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Abstract

Let (X, d) be a metric space. A set S ⊆ X is said to be a k-metric generator
for X if and only if for any pair of different points u, v ∈ X, there exist at least
k points w1, w2, . . . wk ∈ S such that d(u,wi) 6= d(v, wi), for all i ∈ {1, . . . k}. Let
Rk(X) be the set of metric generators for X. The k-metric dimension dimk(X) of
(X, d) is defined as

dimk(X) = inf{|S| : S ∈ Rk(X)}.

Here, we discuss the k-metric dimension of (V, dt), where V is the set of vertices
of a simple graph G and the metric dt : V × V → N ∪ {0} is defined by dt(x, y) =
min{d(x, y), t} from the geodesic distance d in G and a positive integer t. The
case t ≥ D(G), where D(G) denotes the diameter of G, corresponds to the original
theory of k-metric dimension and the case t = 2 corresponds to the theory of k-
adjacency dimension. Furthermore, this approach allows us to extend the theory of
k-metric dimension to the general case of non-necessarily connected graphs. Finally,
we analyse the computational complexity of determining the k-metric dimension of
(V, dt) for the metric dt.

Keywords: metric dimension; k-metric dimension; k-adjacency dimension; metric
space; nondeterministic polynomial time.

AMS Subject Classification numbers: 05C12; 05C76; 54E35

1 Introduction

The metric dimension of a general metric space was introduced in 1953 in [6] but attracted
little attention until, about twenty years later, it was applied to the distances between
vertices of a graph [20, 33, 34]. Since then it has been frequently used in graph theory,
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chemistry, biology, robotics and many other disciplines. In 2013, in [4], the theory of
metric dimension was developed further for general metric spaces. More recently, this
theory has been generalised in [7, 9, 10, 11, 12, 36], again in the context of graph theory,
to the notion of a k-metric dimension, where k is any positive integer, and where the case
k = 1 corresponds to the original theory. Independently from our work, a similar approach
to k-metric dimension has appeared in [1, 2, 3], although the direction of such works are
more going in the algorithmic and computer science sense. The idea of the k-metric
dimension both in the context of graph theory and general metric spaces was studied
further in [5]. This paper deals with the problem of finding the k-metric dimension of
graphs where the metric used is not necessarily the standard one. Given a positive integer
t and the geodesic distance d in a graph G = (V,E) we consider the metric dt : V ×V → R,
defined by dt(x, y) = min{d(x, y), t}. In this context, k-metric generators are called (k, t)-
metric generators and the k-metric dimension is called (k, t)-metric dimension. The case
t ≥ D(G), where D(G) denotes the diameter of G, corresponds to the original theory of k-
metric dimension and the case t = 2 corresponds to the theory of k-adjacency dimension.
Furthermore, we would point out that this approach allows us to extend the theory of k-
metric dimension to the general case of non-necessarily connected graphs. We will deepen
more about the main concepts as well as some basic results in Section 2.

Summary of our contribution

Our main contributions as well as their location within our article are listed below.

• In Section 3 we discuss a natural problem in the study of the (k, t)-metric dimension
of a graph G which consists of finding the largest integer k such that there exists a
(k, t)-metric generator for G.

• Section 4 is devoted to study the problem of computing or bounding the (k, t)-metric
dimension. In particular, we give some basic bounds and discuss the extreme cases,
we construct large families of graphs having a common (k, t)-metric generator and
show that for t ≥ 2 the (k, t)-metric dimension of lexicographic product graphs does
not depend on the value of t. We also show that the (k, t)-metric dimension of the
corona product of a graph of order n and some nontrivial graph H equals n times
the (k, 2)-metric dimension of H.

• Section 5 deals with the problem of computing the (k, t)-metric dimension proving
that is NP-hard for the case in which k is an odd integer.

• Finally, in Section 6 we discuss some problems which are derived from or related to
our previous results.

2 Terminology and basic tools

Let (X, d) be a metric space. If X is a finite set, we denote its cardinality by |X|; if X
is an infinite set, we put |X| = +∞. A set A ⊆ X is called a metric generator for (X, d)
if and only if d(x, a) = d(y, a) for all a in A implies that x = y. Roughly speaking, if
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an object in x knows its distance from each point of A, then it knows exactly where it
is located in X. The class of metric generators of X is non-empty since X is a metric
generator for (X, d). A metric generator of a metric space (X, d) is, in effect, a global
coordinate system on X. For example, if (x1, . . . , xp) is an ordered metric generator of X,
then the map ∆ : X → Rp given by

∆(x) =
(
d(x, x1), . . . , d(x, xp)

)
(1)

is injective (for this vector determines x), so that ∆ is a bijection from X to a subset of
Rp, and X inherits its coordinates from this subset.

Now, a set S ⊆ X is said to be a k-metric generator for X if and only if for any pair
of different points u, v ∈ X, there exist at least k points w1, w2, . . . wk ∈ S such that

d(u,wi) 6= d(v, wi), for all i ∈ {1, . . . k}.

Let Rk(X) be the set of k-metric generators for X. The k-metric dimension dimk(X) of
(X, d) is defined as

dimk(X) = inf{|S| : S ∈ Rk(X)}.

As inf ∅ = +∞, this means that dimk(X) = +∞ if and only if no finite subset of X
is a k-metric generator for X. A set S is a k-metric basis of X if S ∈ Rk(X) and
|S| = dimk(X).

The k-metric dimension of metric spaces was studied in [5] where, for instance, it
was shown that if U is any non-empty open subset of any one of the three classical n-
dimensional geometries of constant curvature, namely Euclidean space Rn, Spherical space
Sn and Hyperbolic space Hn, then dimk(U) = n + k. If we consider the discrete metric
space (equivalently, a complete graph), then dim1(X) = |X| − 1 and dim2(X) = |X|.
Furthermore, for k ≥ 3 there are no k-metric generators for the discrete metric space.
The reader is referred to [10, 11, 12] for previous results on the k-metric dimension of
graphs.

A basic and useful result on the k-metric dimension of metric spaces is the following
one.

Theorem 1 (Monotonicity of dimk(X) with respect to k [5]). Let (X, d) be a metric
space, and k a positive integer. Then,

(i) if dimk(X) < +∞ then dimk(X) < dimk+1(X);

(ii) if dimk(X) = +∞ then dimk+1(X) = +∞.

In particular, dimk(X) + 1 ≥ dim1(X) + k.

Given a positive integer t and a metric space (X, d), the function dt : X × X → R,
defined by

dt(x, y) = min{d(x, y), t} (2)

is a metric on X. If d(x, y) ≤ t, then dt(x, y) = d(x, y), so that the dt-metric topology
coincides with the d-metric topology. Furthermore, if d(x, y) ≥ 1, then d1(x, y) = 1, so
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that if d(x, y) ≥ 1 for all x, y ∈ X, then the d1-metric topology coincides with the discrete-
metric topology (equivalently, the topology of a complete graph). The study of the k-
metric dimension of (X, dt) was introduced in [5] as a tool to study the k-metric dimension
of the join of two metric spaces, and it was introduced previously in the particular context
of graphs [14].

The next result shows that the k-metric dimension of a single metric space varies
when we distort the metric from d to dt as above. From now on, the k-metric dimension
of (X, dt) will be denoted by dimt

k(X).

Theorem 2. [5] Let (X, d) be a metric space, and k a positive integer, and suppose that
0 < s < t. Then

dims
k(X) ≥ dimt

k(X) ≥ dimk(X). (3)

However, it can happen that

lim
t→+∞

dimt
k(X) > dimk(X). (4)

If X has diameter D(X) ≤ t, then the equalities in (3) are achieved. Furthermore, as
we will show in Theorem 20, the equalities in (3) can be achieved for some metric spaces
of diameter D(X) > t ≥ 2. Before giving an example which shows that (4) can hold, we
proceed to state the following result which shows that the study of dimk(X) should be
restricted to the case of bounded metric spaces.

Theorem 3. For any unbounded metric space (X, d) and any t > 0, dimt
1(X) = +∞.

Proof. We shall show that dimt
1(X) < +∞ implies that (X, d) is bounded. Assume

that a finite set S ⊂ X is a 1-metric basis of (X, dt) and take s0, s1 ∈ S such that
d(s0, s1) = max

s∈S
{d(s, s0)}. Let B = {x ∈ X : d(s0, x) ≤ t + d(s0, s1)}. If there are two

different points x1, x2 ∈ X \ B, then dt(x1, s) = dt(x2, s) = t, for all s ∈ S, which is a
contradiction. Hence, either X ⊂ B or there exists z ∈ X such that X \ B = {z}, in
which case X ⊂ {x ∈ X : d(x, s0) ≤ d(z, s0)}. Therefore, (X, d) is bounded.

