(γst(H)− 1) ≤ γst(G ◦v H) ≤ γst(G) + n(G)(γst(H)− 1).
(iii) γ×2(G) + n(G)(γst(H)− 2) ≤ γst(G ◦v H) ≤ γst(G) + n(G)(γst(H)− 2).

Proof. Let S be a γst(G ◦v H)-set and consider the partition {AS,BS, CS} of V(G) defined above.
We differentiate the following four cases.

Case 1. BS ∪ CS = ∅. In this case, for any x ∈ V(G) we have that |Sx| ≥ γst(H) and, as a consequence,
γst(G ◦v H) ≥ n(G)γst(H). Thus, Theorem 1 leads to (i).

Case 2. BS 6= ∅ and CS = ∅. In this case, for any x ∈ V(G) we have that |Sx| ≥ γst(H)− 1 and, as a
result, γst(G ◦v H) ≥ n(G)(γst(H)− 1).
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In order to conclude the proof of (ii), we proceed to show that γst(G ◦v H) ≤ γst(G) +

n(G)(γst(H) − 1). To this end, we fix x′ ∈ BS, yx′ ∈ V(Hx′) ∩ N(x′), a γst(G)-set D and define
a subset W of vertices of G ◦v H as follows.

(a) If x′ 6∈ S, then for any x ∈ V(G) we set W ∩ V(G) = D and W−x is induced by S−x′ = Sx′ . It is
readily seen that the set W constructed in this manner is a secure total dominating set of G ◦v H
and so γst(G ◦v H) ≤ |W| = |D|+ n(G)|Sx′ | = γst(G) + n(G)(γst(H)− 1).

(b) Assume that x′ ∈ S. If x ∈ V(G) \ L(G), then Wx is induced by Sx′ , while if x ∈ L(G), then
Wx is induced by Sx′ ∪ {yx′}. It is readily seen that the set W constructed in this manner is a
secure total dominating set of G ◦v H and, as a result, γst(G ◦v H) ≤ |W| = |L(G)|+ n(G)|Sx′ | ≤
γst(G) + n(G)(γst(H)− 1).

Case 3. BS = ∅ and CS 6= ∅. By Corollary 1, v 6∈ S(H), and by Lemma 5 we have that γst(H− {v}) =
γst(H)− 2. Hence, by Theorem 1 we conclude that γst(G ◦v H) ≤ γst(G) + n(G)(γst(H)− 2).

From Lemma 4 we deduce that AS is a 2-dominating set of G. Hence, γst(G ◦v H) ≥
|AS|γst(H) + |CS|(γst(H) − 2) = 2|AS| + n(G)(γst(H) − 2) ≥ 2γ2(G) + n(G)(γst(H) − 2) ≥
γ×2(G) + n(G)(γst(H)− 2). Therefore, in this case (iii) holds.

Case 4. BS 6= ∅ and CS 6= ∅. By Corollary 1, v 6∈ S(H), and by Lemma 5, γst(H − {v}) = γst(H)− 2.
Thus, by Theorem 1 we conclude that γst(G ◦v H) ≤ γst(G) + n(G)(γst(H)− 2).

In order to conclude that in this case (iii) holds, let us define a double dominating set D of G such
that |D| ≤ 2|AS|+ |BS|. Set D has minimum cardinality among the sets satisfying that AS ∪ BS ⊆ D
and for any x ∈ AS, if N(x) ∩ CS 6= ∅, then there exists x′ ∈ N(x) ∩ CS ∩ D. Notice that every vertex
in AS is dominated by at least one vertex in D and, by Lemma 4, every vertex in CS is dominated
by at least two vertices in AS ∪ BS ⊆ D. Furthermore, if there exists one vertex x ∈ BS such that
N(x) ∩AS ∩ BS = ∅, then Sx is a secure total dominating set of Hx, which is a contradiction, as |Sx| =
γst(Hx)− 1. Hence, D is a double dominating set of G. Therefore, γst(G ◦v H) = |S| ≥ |AS|γst(H) +

|BS|(γst(H)− 1) + |CS|(γst(H)− 2) ≥ |D|+ n(G)(γst(H)− 2) ≥ γ×2(G) + n(G)(γst(H)− 2).

The bounds given in the previous theorem are tight. To see this, we consider the following
examples where H1 and H2 are the graphs shown in Figure 3.

• γst(G ◦v P7) = n(G) (γst(P7)− 1), where v is the central vertex of P7 and G is a graph with
δ(G) ≥ 2.

• γst(Kr ◦v H1) = 2 + r(3− 1) = γst(Kr) + n(Kr) (γst(H1)− 1), where r ≥ 2.
• Theorem 5 gives some conditions to achieve the equalities γst(G ◦v H) = γst(G) + n(G)(γst(H)−

2) = γ×2(G) + n(G)(γst(H)− 2). In this case we can take H ∼= H2.

Figure 3. The set of black-coloured vertices forms a γst(Hi)-set for i ∈ {1, 2}. The set {a, b} is a
γst(H1 − {v})-set, while {a, b, c} is a γst(H2 − {v})-set.

We now consider some particular cases in which we impose some additional restrictions on G
and H. We begin with an immediate consequence of Theorem 4.
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Theorem 5. Let G and H be two graphs with no isolated vertex and v ∈ V(H) \ Lw(H). If γst(H − {v}) =
γst(H)− 2 and γst(G) = γ×2(G), then

γst(G ◦v H) = γst(G) + n(G)(γst(H)− 2).

Proof. If γst(H − {v}) = γst(H)− 2, then v /∈ S(H) and Theorem 1 leads to γst(G ◦v H) ≤ γst(G) +

n(G)(γst(H) − 2). Thus, by Theorem 4 we conclude that if γst(G) = γ×2(G), then γst(G ◦v H) =

γst(G) + n(G)(γst(H)− 2).

The following result considers the case in which γst(H − {v}) ≥ γst(H)− 1.

Theorem 6. Let G and H be two graphs with no isolated vertex and v ∈ V(H) \ Lw(H). If γst(H − {v}) ≥
γst(H)− 1, then

n(G)(γst(H)− 1) ≤ γst(G ◦v H) ≤ n(G)γst(H).

Now, if δ(G) ≥ 2 and γst(H − {v}) ≥ γst(H), then γst(G ◦v H) = n(G)(γst(H)− 1) or γst(G ◦v H) =

n(G)γst(H).

Proof. Let S be a γst(G ◦v H)-set and assume that γst(H − {v}) ≥ γst(H)− 1. By Lemma 5 we have
that CS = ∅, and so Lemma 4 leads to |Sx| ≥ γst(Hx)− 1 for every x ∈ V(G). Thus, γst(G ◦v H) =

∑x∈V(G) |Sx| ≥ n(G)(γst(H)− 1). Therefore, Theorem 1 leads to n(G)(γst(H)− 1) ≤ γst(G ◦v H) ≤
n(G)γst(H).

From now on we assume that δ(G) ≥ 2 and γst(H − {v}) ≥ γst(H). Let us distinguish between
two cases, according to whether or not γst(H − {v}) > γst(H).

Case 1. γst(H − {v}) > γst(H). We define a set D ⊆ V(G ◦v H) as follows. For any x ∈ V(G) \ S we
take D ∩V(Hx) as a γst(Hx)-set, while for any x ∈ V(G) ∩ S we set D ∩V(Hx) = Sx. Notice that D
is a secure total dominating set of G ◦v H. Now, if there exists a vertex x ∈ V(G) \ S, then the set S−x
is a secure total dominating set of Hx − {x}. Hence, |Sx| = |S−x | ≥ γst(H − {x}) > γst(Hx) = |Dx|,
and so |D| < |S|, which is a contradiction. Thus, V(G) ⊆ S.