We have learned from [5] that dimk(Rn) = n+ k and, according to Theorems 1 and 3
dimt

k(Rn) = +∞, which shows that (4) can hold.
Let G = (V,E) be a simple and finite graph. If G is connected, then we consider the

function d : V ×V → N∪{0}, where d(x, y) is the length of a shortest path between x and
y and N is the set of positive integers. Obviously (V, d) is a metric space, since d is a metric
on V . From now on, we will use the more intuitive notation dimt

k(G) instead of dimt
k(V ).

In this context, in order to emphasize the role of t we will use the terminology, (k, t)-
metric generator, (k, t)-metric basis and (k, t)-metric dimension of G = (V,E), instead of
k-metric dimension, k-metric basis and k-metric dimension of (V, dt), respectively. Notice
that when using the metric dt the concept of k-metric generator needs not be restricted
to the case of connected graphs, as for any pair of vertices x, y belonging to different
connected components of G we can assume that d(x, y) = +∞ and so dt(x, y) = t. Hence,
we can consider that the metric dimension of a non-connected graph G equals the (k, t)-
metric dimension, where t is greater than or equal to the maximum diameter among the
connected components of G.
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We would point out the following dimension chain, which is a direct consequence of
Theorems 1 and 2. For any finite graph G and any integers k ≥ 1 and t ≥ 2,

dimk(G) ≤ dimt+1
k (G) ≤ dimt

k(G) ≤ dimt
k+1(G)− 1 ≤ dim2

k+1(G)− 1. (5)

Throughout the paper, we will use the notationKn, Kr,n−r, Cn, Nn and Pn for complete
graphs, complete bipartite graphs, cycle graphs, empty graphs and path graphs of order
n, respectively.

We use the notation u ∼ v if u and v are adjacent vertices and G ∼= H if G and H are
isomorphic graphs. For a vertex v of a graph G, NG(v) will denote the set of neighbours
or open neighbourhood of v in G, i.e. NG(v) = {u ∈ V (G) : u ∼ v}. If it is clear from the
context, we will use the notation N(v) instead of NG(v). The closed neighbourhood of v
will be denoted by N [v] = N(v)∪ {v}. Two vertices x, y are called twins if N(x) = N(y)
or N [x] = N [y].

For the remainder of the paper, definitions will be introduced whenever a concept is
needed.

3 On (k, t)-metric dimensional graphs

In this section we discuss a natural problem in the study of the k-metric dimension of a
metric space (X, dt) which consists of finding the largest integer k such that there exists
a k-metric generator for X. We say that a graph G is (k, t)-metric dimensional if k is
the largest integer such that there exists a (k, t)-metric basis of G. Notice that if G is a
(k, t)-metric dimensional graph, then for each positive integer r ≤ k, there exists at least
one (r, t)-metric basis of G.

Given a graph G and two different vertices x, y ∈ V (G), we denote by DG,t(x, y) the
set of vertices that distinguish the pair x, y with regard to the metric dt, i.e.,

DG,t(x, y) = {z ∈ V : dt(z, x) 6= dt(z, y)}.

Throughout the article, if the graph G is clear from the content, then we will just write
Dt(x, y).

Note that a set S ⊆ V is a (k, t)-metric generator for G = (V,E) if |Dt(x, y) ∩ S| ≥ k
for every two different vertices x, y ∈ V . It can also be noted that two different vertices
x, y ∈ V belong to the same twin equivalence class of G if and only if Dt(x, y) = {x, y}.
By simplicity, if G has diameter D(G) and it is clear from the context that t ≥ D(G),
then we will use the notation D(x, y) instead of Dt(x, y).

Since for every pair of different vertices x, y ∈ V we have that |Dt(x, y)| ≥ 2, it follows
that the whole vertex set V is a (2, t)-metric generator for G and, as a consequence, we
deduce that every graph G is (k, t)-metric dimensional for some k ≥ 2. On the other hand,
for any graph G = (V,E) of order n ≥ 3, there exists at least one vertex v ∈ V and two
vertices x, y ∈ V such that {x, y} ∈ NG(v) or dt(x, v) = dt(y, v) = t, so that v /∈ Dt(x, y)
and, as a result, there is no n-metric dimensional graph of order n ≥ 3. Comments above
are emphasized in the next remark.
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Remark 4. Let t be a positive integer and let G be a (k, t)-metric dimensional graph of
order n ≥ 2. If n ≥ 3, then 2 ≤ k ≤ n − 1. Moreover, G is (n, t)-metric dimensional if
and only if G ∼= K2 or G ∼= N2.

We define the following parameter dt(G) = min
x,y∈V

{|Dt(x, y)|}. The next general result

was stated in [8] for the particular case of t = 2 and also in [10] for t ≥ D(G).

Theorem 5. Any graph G of order n ≥ 2 is (dt(G), t)-metric dimensional and the time
complexity of computing dt(G) is O(n3).

Proof. If G = (V,E) is a (k, t)-metric dimensional graph, then for any (k, t)-metric basis
B and any pair of different vertices x, y ∈ V , we have |B ∩ Dt(x, y)| ≥ k. Thus, k ≤
dt(G). Now we suppose that k < dt(G). In such a case, for every xi, xj ∈ V such
that |B ∩ Dt(xi, xj)| = k, the set Dt(xi, xj) \ B must not be empty, so that the set
B ∪{z ∈ Dt(xi, xj) \B : |B ∩Dt(xi, xj)| = k} is a (k+ 1, t)-metric generator for G, which
is a contradiction. Therefore, k = dt(G).

We now proceed to prove that the time complexity of computing dt(G) is O(n3). We
assume that the graph G is represented by its adjacency matrix AG. Hence, the problem
is reduced to finding the value of dt(G). To this end, we can initially compute the distance
matrix DG from the matrix AG by using the well-known Floyd-Warshall algorithm [31,
35], which has time complexity O(n3). The distance matrix DG is symmetric of order
n× n whose rows and columns are labelled by vertices, with entries between 0 and n− 1
(or +∞ if G is not connected). Now observe that for every x, y ∈ V (G) we have that
z ∈ Dt(x, y) if and only if min{DG(y, z), t} 6= min{DG(x, z), t}.

Given the distance matrix of G, computing how many vertices belong to Dt(x, y) for
each of the

(
n
2

)
pairs x, y ∈ V can be checked in linear time. Therefore, the overall running

time of such a process is bounded by the cubic time of the Floyd-Warshall algorithm.

As Theorem 5 shows, in general, the problem of computing dt(G) is very easy to solve.
Even so, it would be desirable to obtain some general results on this subject. In this
section we restrict ourself to discuss the extreme cases dt(G) = 2 and dt(G) = n− 1, and
to study the parameter dt(G) for the particular case of paths and cycles.

If two vertices u, v of G belong to the same twin equivalence class, then Dt(u, v) =
{u, v}, and as a consequence, we deduce the following result.

Corollary 6. A graph G is (2, t)-metric dimensional if and only if t = 1 or there are at
least two vertices of G belonging to the same twin equivalence class.

An example of a (2, t)-metric dimensional graph is the star K1,n−1, whose (2, t)-metric
dimension is dimt

2(K1,n−1) = n − 1 for any t ≥ 2, while examples of trees which are
not (2, t)-metric dimensional are the paths Pn for n ≥ 4 and t ≥ 2, as we will show in
Proposition 7.

Proposition 7. Let n ≥ 3 and t be two integers. Then the following statements hold.

(i) If 2 ≤ t ≤ n− 2, then Pn is (t+ 1, t)-metric dimensional.

(ii) If t ≥ n− 2, then Pn is (n− 1, t)-metric dimensional.
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Proof. Since n ≥ 3, Remark 4 leads to dt(Pn) ∈ {2, . . . , n − 1}. Let {u1, u2, . . . , un} be
the set of vertices of Pn where ui ∼ ui+1, for all i ∈ {1, . . . , n− 1}.

We now consider two cases:

(i) Assume that 2 ≤ t ≤ n − 2. Since t ≥ 2, it follows that n ≥ 4. Since Dt(u1, u2) =
{u1, . . . , ut+1}, we have dt(Pn) ≤ t + 1. Let l, r ∈ {1, . . . , n} be a pair of integers
different from the pairs 1, 2 and n− 1, n such that l < r. We first assume that
r − l ≥ t. If r − l ∈ {t, t + 1}, then |Dt(ul, ur)| ≥ r − l + 1 ≥ t + 1. Now, if
r − l ≥ t + 2, then |Dt(ul, ur)| ≥ r − l ≥ t + 1. We now assume that r − l ≤ t− 1.
For a given vertex ui we define the ball of center ui and radius t − 1 as Bi = {uj :
d(ui, uj) ≤ t − 1}. Notice that for any vertex ui, |Bi| ≥ t and the equality holds
if and only if i ∈ {1, n}. Now, since n ≥ t + 2 and r − l ≤ t − 1, we can claim
that |Bl| ≥ t + 1 or |Br| ≥ t + 1. Hence, if l 6= 1 and r 6= n, then |Dt(ul, ur)| ≥
|Bl∪Br|−1 ≥ 2(t+1)−(r− l+1)−1 ≥ t+1. On the other side, if l = 1, then r ≥ 3
and so |Dt(ul, ur)| ≥ |Bl ∪ Br| − 1 = |{u1, u2, . . . , ur+t−1}| − 1 = r + t − 2 ≥ t + 1.
The case r = n is analogous to the previous one. Therefore, dt(Pn) = t+ 1.

(ii) Let t ≥ n−2. For any pair of different vertices there exists at most one vertex which
is not able to distinguish them. Therefore, in this case dt(Pn) = n− 1.

Proposition 8. Let n ≥ 3 and t be two integers. Then the following statements hold.

(i) If n is odd and 2 ≤ t ≤ n− 1

2
or n is even and 2 ≤ t ≤ n− 2

2
, then Cn is (2t, t)-

metric dimensional.

(ii) If n is odd and t ≥ n− 1

2
, then Cn is (n− 1, t)-metric dimensional.

(iii) If n is even and t ≥ n− 2

2
, then Cn is (n− 2, t)-metric dimensional.

Proof. Since n ≥ 3, Remark 4 leads to 2 ≤ dt(Cn) ≤ n − 1. Let V = {u0, u2, . . . , un−1}
be the vertex set of the cycle Cn, where ui ∼ ui+1 and the subscripts of ui ∈ V are taken
modulo n. We now consider three cases:

(i) Assume that n is odd and 2 ≤ t ≤ n− 1

2
. Since t ≥ 2, we have that n ≥

5, and from Dt(ui, ui+1) = {ui−(t−1), . . . , ui+t} we deduce that d(Cn) ≤ 2t. Let

l, r ∈ {0, . . . , n − 1} be two integers such that l < r and r − l ≤ n− 1

2
. If

r − l <
n− 1

2
, then {ul−(t−1), . . . , ul} ∪ {ur, . . . , ur+(t−1)} ⊆ Dt(ul, ur), and as a

consequence, |Dt(ul, ur)| ≥ 2t. If r − l =
n− 1

2
, then {ul−(t−2), . . . , ul, ul+1} ∪

{ur−1, ur, . . . , ur+(t−2)} ⊆ Dt(ul, ur), and thus, |Dt(ul, ur)| ≥ 2t again. Therefore,

dt(Cn) = 2t. The case n is even and 2 ≤ t ≤ n− 2

2
is completely analogous to the

previous one.
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(ii) n is odd and t ≥ n− 1

2
. For any pair of different vertices there exists exactly one

vertex which is not able to distinguish them. Therefore, dt(Cn) = n− 1.

(iii) n is even and t ≥ n− 2

2
. For any pair of vertices ui, uj ∈ V , such that d(ui, uj) =

2l, we can take a vertex ur such that d(ui, ur) = d(uj, ur) = l. So, Dt(ui, uj) =
V \ {ur, ur+n

2
}. On the other hand, if d(ui, uj) is odd, then |Dt(ui, uj)| ≥ n − 2.

Therefore, dt(Cn) = n− 2.

Once we have presented the two propositions above, we are now ready to present the
characterization of (n− 1, t)-metric dimensional graphs.

Theorem 9. A graph G of order n ≥ 3 is (n − 1, t)-metric dimensional if and only if
G ∼= Pn for n ≤ t + 2, or G ∼= Cn for an odd integer n ≤ 2t + 1, or G ∼= K1 ∪ K2, or
G ∼= N3.

Proof. Since n ≥ 3, Remark 4 leads to dt(G) ∈ {2, . . . , n − 1}. If G is a path of order
n ≤ t+ 2, then by Proposition 7 we have that G is (n− 1, t)-metric dimensional. If G is a
cycle of odd order n ≤ 2t+ 1, then by Proposition 8 it follows that G is (n− 1, t)-metric
dimensional. If G ∼= K1 ∪ K2 or G ∼= N3, then it is straightforward to see that G is
(n− 1, t)-metric dimensional.

On the other side, let G be a graph such that dt(G) = n − 1. Hence, for every
pair of different vertices x, y ∈ V (G) there exists at most one vertex which does not
distinguish x, y. Suppose G has maximum degree ∆(G) > 2 and let v ∈ V (G) such that
{u1, u2, u3} ⊆ N(v). Figure 1 shows all the possibilities for the links between these four
vertices. Figures 1 (a), 1 (b) and 1 (d) show that v, u1 do not distinguish u2, u3. Figure
1 (c) shows that u1, u2 do not distinguish v, u3. This analysis shows that dt(G) ≤ n− 2,
which is a contradiction and, as a consequence, ∆(G) ≤ 2. If G is connected, then we
have that G is either a path or a cycle, and by Propositions 7 and 8, we deduce that
G ∼= Pn for n ≤ t + 2, or G ∼= Cn for an odd integer n ≤ 2t + 1. From now on we
assume that G is not connected. Notice that each connected component is either a path,
or a cycle or an isolated vertex. If one of the connected components G′ has order at least
three, then there exist three vertices v, x, y such that N(v) = {x, y}. Neither v nor the
vertices of connected components different from G′ are able to distinguish x and y, which
is a contradiction. Thus, each connected component of G has maximum degree at most
one. Therefore, if K2 is a connected component of G, then G ∼= K1 ∪ K2, and if G is
empty, then n = 3.

4 On the (k, t)-metric dimension of graphs

In this section we study the problem of computing or bounding the (k, t)-metric dimension.
Since for any graph G of order n ≥ 2, we have that d1(G) = 2, dim1

1(G) = n − 1 and
dim1

2(G) = n, from now on we assume that t ≥ 2. To begin with, we consider the limit
case of the trivial bound dimt

k(G) ≥ k.

8



u1 v

u2

u3

(a)

u1 v

u2

u3

(b)

vu1 u2

u3

(c)

v

u1 u2

u3

(d)

Figure 1: Possible cases for a vertex v with three neighbours u1, u2, u3.

Theorem 10. Let G be a graph of order n ≥ 2. Then dimt
k(G) = k if and only if

k ∈ {1, 2}, n ≤ t+ 1 and either G ∼= K1 ∪ Pn−1 or G ∼= Pn.

Proof. It is readily seen that if k ∈ {1, 2}, n ≤ t+ 1 and either G ∼= K1∪Pn−1 or G ∼= Pn,
then dimt

k(G) = k.
Conversely, suppose that dimt

k(G) = k and let S be a (k, t)-metric basis of G. Given
s ∈ S and a non-negative integer r, we define the set

Γr(s) = {v ∈ V (G) : dt(v, s) = r}.

Since |S| = k and for any x, y ∈ V (G), |S ∩ Dt(x, y)| ≥ k, we have that S ⊆ Dt(x, y),
i.e., for any s ∈ S and x, y ∈ V (G), dt(s, x) 6= dt(s, y). Hence, for any s ∈ S and
any non-negative integer r, we have |Γr(s)| ≤ 1, which implies that n ≤ t + 1 and also
G ∼= K1 ∪ Pn−1 or G ∼= Pn. Notice that the vertices in S must have degree at most one
and so we deduce that k = |S| ≤ 2.

The following result is a direct consequence of Theorems 1 and 5.

Theorem 11. For any graph G of order n and any k ∈ {1, . . . , dt(G)},

dimt
k(G) ≤ n− dt(G) + k.

As the following result shows, the bound above is tight.

Remark 12. Let k ≥ 1, t ≥ 2 and n ≥ 3 be three integers. Then the following statements
hold.