If |Sx| ≥ γst(H) for every x ∈ V(G), then Theorem 1 leads to γst(G ◦v H) = n(G)γst(H).
Suppose that there exists a vertex x ∈ V(G) such that |Sx| ≤ γst(H) − 1. We define a set D′ ⊆
V(G ◦v H) as follows. For every z ∈ V(G), the restriction of D′ to V(Hz) is induced by Sx. Notice that
V(G) ⊆ D′ and, if δ(G) ≥ 2, then every vertex in V(Hz) \ D′ is totally protected under D′ by
some vertex in D′z, which implies that D′ is a secure total dominating set of G ◦v H. Therefore,
γst(G ◦v H) ≤ |D′| ≤ n(G)(γst(H)− 1), concluding that γst(G ◦v H) = n(G)(γst(H)− 1).

Case 2. γst(H−{v}) = γst(H). First, assume that V(G)∩ S = ∅. Since S−x is a secure total dominating
set of Hx − {x} for every x ∈ V(G), we have that γst(G ◦v H) = ∑x∈V(G) |S−x | ≥ ∑x∈V(G) γst(H −
{x}) = n(G)γst(H − {v}) = n(G)γst(H), and so Theorem 1 leads to γst(G ◦v H) = n(G)γst(H).

Now, assume that there exists y ∈ V(G) ∩ S. Notice that Lemma 5 leads to CS = ∅. Hence,
y ∈ AS ∪ BS. If y ∈ BS, we define a set D′ ⊆ V(G ◦v H) as follows. For every z ∈ V(G), the restriction
of D′ to V(Hz) is induced by Sy. As in Case 1, we deduce that D′ is a secure total dominating set
of G ◦v H and so we can conclude that γst(G ◦v H) = |D′| = n(G)(γst(H)− 1). Finally, if BS = ∅,
then V(G) = AS and by Theorem 1 we conclude that γst(G ◦v H) = |S| = n(G)γst(H).

Now, we consider a particular case in which γst(H − {v}) = γst(H).

Theorem 7. Let G be a graph with no isolated vertex. Let H be a graph and v ∈ V(H) such that γst(H −
{v}) = γst(H). If v /∈ S for every γst(H)-set S, then

γst(G ◦v H) = n(G)γst(H).
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Proof. Assume that v /∈ S for every γst(H)-set S. Notice that v /∈ L(H) ∪ S(H). Let D be a
γst(G ◦v H)-set. By Lemma 5 we conclude that CD = ∅. Now, if BD = ∅, then by analogy to
Case 1 in the proof of Theorem 4 it follows that γst(G ◦v H) = n(G)γst(H).

Suppose that there exists a vertex x ∈ BD. If x /∈ D, then D−x is a secure total dominating set of
Hx − {x}, which implies that γst(H − {v}) = γst(Hx − {x}) ≤ |D−x | = |Dx| = γst(H)− 1, which is
a contradiction. Hence, x ∈ D. Now, if N(x) ∩ V(Hx) ⊆ D, then Dx is a secure total dominating
set of Hx and so γst(Hx) ≤ |Dx| = γst(Hx) − 1, which is a contradiction. Finally, if there exists
x′ ∈ N(x) ∩ V(Hx) \ D, then D′x = Dx ∪ {x′} is a secure total dominating set of Hx of cardinality
γst(Hx) and x ∈ D′x, which is a contradiction again. Therefore, BD = ∅, and we are done.

The Case in Which the Root Vertex Is a Weak Leaf

The first part of this section is devoted to the case in which the support vertex of the root v has
degree greater than or equal to three. From Remark 4 we learned that if v ∈ Lw(H), N(v) = {s}
and |N(s)| ≥ 3, then the gap γst(H)− γst(H − {v}) could be arbitrarily large.