(i) For any n ≥ 4, dim2
1(Pn)

[23]
=
⌊
2n+2

5

⌋
, dim2

2(Pn)
[8]
=
⌈
n+1
2

⌉
and dim2

3(Pn)
[8]
= n−

⌊
n−4
5

⌋
.

(ii) If t ≤ n− 2 and k ≤ t+ 1, then k + 1 ≤ dimt
k(Pn) ≤ n− t+ k − 1.

(iii) Let k + 1 ≤ n ≤ 2t− k + 3. If k ≥ 3 or n ≥ t+ 2, then dimt
k(Pn) = k + 1.

(iv) For any n ≥ 4, dim2
1(Cn)

[23]
=
⌊
2n+2

5

⌋
, dim2

2(Cn)
[8]
=
⌈
n
2

⌉
, dim2

3(Cn)
[8]
= n −

⌊
n
5

⌋
and

dim2
4(Cn) = n.
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(v) Let k ≤ 2t. If n is odd and t ≤ n−1
2

or n is even and t ≤ n−2
2

, then k + 1 ≤
dimt

k(Cn) ≤ n− 2t+ k.

(vi) If n is odd, t ≥ n−1
2

and k ≤ n− 1, then dimt
k(Cn) = k + 1.

(vii) Let n even and t ≥ n−2
2

. If k ≤ n−2
2

, then dimt
k(Cn) = k + 1 and, if n

2
≤ k ≤ n− 2,

then dimt
k(Cn) = k + 2.

Proof. By combining Proposition 7 and Theorems 10 and 11 we deduce (ii) and by com-
bining Proposition 8 and Theorems 10 and 11 we deduce (v) and (vi).

We now proceed to prove (iii). Let V = {v1, v2, . . . , vn} be the vertex set of Pn, where
vi ∼ vi+1, for all i ∈ {1, . . . , n− 1}, and set

S =
{
vdn2 e−b k2c, vdn2 e−b k2c+1, . . . , vdn2 e+d k2e

}
.

Note that |S| = k + 1. If n ≤ 2t − k + 3, then for any pair of different vertices u, v ∈ V
there exists at most one vertex w ∈ S such that dt(w, u) = dt(w, v). Thus, for every pair
of different vertices x, y ∈ V , there exist at least k vertices of S such that they distinguish
x, y. So S is a (k, t)-metric generator for Pn. Therefore, dimk(Pn, t) ≤ |S| = k + 1 and,
consequently, (iii) follows by Theorem 10.

Finally, we proceed to prove (vii). By combining Proposition 8 and Theorems 10 and
11 we deduce that for n even, t ≥ n−2

2
and 1 ≤ k ≤ n−2, we have k+1 ≤ dimt

k(Cn) ≤ k+2.
Let S be (k, t)-metric basis of Cn. Notice that |S| = k + 1 or |S| = k + 2. If k ≥ n

2
,

then there are two antipodal vertices, u and v, belonging to S. Thus, there exist at least
two vertices of Cn which are not distinguished neither by u nor by v, which implies that
|S| = k + 2.

Suppose that k < n
2
. Since t ≥ n−2

2
, any set of k + 1 consecutive vertices of Cn is a

(k, t)-metric generator and, in such a case dimt
k(Cn) = k+ 1. Therefore, the proof of (vii)

is complete.

Let Dt,k(G) be the set obtained as the union of the sets Dt(x, y) that distinguish a
pair of different vertices x, y whenever |Dt(x, y)| = k, i.e.,

Dt,k(G) =
⋃

|Dt(x,y)|=k

Dt(x, y).

By a reasoning similar to that described in the proof of Theorem 5 we can check that
the time complexity of computing Dt,k(G) is O(n3).

Remark 13. For any (dt(G), t)-metric basis B of a graph G we have Dt,dt(G)(G) ⊆ B,
and as a consequence, dimt

dt(G)(G) ≥ |Dt,dt(G)(G)|

Proof. Since every pair of different vertices x, y is distinguished only by the elements of
Dt(x, y), if |Dt(u, v)| = dt(G) for some u, v of G, then for any (dt(G), t)-metric basis B
we have Dt(u, v) ⊆ B, and as a consequence, Dt,dt(G)(G) ⊆ B. Therefore, the result
follows.
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The bound given in Remark 13 is tight. For instance, for t ≥ D(G) we have already
shown in [10] that there exists a family of trees attaining this bound for every k. Other
examples for any positive integer t ≥ 2 can be derived from the following result.

Theorem 14. Let G = (V,E) be a graph of order n ≥ 2. Then the following assertions
hold.

(i) dimt
dt(G)(G) = n if and only if Dt,dt(G)(G) = V .

(ii) If |Dt,dt(G)(G)| = n− 1, then dimt
dt(G)(G) = n− 1.

Proof. Suppose that Dt,dt(G)(G) = V . Since dimt
dt(G)(G) ≤ n, by Remark 13 we obtain

that dimt
dt(G)(G) = n.

On the other hand, assume that dimt
dt(G)(G) = n. Note that for every a, b ∈ V , we

have |Dt(a, b)| ≥ dt(G). If there exists at least one vertex x ∈ V such that x /∈ Dt,dt(G)(G),
then for every a, b ∈ V , we have |Dt(a, b) \ {x}| ≥ dt(G) and, as a consequence, V \ {x} is
a (dt(G), t)-metric generator for G, which is a contradiction. Therefore, Dt,dt(G)(G) = V .

Finally, if |Dt,dt(G)(G)| = n−1, by Remark 13 and (i) we conclude that (ii) follows.

Corollary 15. Let G be a graph of order n ≥ 2. Then dimt
2(G) = n if and only if every

vertex of G belongs to a non-singleton twin equivalence class.

We will show other examples of graphs that satisfy Theorem 14 for k ≥ 3. Let
W1,n = K1 + Cn be the wheel graph and F1,n = K1 + Pn be the fan graph. Since
V (F1,4) = D3,t(F1,4) and V (W1,5) = D4,t(W1,5), by Theorem 14 we have that dimt

3(F1,4) =
5 and dimt

4(W1,5) = 6.

4.1 Large families of graphs having a common (k, t)-metric gen-
erator

The aim of this subsection is to show examples of large families of graphs (defined on a
common vertex set) having a common (k, t)-metric generator. We will use the notation
dG,t(x, y) instead of dt(x, y) with the aim of emphasising that the distance has been defined
on G.

Let B be a (k, t)-metric basis of a graph G = (V,E) of diameter D(G), and let
Dt(G) = min{D(G), t}. For any r ∈ {0, 1, . . . , Dt(G)} we define the set

Br(B) =
⋃
x∈B

{y ∈ V : dG,t(x, y) ≤ r}.

In particular, B0(B) = B and B1(B) =
⋃
x∈B

NG[x]. Moreover, since B is a (k, t)-metric

basis of G, |BDt(G)−1(B)| ≥ |V | − 1.
Assume that G 6∼= Kn. Given a (k, t)-metric basis B of G we say that a graph

G′ = (V,E ′) belongs to the family GB(G) if and only if NG′(v) = NG(v), for every
v ∈ BDt(G)−2(B). In particular, if t = 2, then G′ = (V,E ′) belongs to the family GB(G)
if and only if NG′(x) = NG(x), for every x ∈ B. Moreover, if G is a complete graph, we
define GB(G) = {G}. By the definition of GB(G), we deduce the following remark.
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Remark 16. Let B be a (k, t)-metric basis of a connected graph G, and let G′ ∈ GB(G).
Then for any b ∈ B and v ∈ BDt(G)−1(B), dG,t(b, v) = dG′,t(b, v).

Notice that if BDt(G)−2(B) ( V , then any graph G′ ∈ GB(G) is isomorphic to a graph
G∗ = (V,E∗) whose edge set E∗ can be partitioned into two sets E∗1 , E∗2 , where E∗1 consists
of all edges of G having at least one vertex in BD(G)−2(B) and E∗2 is a subset of edges of a

complete graph whose vertex set is V \BDt(G)−2(B). Hence, if l =

(
|V \BDt(G)−2(B)|

2

)
,

then GB(G) contains 2l different graphs, where some of them could be isomorphic.

Theorem 17. Any (k, t)-metric basis B of a graph G is a (k, t)-metric generator for any
graph G′ ∈ GB(G), and as a consequence,

dimt
k(G′) ≤ dimt

k(G).