Remark 5. Let H be a graph with no isolated vertex, v ∈ Lw(H) and N(v) = {s}. If |N(s)| ≥ 3, then

γst(H) ≥ γst(H − {v}).

Proof. Let S be a γst(H)-set. By Remark 3, we have that v, s ∈ S. If N(s) ⊆ S, then since |N(s)| ≥ 3,
we deduce S \ {v} is a secure total dominating set of H − {v}. Hence, γst(H − {v}) ≤ |S \ {v}| <
γst(H). Now, if there exists u ∈ N(s) \ S, then (S \ {v}) ∪ {u} is also a secure total dominating set of
H − {v}. Thus, γst(H − {v}) ≤ |(S \ {v}) ∪ {u}| = γst(H). Therefore, the result follows.

By Remarks 4 and 5, it seems reasonable to express γst(G ◦v H) in terms of γst(H − {v})
rather than γst(H). To this end, we consider the following lemma.

Lemma 6. Let S be a γst(G ◦v H)-set. If v ∈ Lw(H), N(v) = {s} and |N(s)| ≥ 3, then |Sx| ≥ γst(H −
{v}) for every x ∈ V(G)

Proof. Let x ∈ V(G). Notice that every vertex in V(Hx) \ (S ∪ {x}) is totally protected under S by
some vertex in Sx. Now, suppose that |Sx| < γst(H − {v}) and let N(x) ∩ V(Hx) = {sx}. If x /∈ S,
then S−x is a secure total dominating set of Hx − {x}, which is a contradiction as |S−x | = |Sx| <
γst(H − {v}) = γst(Hx − {x}). Hence, x ∈ S. Now, if N(sx) ⊆ S, then we set S′ = (Sx \ {x}) ∪ {sx}
and otherwise we set S′ = (Sx \ {x}) ∪ {w} for any w ∈ N(sx) \ S. In both cases, S′ is a secure total
dominating set of Hx − {x} and γst(Hx − {x})− 1 > |Sx| − 1 ≥ |S′| ≥ γst(Hx − {x}), which is a
contradiction. Therefore, |Sx| ≥ γst(H − {v}).

By Theorem 1 and Lemma 6, we deduce the next result.

Theorem 8. Let G and H be two graphs with no isolated vertex. If v ∈ Lw(H), N(v) = {s}
and |N(s)| ≥ 3, then

n(G)γst(H − {v}) ≤ γst(G ◦v H) ≤ min{n(G)γst(H), γst(G) + n(G)γst(H − {v})}.

The following result is an immediate consequence of the theorem above.

Corollary 2. Let G and H be two graphs with no isolated vertex. Let v ∈ Lw(H) and N(v) = {s}.
If |N(s)| ≥ 3 and γst(H − {v}) = γst(H), then

γst(G ◦v H) = n(G)γst(H).
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Theorem 9. Let G be a graph with δ(G) ≥ 2 and H a graph with no isolated vertex. Let v ∈ Lw(H)

and N(v) = {s}. If |N(s)| ≥ 3 and N(s) ∩ S(H) 6= ∅, then the following statements hold.

(i) If s /∈ D for every γst(H − {v})-set D, then

γst(G ◦v H) = γst(G) + n(G)γst(H − {v}).

(ii) If there exists a γst(H − {v})-set D such that s ∈ D, then

γst(G ◦v H) ∈ {n(G)γst(H − {v}, γ(G) + n(G)γst(H − {v}), γt(G) + n(G)γst(H − {v})}.

Proof. Let S be a γst(G ◦v H)-set such that |S ∩ N[V(G)]| is maximum. For any vertex x ∈ V(G),
let {sx} = N(x) ∩V(Hx). Let {M0,M1,N0,N1} be the partition of V(G) defined as follows.

M0 = {x ∈ V(G) \ S : sx ∈ S}, M1 = {x ∈ V(G) ∩ S : sx ∈ S},

N0 = {x ∈ V(G) \ S : sx /∈ S}, N1 = {x ∈ V(G) ∩ S : sx /∈ S}.

By Theorem 1 we have that γst(G ◦v H) ≤ γst(G)+n(G)γst(H−{v}). Hence, in order to prove (i)
we proceed to show that γst(G ◦v H) ≥ γst(G) + n(G)γst(H − {v}). To this end, we need to estimate
the gap |Sx| − γst(H − {v}). Obviously, if x ∈ N0, then |Sx| = γst(H − {v}). Now, since N(sx) ∩
S(Hx) 6= ∅, if x ∈ M0 ∪M1, then S−x is a secure total dominating set of Hx − {x}, and so |S−x | ≥
γst(Hx − {x}) = γst(H − {v}). By hypothesis of (i) we deduce that, if x ∈ M0, then |Sx| ≥ |S−x | >
γst(H − {v}), while if x ∈ M1, then |Sx| > |S−x | > γst(H − {v}). We now consider the case x ∈
N1. By Lemma 6 we have that |Sx| ≥ γst(H − {v}). If |Sx| = γst(H − {v}), then S−x ∪ {sx} is a
secure total dominating set of Hx − {x} and |S−x ∪ {sx}| = |Sx| = γst(H − {v}) = γst(Hx − {x}),
which contradicts the hypothesis of (i). Hence, x ∈ N1 leads to |Sx| > γst(H − {v}).

In summary, we can conclude that if x ∈ N0, then |Sx| = γst(H − {v}), if x ∈ M0 ∪ N1,
then |Sx| ≥ γst(H − {v}) + 1, while if x ∈ M1, then |Sx| ≥ γst(H − {v}) + 2. We claim that there
exists a secure total dominating set Z of G such that |Z| ≤ |N1|+ |M0|+ 2|M1|.

We define Z as a set of minimum cardinality satisfying that N1 ∪M0 ∪M1 ⊆ Z and for any
x ∈ M1 with N(x)∩N0 6= ∅ there exists wx ∈ N(x)∩N0 ∩ Z. Notice that, by definition, Z is a double
dominating set of G and, since δ(G) ≥ 2, every vertex inM1 has at least two neighbours in Z \ N0 or
one neighbour in Z ∩N0. Let x ∈ V(G) \ Z. Since x ∈ N0, there exists y ∈ S ∩V(G) =M1 ∩N1 ⊆ Z
such that x is totally protected under S by y. We claim that Z′ = (Z \ {y}) ∪ {x} is a total dominating
set of G. Since Z is a total dominating set of G, we have that every vertex in V(G) \ N(y) is dominated
by some vertex in Z′. Now, if there exists u ∈ N(y) ∩ V(G) such that N(u) ∩ S ∩ V(G) = {y},
then u ∈ M1, and so N(u) ∩ Z ∩N0 6= ∅, concluding that Z′ is a total dominating set of G. Hence,
Z is a secure total dominating set of G, and as a consequence,

γst(G ◦v H) = ∑x∈V(G) |Sx|
= ∑x∈M1

|Sx|+ ∑x∈M0
|Sx|+ ∑x∈N1

|Sx|+ ∑x∈N0
|Sx|

≥ ∑x∈M1
(γst(H − {v}) + 2) + ∑x∈M0∪N1

(γst(H − {v}) + 1) + ∑x∈N0
γst(H − {v})

= ∑x∈V(G) γst(H − {v}) + (2|M1|+ |M0|+ |N1|)
≥ ∑x∈V(G) γst(H − {v}) + |Z|
≥ n(G)γst(H − {v}) + γst(G).

Therefore, proof of (i) is complete.
We now proceed to prove (ii). From Lemma 6 we can consider the partition {R0, R1} of V(G)

defined as follows.