Proof. Assume that B is a (k, t)-metric basis of a graph G = (V,E), and G′ ∈ GB(G). We
shall show that B is a (k, t)-metric generator for G′. To this end, we take two different
vertices u, v ∈ V . Since B is a (k, t)-metric basis of G, there exists Buv ⊆ B such that
|Buv| ≥ k and for every x ∈ Buv we have that dG,t(x, u) 6= dG,t(x, v). Now, consider the
following two cases for u, v.

(1) u, v ∈ BDt(G)−1(B). In this case, since for every x ∈ Buv we have that dG,t(x, u) 6=
dG,t(x, v), Remark 16 leads to dG′,t(x, u) 6= dG′,t(x, v) for every x ∈ Buv.

(2) u ∈ BDt(G)−1(B) and v 6∈ BDt(G)−1(B). By definition of BDt(G)−1(B), we deduce
that dG′,t(x, u) ≤ Dt(G) − 1 for every x ∈ Buv. Since v 6∈ BDt(G)−1(B), we have that
dG′,t(x, v) = Dt(G) for every x ∈ Buv. So, dG′,t(x, u) ≤ Dt(G) − 1 < Dt(G) = dG′,t(x, v)
for every x ∈ Buv.

Notice that since B is a (k, t)-metric basis of G, the case u, v 6∈ BDt(G)−1(B) is not pos-
sible. According to the two cases above, B is a (k, t)-metric generator for G′. Therefore,
dimt

k(G′) ≤ |B| = dimt
k(G).

By Theorems 10 and 17 we deduce the following result.

Remark 18. Let B be a (k, t)-metric basis of a graph G of order n ≥ t + 2 and let
G′ ∈ GB(G). If dimt

k(G) = k + 1, then dimt
k(G′) = k + 1.

Figure 2 shows some graphs belonging to the family GB(G) having a common (2, 2)-
metric generator B = {v2, v3, v4, v5}. In fact B is also a common (2, 2)-metric basis for all
graphs belonging to GB(G). In this case, the family GB(G) contains 210 = 1024 different
graphs, where some of them could be isomorphic.

4.2 The case of lexicographic product graphs

Let G be a graph of order n, and letH = {H1, H2, . . . , Hn} be an ordered family composed
by n graphs. The lexicographic product of G and H is the graph G ◦ H, such that
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Figure 2: B = {v2, v3, v4, v5} is a (2, 2)-metric basis ofG and {G,G1, G2, G4, G5} ⊂ GB(G).

V (G ◦ H) =
⋃

ui∈V (G)({ui} × V (Hi)) and (ui, vr)(uj, vs) ∈ E(G ◦ H) if and only if uiuj ∈
E(G) or i = j and vrvs ∈ E(Hi). Figure 3 shows the lexicographic product of P3 and
the family composed by {P4, K2, P3}, and the lexicographic product of P4 and the family
{H1, H2, H3, H4}, where H1

∼= H4
∼= K1 and H2

∼= H3
∼= K2. In general, we can construct

the graph G ◦ H by taking one copy of each Hi ∈ H and joining by an edge every vertex
of Hi with every vertex of Hj for every uiuj ∈ E(G).

Figure 3: The lexicographic product graphs P3 ◦ {P4, K2, P3} and P4 ◦ {H1, H2, H3, H4},
where H1

∼= H4
∼= K1 and H2

∼= H3
∼= K2.

The standard concept of lexicographic product graph is the particular case when Hi
∼=

H for every i ∈ {1, . . . , n} and it is denoted as G ◦H for simplicity. Another particular
case of lexicographic product graphs is the join graph. The join graph G + H is defined
as the graph obtained from disjoint graphs G and H by taking one copy of G and one
copy of H and joining by an edge each vertex of G with each vertex of H [19, 38]. Note
that G+H ∼= K2 ◦ {G,H}.

The lexicographic product graph G◦H is connected if and only if G is connected and,
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in such a case, the relation between distances in G◦H and those in its factors is presented
in the following remark.

Remark 19. If G is a connected graph and (ui, b) and (uj, d) are vertices of G ◦H, then

d((ui, b), (uj, d)) =


d(ui, uj), if i 6= j,

d2(b, d), if i = j.

We would point out that the remark above was stated in [18, 21] for the case where
Hi
∼= H for all Hi ∈ H.
The lexicographic product has been studied from different points of view in the liter-

ature. For instance, the metric dimension and related parameters have been studied in
[11, 13, 23, 24, 26, 27, 32]. For more information on product graphs we suggest the books
[18, 21].

The following result allows to extend the results on the (k, t)-metric dimension of
lexicographic product graphs G ◦ H to results on the (k, 2)-metric dimension of G ◦ H,
and vice versa.

Theorem 20. Let G be a connected graph of order n ≥ 2 and let H = {H1, . . . , Hn} be
a family composed by nontrivial graphs, and t ≥ 2 an integer. A set A ⊆ V (G ◦ H) is a
(k, t)-metric generator for G ◦ H if and only if A is a (k, 2)-metric generator for G ◦ H,
and as a consequence,

dimt
k(G ◦ H) = dim2

k(G ◦ H).

Proof. By definition, any (k, 2)-metric generator for a graph is also a (k, t)-metric gener-
ator for t ≥ 2. Considering that any (k,D(G))-metric generator for a graph G is also a
(k, t)-metric generator for t > D(G), we only need to prove that any (k,D(G◦H))-metric
generator for G ◦H is also a (k, 2)-metric generator. For simplicity, we will use the termi-
nology of k-metric generator and k-adjacency generator. Let V (G) = {u1, . . . , un}, let S
be a k-metric generator for G◦H, and let Si = S∩({ui}×V (Hi)) for every ui ∈ V (G). We
differentiate the following four cases for two different vertices (ui, v), (uj, w) ∈ V (G ◦H).

Case 1. i = j. In this case v 6= w. By Remark 19, no vertex from Sl, l 6= i, distinguishes
(ui, v) and (ui, w). So it holds that |D((ui, v), (ui, w)) ∩ Si| ≥ k. Since for any vertex
(ui, x) ∈ Si we have that d((ui, x), (ui, v)) = d2((ui, x), (ui, v)) and d((u, x), (ui, w)) =
d2((ui, x), (ui, w)), we conclude that

k ≤ |D2((ui, v), (ui, w)) ∩ Si| = |D2((ui, v), (ui, w)) ∩ S|.

Case 2. i 6= j and N [ui] = N [uj]. By Remark 19, no vertex from Sl, l /∈ {i, j}, distin-
guishes (ui, v) and (uj, w). So |D((ui, v), (uj, w)) ∩ (Si ∪ Sj)| ≥ k. Since for any vertex
(u, x) ∈ Si ∪ Sj we have that d((u, x), (ui, v)) = d2((u, x), (ui, v)) and d((u, x), (uj, w)) =
d2((u, x), (uj, w)), we conclude that

k ≤ |D2((ui, v), (uj, w)) ∩ (Si ∪ Sj)| = |D2((ui, v), (uj, w)) ∩ S|.
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Case 3. i 6= j and N(ui) = N(uj). This case is analogous to the previous one.

Case 4. i 6= j and ui, uj are not twins. Hence, there exists ul ∈ V (G) \ {ui, uj} such
that d2(ul, ui) 6= d2(ul, uj). Hence, for any vertex (ul, x) ∈ Sl we have that

d2((ul, x), (ui, v)) = d2((ul, ui) 6= d2((ul, uj) = d2((ul, x), (uj, w)).

According to Case 1, we have that |Sl| ≥ k. Therefore, we conclude that

k ≤ |D2((ui, v), (uj, w)) ∩ Sl| ≤ |D2((ui, v), (uj, w)) ∩ S|.

In conclusion, S is a k-adjacency generator for G ◦ H. The proof is complete.

The reader is referred to [23, 32] for results on dim1(G ◦H), and to [11] for results on
dimk(G ◦ H), where k ≥ 2.

4.3 The case of corona product graphs

Let G be a graph of order n and let H = {H1, H2, . . . , Hn} be a family of graphs. The
corona product graph G � H, introduced by Frucht and Harary [16], is defined as the
graph obtained from G and H by joining by an edge each vertex of Hi with the ith vertex
of G, for every Hi ∈ H. Note that G �H is connected if and only if G is connected. In
particular, if the graphs in H are isomorphic to a given graph H, then we use the notation
G�H instead of G�H.