R0 = {x ∈ V(G) : |Sx| = γst(H − {v})}, R1 = {x ∈ V(G) : |Sx| > γst(H − {v})}.
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By assumptions, there exists a γst(H − {v})-set D such that s ∈ D. Let W ⊆ V(G ◦v H) \V(G)

such that Wx is induced by D for every vertex x ∈ V(G).
If x ∈ N0, then S′ = (S \ Sx) ∪Wx is a γst(G ◦v H)-set with |S′ ∩ N[V(G)]| > |S ∩ N[V(G)]|,

which is a contradiction. Hence, N0 = ∅. If x ∈ R1 ∩ N1, then S′ = (S \ Sx) ∪ (Wx ∪ {x}) is a
γst(G ◦v H)-set with |S′ ∩ N[V(G)]| > |S ∩ N[V(G)]|, which is a contradiction. Hence, R1 ∩N1 = ∅,
and so N1 ⊆ R0. Now, by hypothesis of (ii),M0 ⊆ R0. Moreover, if x ∈ M1, then S−x is a secure total
dominating set of Hx − {x}, and so x ∈ R1. Therefore, R1 =M1 and R0 =M0 ∪N1.

Now, we suppose that there exists a vertex x′ ∈ N1. Let W ′ ⊆ V(G ◦v H) such that W ′x is induced
by Sx′ for every vertex x ∈ V(G). Since δ(G) ≥ 2 we have that W ′ is a secure total dominating
set of G ◦v H of cardinality n(G)γst(H − {v}). Therefore, γst(G ◦v H) ≤ n(G)γst(H − {v}) and by
Theorem 8, we deduce that γst(G ◦v H) = n(G)γst(H − {v}).

From now on, we assume that N1 = ∅. Hence, R1 = M1 and R0 = M0. Let x ∈ M1.
As N(sx) ∩ S(Hx) 6= ∅, we have that S−x is a secure total dominating set of Hx − {x}, and by
hypothesis of (ii) we deduce that |S−x | = γst(H − {v}), which implies that |Sx| = γst(H − {v}) + 1.
Hence, γst(G ◦v H) = |M1|+ n(G)γst(H − {v}).

Since V(G) =M0 ∪M1 andM0 ∩M1 = ∅, by Remark 1, any vertex inM0 is dominated by at
least one vertex inM1. Hence,M1 is a dominating set of G and we differentiate the following two cases.

Case 1. There exists a γst(H − {v})-set D containing s, such that no vertex in N(s) \ D is necessarily
totally protected by s under D. Let W ′′ ⊆ V(G ◦v H) \V(G) such that W ′′x is induced by D for every
vertex x ∈ V(G). In this case, for every γ(G)-set X we have that X ∪W ′′ is a secure total dominating
set of G ◦v H. Hence |M1| = γ(G), and as a consequence, γst(G ◦v H) = γ(G) + n(G)γst(H − {v}).

Case 2. For every γst(H − {v})-set D containing s, there exists a vertex in V(H) \ D that is totally
protected uniquely by s under D. In this case, any vertex inM1 is dominated by another vertex in
M1, which implies thatM1 is a total dominating set of G. As in Case 1, let W ′′ ⊆ V(G ◦v H) \V(G)

such that W ′′x is induced by D for every vertex x ∈ V(G). In this case, for every γt(G)-set X we
have that X ∪W ′′ is a secure total dominating set of G ◦v H. Hence |M1| = γt(G). Therefore,
γst(G ◦v H) = γt(G) + n(G)γst(H − {v}).

From now on we consider the case in which the support vertex of the root v has degree two.

Lemma 7. Let H be a graph with no isolated vertex. If v ∈ Lw(H), N(v) = {s} and |N(s)| = 2,
then γst(H − {v}) ≥ γst(H)− 1.

Proof. Suppose that γst(H − {v}) ≤ γst(H)− 2 and let D be a γst(H − {v})-set. Since both s and its
support vertex in H − {v} are included in D, we have that D ∪ {v} is a secure total dominating set of
H. Hence, γst(H) ≤ |D ∪ {v}| = γst(H − {v}) + 1 ≤ γst(H)− 1, which is a contradiction. Therefore,
γst(H − {v}) ≥ γst(H)− 1, which completes the proof.

Theorem 10. Let S be a γst(G ◦v H)-set. If v ∈ Lw(H), N(v) = {s} and |N(s)| = 2, then for any
x ∈ V(G),

γst(H)− 1 ≤ |Sx| ≤ γst(H).

Therefore, with the assumptions above,

n(G)(γst(H)− 1) ≤ γst(G ◦v H) ≤ n(G)γst(H).

Proof. We first consider the case in which Sx is a secure total dominating set of Hx. Since x ∈ L(Hx)

we have that x belongs to every γst(Hx)-set. So, |Sx| = γst(Hx) = γst(H).
Now, assume that Sx is not a secure total dominating set of Hx. Notice that every vertex in

V(Hx) \ (S ∪ {x}) is totally protected under S by some vertex in Sx. Since {x, sx} ∩ Sx 6= ∅, we have
that Sx ∪ {x, sx} is a secure total dominating set of Hx. Hence, γst(H) − 1 = γst(Hx) − 1 ≤ |Sx ∪



Mathematics 2020, 8, 600 12 of 14

{x, sx}| − 1 ≤ |Sx|. Now, if there exists x′ ∈ V(G) such that |Sx′ | > γst(H), then for any γst(Hx′)-set
D, we have that S′ = (S \ Sx′) ∪ D is a secure total dominating set of G ◦v H and |S′| < |S|, which is
a contradiction. Therefore, γst(H)− 1 ≤ |Sx| ≤ γst(H) for every x ∈ V(G), and since γst(G ◦v H) =

∑x∈V(G) |Sx|, the result follows.

We now consider the particular case where δ(G) ≥ 2. By Lemma 7 we only need to consider two
cases according to whether γst(H− {v}) ≥ γst(H) or γst(H− {v}) = γst(H)− 1. These two cases are
discussed in Theorems 11 and 12, respectively.

Theorem 11. Let G be a graph with δ(G) ≥ 2 and H a graph with no isolated vertex. Let v ∈ Lw(H),
N(v) = {s} and |N(s)| = 2. If γst(H − {v}) ≥ γst(H), then

γst(G ◦v H) ∈ {n(G)γst(H), n(G)(γst(H)− 1)}.

Proof. Let S be a γst(G ◦v H)-set such that |S| < n(G)γst(H). For any vertex x ∈ V(G), let {sx} =
N(x) ∩ V(Hx) and {s′x} = N(sx) \ {x}. By Theorem 10 there exists a vertex y ∈ V(G) such that
|Sy| = γst(H)− 1. If y /∈ Sy, then S−y is a secure total dominating set of Hy − {y} and so |S−y | = |Sy| =
γst(H)− 1 < γst(H − {v}) = γst(Hy − {y}), which is a contradiction. Hence, y ∈ Sy.

We suppose that sy ∈ Sy. Since |Sy| = γst(H) − 1, we deduce that s′y /∈ Sy. So, the set D =

(Sy \ {y}) ∪ {s′y} is a secure total dominating set of Hy − {y} of cardinality |D| = |Sy| = γst(H)− 1 <

γst(H − {v}) = γst(Hy − {y}, which is a contradiction. Hence, sy /∈ Sy, and so s′y ∈ Sy.
Let W ⊆ V(G ◦v H) such that Wx is induced by Sy, for any x ∈ V(G). Since δ(G) ≥ 2, we deduce

that W is a secure total dominating set of G ◦v H, and, as a result, γst(G ◦v H) ≤ |W| = n(G)|Sy| =
n(G)(γst(H)− 1). By Theorem 10 we obtain that γst(G ◦v H) = n(G)(γst(H)− 1), which completes
the proof.