The metric dimension and related parameters of corona product graphs have been
studied in [13, 14, 15, 17, 22, 24, 25, 29, 30, 37]. In this subsection we will show that if
t ≥ 3 and H is composed by non-trivial graphs, then the (k, t)-metric dimension of G�H
equals the sum of the (k, t)-metric dimensions of the graphs in H. In Section 5 we will
show that this strong relationship is an important tool to investigate the computational
complexity of computing the (k, t)-metric dimension of graphs.

Theorem 21. Let G be a connected graph of order n ≥ 2, and H a family of n non-trivial
graphs. For any integers t ≥ 3 and k ≥ 1,

dimt
k(G�H) =

∑
H∈H

dim2
k(H).

Proof. We first introduce some notation. Let V0 = {u1, u2, . . . , un} be the vertex set of
G, and let H = {H1, H2, . . . , Hn}. For every i ∈ {1, . . . , n}, the vertex set of Hi will be
denoted by Vi, so that the vertex set of G�H is V =

⋃n
i=0 Vi.

If there exists a (k, t)-metric basis S forG�H, then S∩Vi is a (k, 2)-metric generator for
Hi, as no vertex outside of Vi is able to distinguish two vertices in Vi and dt(v, v

′) = d2(v, v
′)

for all v, v′ ∈ Vi, where the distance dt is taken on G�H. Hence,

dimt
k(G�H) = |S| ≥

n∑
i=1

|S ∩ Vi| ≥
n∑

i=1

dim2
k(Hi).
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We now proceed to show that W =
⋃n

i=1Wi is a (k, t)-metric generator for G � H,
where Wi ⊆ Vi is a (k, 2)-metric basis of Hi, for every Hi ∈ H. To see this we differentiate
the following cases for two different vertices x, y ∈ V .

Case 1: x, y ∈ Vi, i 6= 0. Since Wi ⊂ W is a (k, 2)-metric basis for Hi, and dt(v, v
′) =

d2(v, v
′) for all v, v′ ∈ Vi, we can conclude that |Dt(x, y) ∩W | ≥ k.

Case 2: x, y ∈ V0. Let x = ui and y = uj. For any z ∈ Wi we have dt(z, x) = 1 < dt(z, y)
and so |Dt(x, y) ∩W | ≥ |Wi| ≥ k.

Case 3: x ∈ Vi and y ∈ Vj, i 6= j. If y = ul ∈ V0 \ NG(ui) or j 6= 0, then for any z ∈ Wi

we have dt(z, x) ≤ 2 < 3 ≤ dt(z, y) and so |Dt(x, y) ∩W | ≥ |Wi| ≥ k. If y = ul ∈ NG(ui),
then for any z ∈ Wl we have dt(z, y) ≤ 2 < 3 ≤ dt(z, x) and so |Dt(x, y)∩W | ≥ |Wl| ≥ k.

According to the three cases above we conclude that W is a (k, t)-metric generator for
G�H and, as a consequence,

dimt
k(G�H) ≤ |W | =

n∑
i=1

|Wi| =
n∑

i=1

dim2
k(Hi),

as required. Therefore, if for every Hi ∈ H there exists a (k, 2)-metric generator, then
dimt

k(G � H) =
∑n

i=1 dim2
k(Hi). On the other hand, if there exists Hi ∈ H such that

no subset of Vi is a (k, 2)-metric generator for Hi, then no subset of V is a (k, t)-metric
generator for G � H, so that dim2

k(Hi) = +∞ and dimt
k(G � H) = +∞, which implies

that dimt
k(G�H) =

∑n
i=1 dim2

k(Hi).

5 Computational complexity

We next deal with the following decision problem, for which we prove its NP-completeness
for the case in which k is an odd integer.

(k, t)-METRIC DIMENSION PROBLEM
INSTANCE: A (k′, t)-metric dimensional graph G of order n ≥ 3, integers k, r

with 2 ≤ k ≤ t and such that 2 ≤ k ≤ k′.
QUESTION: Is dimt

k(G) ≤ r?

In order to study the problem above, we analyze its relationship with the two decision
problems which are stated at next. We show that the first one of them is NP-complete,
and for the second one, it is already known as an NP-complete problem from [14].

(k, 2)-METRIC DIMENSION PROBLEM
INSTANCE: A (k′, 2)-metric dimensional graph G of order n ≥ 3 and an integer k

such that 2 ≤ k ≤ k′.
QUESTION: Is dim2

k(G) ≤ r?
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(1, 2)-METRIC DIMENSION PROBLEM
INSTANCE: A connected graph G of order n ≥ 3.
QUESTION: Is dim2

1(G) ≤ r?

Since the problem above ((1, 2)-METRIC DIMENSION PROBLEM) was proved to be
NP-complete in [14], we shall proceed as follows. We first make a reduction from the (1, 2)-
METRIC DIMENSION PROBLEM to the (k, 2)-METRIC DIMENSION PROBLEM,
which shows the NP-completeness of this last mentioned problem. We further make
a reduction from the (k, 2)-METRIC DIMENSION PROBLEM to the (k, t)-METRIC
DIMENSION PROBLEM, t ≥ 3, showing the NP-completeness of our main problem.

We first consider a family of graphs Hk constructed in the following way (a sketch of
H5 is shown in Figure 4). Let k be an odd integer and let r = k−1

2
.

1. We begin with four vertices a, b, c, d such that a ∼ b and c ∼ d.

2. Add r vertices ai, r vertices ci, k − 1 vertices bi and k − 1 vertices di.

3. Add edges aai, bai, cci and dci with i ∈ {1, . . . , r} and edges bbj ddj with j ∈
{1, . . . , k − 1}.

4. Add edges abk−1 and cdk−1.

5. For each vertex wl such that w ∈ {a, b, c, d} and (l ∈ {1, . . . , r} or l ∈ {1, . . . , k− 1}
accordingly), add r + 1 vertices wl,q, q ∈ {1, . . . , r + 1}, and edges wlwl,q for every
q ∈ {1, . . . , r+ 1}. For each wl, we shall denote by Wl (namely Al, Bl, Cl or Dl) the
set of such vertices adjacent to wl.

6. With all the vertices of the sets Al’s and the sets Bl’s, construct a complete multi-
partite graph Kr+1,...,r+1 having k+ r− 1 partite sets each of cardinality r+ 1 (each
partite set given by a set Al or by a set Bl).

7. Similarly, proceed with the sets Cl’s and the sets Dl’s to obtain another complete
multipartite graph Kr+1,...,r+1.

8. For every i ∈ {1, . . . , r} and j ∈ {1, . . . , r + 1}, add the edges ai,jcq,j with q ∈
{1, . . . , r}.

9. For every i ∈ {1, . . . , r} and j ∈ {1, . . . , r + 1}, add the edges bi,jdq,j with q ∈
{1, . . . , r}.

10. For every i ∈ {r + 1, . . . , 2r} and j ∈ {1, . . . , r + 1}, add the edges bi,jdq,j with
q ∈ {r + 1, . . . , 2r}.

We can easily check the following properties of Hk.

Remark 22. For any graph Hk the following follows.

(i) Hk has order R = 3k2+6k−1
2

.
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Figure 4: An sketch of the graph H5. The edges of the two complete bipartite subgraphs
induced by the Ai’s and Bi’s, and by the Ci’s and Di’s, have not been drawn.

(ii) The degrees δ(v) of vertices v ∈ V (Hk) are: δ(a) = δ(c) = r + 2, δ(b) = δ(d) =
3r + 1, δ(ai) = δ(ci) = r + 3 (with i ∈ {1, . . . , r}), δ(bi) = δ(di) = r + 2 (with
i ∈ {1, . . . , k − 2}), δ(bk−1) = δ(dk−1) = r + 3, δ(ai,j) = δ(ci,j) = 3r(r + 1) (with
i ∈ {1, . . . , r} and j ∈ {1, . . . , r + 1}), and δ(bi,j) = δ(di,j) = 3r(r + 1) (with
i ∈ {1, . . . , k − 1} and j ∈ {1, . . . , r + 1}).

We now study the (k, 2)-metric dimension of the graph Hk for any odd integer k.

Remark 23. For any graph Hk with k being an odd integer, dim2
k(Hk) = R− 6.