Theorem 12. Let G be a graph with δ(G) ≥ 2 and H a graph with no isolated vertex. Let v ∈ Lw(H),
N(v) = {s} and |N(s)| = 2. If γst(H − {v}) = γst(H)− 1, then

γst(G ◦v H) ∈ {n(G)(γst(H)− 1), γ(G) + n(G)(γst(H)− 1)}.

Proof. By Theorem 10 we have that γst(G ◦v H) ≥ n(G)(γst(H) − 1). Since s ∈ L(H − {v}),
any γst(H − {v})-set D contains N[s] \ {v} as a subset. Let W ⊆ V(G ◦v H) \ V(G) such that Wx

is induced by D for every vertex x ∈ V(G). As for any γ(G)-set X, the set X ∪W is a secure total
dominating set of G ◦v H, we deduce that γst(G ◦v H) ≤ |X ∪W| = γ(G) + n(G)γst(H − {v}) =

γ(G) + n(G)(γst(H)− 1).
Let S be a γst(G ◦v H)-set such that |S| > n(G)(γst(H)− 1). For any vertex x ∈ V(G), let {sx} =

N(x) ∩ V(Hx). By Theorem 10, we can conclude that the set Z = {z ∈ V(G) : |Sz| = γst(H)} is
not empty. Since there exists a γst(H)-set containing N[s], we can assume, without loss of generality,
that N[sz] ⊆ Sz for every vertex z ∈ Z. We claim that Z is a dominating set of G. Let x′ ∈ V(G) \ Z
and suppose that x′ ∈ S. In such a case, |Sx′ | = γst(H)− 1 and we can define a set W ′ ⊆ V(G ◦v H)

such that W ′x is induced by Sx′ for every vertex x ∈ V(G). Notice that W is a secure total dominating
set of G ◦v H and |W| = n(G)(γst(H) − 1), which is a contradiction. Thus, (V(G) \ Z) ∩ S = ∅,
which implies that Z is a dominating set of G and so γst(G ◦v H) = |S| ≥ | ∪x∈V(G) Sx| = |Z| +
n(G)(γst(H)− 1) ≥ γ(G) + n(G)(γst(H)− 1), which completes the proof.

Theorem 13. Let G be a graph such that δ(G) ≥ 2 and H a graph with no isolated vertex. If v ∈ Lw(H),
N(v) = {s}, |N(s)| = 2 and N(s) ∩ S(H) 6= ∅, then

γst(G ◦v H) = n(G)(γst(H)− 1).
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Proof. For any vertex x ∈ V(G), let {sx} = N(x) ∩V(Hx) and notice that any γst(Hx)-set Dx satisfies
that N[sx] ⊆ Dx and Dx \ {x, sx} is a secure total dominating set of Hx − {x, sx}. Since δ(G) ≥ 2,
we have that D =

⋃
x∈V(G)(Dx \ {sx}) is a secure total dominating set of G ◦v H. Hence, γst(G ◦v

H) ≤ |D| = n(G)(γst(H) − 1). By Theorem 10 we obtain that γst(G ◦v H) = n(G)(γst(H) − 1),
which completes the proof.

4. Concluding Remarks

It is well-known that the problem of finding the secure total domination number of a graph
is NP-hard. This suggests the challenge of finding closed formulas or giving tight bounds for this
parameter. In this paper we develop the theory for the class of rooted product graph. The study shows
that if the root vertex is strong leaf, a support, or a universal vertex, then there exists a formula for the
secure total domination number of the rooted product graph. In the remaining cases, two different
behaviours are observed depending on whether the root vertex is a weak leaf or not. Although in
a different way, in both cases we were able to give the intervals to which the parameter belongs.
The endpoints of these intervals are expressed in terms of other domination parameters of the graphs
G and H involved in the product, which allows us to obtain closed formulas when certain conditions
are imposed on G or H.
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