Proof. Let S be a (k, 2)-metric basis of Hk. Notice that |D2(a, b)| = |{a, b, b1, . . . , bk−2}| =
k and |D2(c, d)| = |{c, d, d1, . . . , dk−2}| = k, which implies that {a, b, b1, . . . , bk−2} ⊂ S and
{c, d, d1, . . . , dk−2} ⊂ S. On the other hand, notice that for any two vertices bi,j, bi,q with
i ∈ {1, . . . , k − 1} and j, q ∈ {1, . . . , r + 1}, it follows |D2(bi,j, bi,q)| = k + 1. In this
sense, if | (

⋃r
i=1Bi ∪Di) \ S| ≥ 2, then there are at least two vertices bi,j, bi,q or at least

two vertices di,j, di,q for some i ∈ {1, . . . , k − 1} and j, q ∈ {1, . . . , r + 1} for which
|D2(bi,j, bi,q)| ≤ k − 1 or |D2(di,j, di,q)| ≤ k − 1, respectively, and this is not possible.
Thus | (

⋃r
i=1Bi ∪Di) \ S| ≤ 1. Similarly, we observe that |

(⋃2r
i=r+1Bi ∪Di

)
\ S| ≤ 1 and

| (
⋃r

i=1Ai ∪ Ci) \ S| ≤ 1. Consequently, at most three vertices of the sets Al’s, Bl’s, Cl’s
and Dl’s do not belong to S.

Now, we note that |D2(a, ai)| = k + 2, i ∈ {1, . . . , r}, which means that at most two
vertices of the set {a, bk−1, a1, . . . , ar} ⊆ D2(a, ai) do not belong to S. Similarly, at most
two vertices of the set {c, dk−1, c1, . . . , cr} do not belong to S. If exactly two vertices
of the set {a, bk−1, a1, . . . , ar} do not belong to S, then | (

⋃r
i=1Ai) \ S| = 0, otherwise

there is a vertex aj for which |D2(a, aj)| < k. A similar reasoning can be deduced for the
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set of vertices {c, d, dk−1, c1, . . . , cr}. Consequently, we have either one of the following
situations.

• Exactly two vertices of the set {a, bk−1, a1, . . . , ar} do not belong to S, | (
⋃r

i=1Ai) \
S| = 0, | (

⋃r
i=1Ci) \ S| = 1 and at most one vertex of the set {c, d, dk−1, c1, . . . , cr}

do not belong to S, or

• at most one vertex of the set {a, b, bk−1, a1, . . . , ar} do not belong to S, | (
⋃r

i=1Ai) \
S| = 1, | (

⋃r
i=1Ci) \ S| = 0 and exactly two vertices of the set {c, dk−1, c1, . . . , cr}

do not belong to S, or

• exactly two vertices of the set {a, bk−1, a1, . . . , ar} do not belong to S, | (
⋃r

i=1Ai ∪ Ci)\
S| = 0 and exactly two vertices of the set {c, dk−1, c1, . . . , cr} do not belong to S.

Notice that it cannot happen: at most one vertex of the set {a, b, bk−1, a1, . . . , ar} do not
belong to S, | (

⋃r
i=1Ai) \ S| = 1, | (

⋃r
i=1Ci) \ S| = 1 and at most one vertex of the set

{c, dk−1, c1, . . . , cr} do not belong to S, since in such case | (
⋃r

i=1Ai ∪ Ci) \ S| = 2, which
is not possible, as stated before.

In any of the situations previously described, we can deduce that at most four vertices
in the set {a, bk−1, a1, . . . , ar} ∪ {c, dk−1, c1, . . . , cr} ∪ (

⋃r
i=1Ai ∪ Ci) do not belong to S.

Finally, since at most two vertices of the sets Bl’s and Dl’s do not belong to S, we obtain
that at most six vertices of Hk do not belong to S, or equivalently, dim2

k(Hk) = |S| ≥ R−6.
Now, let S ′ = V (Hk) \ {a1, c1, bk−1, dk−1, d1,1, dr+1,1}. We will show that S ′ is a (k, 2)-

metric generator for Hk. To this end, we consider the following table containing lower
bounds for the value |D2(x, y)∩S ′| for some pairs of vertices x, y ∈ V (Hk) (in some cases
the bounds are not the best ones, but enough to prove what we need).

a b af bg ai,j bl,q
a - k k k k(r + 1) k(r + 1)
b k - k − 1 + r k + 1 k(r + 1) k(r + 1)
af k k − 1 + r - k k(r + 1) k(r + 1)
bg k k + 1 k - k(r + 1) k(r + 1)
ai,j k(r + 1) k(r + 1) k(r + 1) k(r + 1) - k + 1
bl,q k(r + 1) k(r + 1) k(r + 1) k(r + 1) k + 1 -

On the other hand, |D2(ai, aj)∩S ′| ≥ k+2, |D2(bi, bj)∩S ′| ≥ k+1, |D2(ai,j, ai,q)∩S ′| ≥
k, |D2(ai,j, al,q)∩ S ′| ≥ k+ 2 (l 6= i), |D2(bi,j, bi,q)∩ S ′| ≥ k and |D2(bi,j, bl,q)∩ S ′| ≥ k+ 3
(l 6= i).

A similar table and similar results as above can be done for vertices of type c, d.
So, it remains only those pairs of vertices such that one of them is of type a, b and the
other one of type c, d. For instance, |D2(a, c) ∩ S ′| ≥ k + 1, |D2(a, d) ∩ S ′| ≥ k + r,
|D2(b, c) ∩ S ′| ≥ k + r, |D2(b, d) ∩ S ′| ≥ 2k + 2r − 2. The remaining cases are left to the
reader.

As a consequence of the situations described above, we have that S ′ is a (k, 2)-metric
generator for Hk. Therefore, dim2

k(Hk) ≤ R− 6 and the equality follows.
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In order to continue our exposition, we assume some notations. According to the
definition of corona product graphs G � H (whether all the graphs in the family H
are isomorphic to a graph H) given in Subsection 4.3, from now on we will denote by
U = {u1, u2, . . . , un} the set of vertices of G and by Vi the vertices of Hi, i ∈ {1, . . . , n}.
Moreover, the vertex set of G�H is given by {u1, u2, . . . , un} ∪ {(ui, vj) : ui ∈ U, vj ∈
Vj}. Now, given any connected graph G and an odd integer k, we shall construct a graph
G′ in the following way.

1. Consider the corona product graph G�Nr where Nr is the empty graph on r vertices
(recall r = k−1

2
).

2. For any vertex (ui, vj) ∈ V (G�Nr) such that ui ∈ U and vj ∈ Vj, add a copy of the
graph Hk and identify the vertex (ui, vj) of G � Nr with the vertex b1 in the copy
of Hk.

We are now able to prove that the (k, 2)-METRIC DIMENSION PROBLEM is NP-
complete, for k odd.

Theorem 24. For any odd integer k, the (k, 2)-METRIC DIMENSION PROBLEM is
NP-complete.

Proof. It is not difficult to observe that the problem is in NP, since verifying that a given
set is a (k, 2)-metric generator can be done in polynomial time. Let G be any non-trivial
graph. We consider the graph G′ as described above and will prove that

dim2
k(G′) = dim2

1(G) +
n(k − 1)

2
dim2

k(Hk). (6)

Let Sk be a (k, 2)-metric basis for Hk as described in the second part of the proof of
Remark 23. Let SG be any (1, 2)-metric basis for G and let SH be the union of the sets Sk

corresponding to the copies of Hk. In order to show that S = SG ∪ SH is a (k, 2)-metric
generator for G′, we analyze the following cases for any pair of different vertices x, y of
G′.

Case 1. x, y ∈ V (G). Since every vertex in V (G) is adjacent to r = k−1
2

vertices of S and
also |DG,2(x, y)| ≥ 1, it clearly follows that |DG′,2(x, y) ∩ S| ≥ 2r + 1 = k.

Case 2. x ∈ V (G) and y /∈ V (G). According to the degrees of vertices of Hk (see Remark
22 (ii)) and the structure of Sk, we notice that if y 6∈ {a, c}, then |N [y]∩S| ≥ r+2 and also,
by the construction of G′, |(N [x]∩S)\N(y)| ≥ r−1. Now, if y ∈ {a, c}, then |N [y]∩S| ≥
r+1 and |(N [x]∩S)\N(y)| ≥ r. Since in both cases (N [y]∩S)∩ ((N [x]∩S)\N(y)) = ∅,
it follows |DG′,2(x, y) ∩ S| ≥ 2r + 1 = k.

Case 3. x, y /∈ V (G). If x, y belong to two different copies of Hk, then |N [x]∩ S| ≥ r+ 1,
|N [y] ∩ S| ≥ r + 1 and (N [y] ∩ S) ∩ (N [x] ∩ S) = ∅. Thus, |DG′,2(x, y) ∩ S| ≥ 2r + 2 > k.
Now, if x, y belong to the same copy of Hk, then |DG′,2(x, y)∩S| ≥ |DG′,2(x, y)∩Sk| ≥ k.
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According to the cases above, it clearly follows that S is a (k, 2)-metric generator for

G′ and so, dim2
k(G′) ≤ dim2

1(G) + n(k−1)
2

dim2
k(Hk).

Now, consider a (k, 2)-metric basis S ′ of G′. Let S ′′ = S ′ ∩ V (G) and let u, v ∈ V (G).
For the vertices a, b, b1, b2, . . . , bk−2, corresponding to a copy of Hk, we have DG′,2(a, b) =
{a, b, b1, b2, . . . , bk−2} and, as a consequence, the vertex b1 corresponding to each copy of
Hk must belong to S ′. Hence, |DG′,2(u, v) ∩ (S ′ \ S ′′)| = 2r = k − 1, which implies that
S ′′ must be a (1, 2)-metric generator for G. Furthermore, as we have shown in the proof
of Remark 23, to ensure that a set D ⊆ V (Hk) satisfies |D ∩ DHk,2(x, y)| ≥ k, for any
pair of vertices x, y ∈ V (Hk) \ {b1}, the cardinality of D must be greater than or equal to
R − 6 = dim2

k(Hk), which implies that |S ′ ∩ V (Hk)| ≥ dim2
k(Hk) for all copies of Hk. As

a consequence,

dim2
k(G′) = |S ′ ∩ V (G′)|+

n(k−1)
2∑

i=1

|S ′ ∩ V (Hk)| ≥ dim2
1(G) +

n(k − 1)

2
dim2

k(Hk)

and (6) follows. The reduction from the (1, 2)-METRIC DIMENSION PROBLEM to the
(k, 2)-METRIC DIMENSION PROBLEM is deduced by Remark 23 and (6).

Our next step is the proof of the NP-completeness of our main problem: the (k, t)-
METRIC DIMENSION PROBLEM. To this end, we shall use a result already presented
in Subsection 4.3.

Theorem 25. For any odd integer k and any integer t ≥ 2, the (k, t)-METRIC DIMEN-
SION PROBLEM is NP-complete.

Proof. Since verifying that a given set is a (k, t)-metric generator can be done in poly-
nomial time, the problem is in NP. Consider now any non-trivial graph H and let G be
any connected graph of order n ≥ 2. By Theorem 21, dimt

k(G�H) = n dim2
k(H). Thus,

the reduction from the (k, 2)-METRIC DIMENSION PROBLEM to the (k, t)-METRIC
DIMENSION PROBLEM is deduced, and the proof is completed.

6 Concluding remarks and future works

In this section we discuss some problems which are derived from or related to our previous
results. All these problems deserve a deeper study than we have yet given them.

• Computing the (k, t)-metric dimension.

It would be desirable to obtain specific results on dimt
k(G) for graphs satisfying

certain restriction, i.e., the case of product graphs. In particular, the problem of
computing the (k, 2)-metric dimension (k-adjacency dimension) of corona product
graphs remains open.

• The simultaneous metric dimension of metric spaces.
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Given a family X = {(X, d(1)), (X, d(2)), . . . , (X, d(r))} of metric spaces, we define a
simultaneous k-metric generator for X to be a set S ⊆ X such that S is simultane-
ously a k-metric generator for each metric space (X, d(i)). We say that a smallest
simultaneous k-metric generator for X is a simultaneous k-metric basis of X , and its
cardinality the simultaneous k-metric dimension of X , denoted by Sdk(X ). The si-
multaneous 1-metric dimension was introduced in [28], where the families of metrics
spaces are composed by graphs defined on the same vertex set, which are equipped
with the geodesic distance.

We now illustrate this with three examples.

Example 1. According to Theorem 20 we can claim that for any connected graph
G and any family H of non-trivial graphs, the family X of metric spaces obtained
from a graph G ◦H equipped with the metrics d2, d3, . . ., has simultaneous k-metric
dimension Sdk(X ) = dim2

k(G ◦ H).

Example 2. By Theorem 17 we have that the family of graphs GB(G) defined
in Section 4.1 equipped with the metric dt has simultaneous k-metric dimension
Sdk(G) = dimt

k(G).

Example 3. For many reasons in mathematics it is often convenient to work with
bounded distances. For instance, there is a simple mechanism to convert a given
distance function d(x, y) into (in a sense, equivalent) a bounded distance function

d(i)(x, y) = d(x,y)
1+id(x,y)

, where i is a positive integer. Consider a metric space (X, d)

and the associated family of metric spaces X = {(X, d), (X, d(1)), (X, d(2)), . . .}. Let
x, y, z ∈ X. Then d(x, y) 6= d(x, z) if and only if d(i)(x, y) 6= d(i)(x, z), for all integers
i ≥ 1. Hence, any k-metric generator of (X, d) is a k-metric generator of (X, d(i))
and vice versa. Therefore, Sdk(X ) equals the k-metric dimension of (X, d).

• The lexicographic product of metric spaces.

The lexicographic product of two metric spaces can be defined in a similar way to
the lexicographic product of two graphs. Let (X, d) be a metric space. If there
exists t > 0 such that

min
x,x′∈X,x6=x′

d(x, x′) = t,

then the lexicographic product of (X, d) and a metric space (Y, d′) is the metric
space (X × Y, ρ), where

ρ((x, y), (x′, y′)) =


d(x, x′), if x 6= x′,

min

{
d′(y, y′), 2 min

z∈X\{x}
d(x, z)

}
, if x = x′.

As with graphs, X ◦ Y always represents the metric space (X × Y, ρ), where in this
case t will be understood from the context. As in the case of graphs, the definition
above can be generalised to the product of a metric space times a family of metric
spaces.
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For any x, x′ ∈ X such that d(x, x′) = t
2

and any k-metric generator W of X ◦Y , the
restriction of W to {x} × Y induces a (k, t)-metric generator for Y , as two vertices
in {x}× Y are not distinguished by vertices outside of {x}× Y , which implies that
the projection of W on Y , WY = {y : (x, y) ∈ W}, is a (k, t)-metric generator
for Y . Hence, by Theorem 3 we can conclude that if (Y, d′) is unbounded, then
dimk(X ◦Y ) = +∞. This means that the study of the k-metric dimension of X ◦Y
should be restricted to cases where the second factor is bounded.

As an example we consider a simple and connected graphs G = (V,E) of order
n and a (non-necessarily bounded) metric space (Y, d′), where |Y | ≥ 2. Then we
construct the lexicographic product G ◦ Y from the graph G and the metric space
(Y, d(1)) equipped with the metric d(1) = d′

1+d′
. In this case, it is not difficult to check

that the k-metric dimension of G ◦ Y equals n times the (k, t)-metric dimension of
(Y, d(1)). We leave the details to the reader.

• Computational complexity.

Theorem 25 allows to claim that computing the (k, t)-metric dimension of graphs
is NP-hard for the case in which k is an odd integer. It is probably not surprising
that the case k even has similar complexity. However, this case remains open and
it would be interesting to complete this study.
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[15] Fernau, H. and Rodŕıguez-Velázquez, J. A. (2014) Notions of metric dimension of
corona products: combinatorial and computational results. In Computer science–
theory and applications, vol. 8476 of Lecture Notes in Comput. Sci., Springer, Cham.
URL https://link.springer.com/chapter/10.1007/978-3-319-06686-8_12

[16] Frucht, R. and Harary, F. (1970) On the corona of two graphs. Aequationes Mathe-
maticae, 4, 322–325.
URL http://dx.doi.org/10.1007/BF01844162

24

https://doi.org/10.1016/j.tcs.2018.09.022
http://pefmath.etf.rs/vol10num1/AADM-Vol10-No1-102-127.pdf
https://doi.org/10.1016/j.endm.2014.08.017
http://naturalspublishing.com/files/published/05a21265hsd7y2.pdf
http://www.sciencedirect.com/science/article/pii/S0012365X15004653
http://www.sciencedirect.com/science/article/pii/S0012365X15004653
https://link.springer.com/article/10.1007/s40840-015-0282-2
http://arxiv.org/abs/1206.1906
https://www.sciencedirect.com/science/article/pii/S0166218X17305401
https://www.sciencedirect.com/science/article/pii/S0166218X17305401
https://link.springer.com/chapter/10.1007/978-3-319-06686-8_12
http://dx.doi.org/10.1007/BF01844162
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