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Abstract

We study evolutionary games in real social networks, with a focus on coordination games. We find that populations fail to
coordinate in the same behavior for a wide range of parameters, a novel phenomenon not observed in most artificial model
networks. We show that this result arises from the relevance of correlations beyond the first neighborhood, in particular
from topological traps formed by links between nodes of different degrees in regions with few or no redundant paths. This
specificity of real networks has not been modeled so far with synthetic networks. We thus conclude that model networks
must be improved to include these mesoscopic structures, in order to successfully address issues such as the emergence of
cooperation in real societies. We finally show that topological traps are a very generic phenomenon that may arise in very
many different networks and fields, such as opinion models, spread of diseases or ecological networks.
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Introduction

Understanding interactions among people and their social

contacts is a key issue for the comprehension of the manners in

which society works and how everybody’s welfare can be

improved. This problem is related with, but not limited to, the

emergence of cooperation in human and animal societies [1,2] as

well as in other contexts (e.g., the formation of multicellular

organisms or their organs [3]). A mathematical tool that has led to

many deep insights about interactions among individuals is game

theory, particularly in evolutionary form [4–6], as it allows to

formulate in quantitative terms the most important prototypical

social interactions, such as conflicts and/or dilemmas [7]. To

apply this tool to understand social human behavior, the proper

setting is to specify what is the network of relationships [8–10]

among the intervening agents. We thus arrive at evolutionary

game theory on graphs, one of the most intriguing dynamical

processes on networks and one that is currently receiving a lot of

attention [11,12]. In this context, a great deal of research has

considered the Prisoner’s Dilemma [13] on artificially designed

model networks as the paradigm to understand the emergence of

cooperation, and a plethora of results have been obtained

concerning the positive or negative influence of networks in

sustaining cooperative strategies (see [11,12] for recent reviews).

Subsequent research on wider classes of games has provided a

more accurate view of the intricate relationship between

population structure as given by model networks, strategy update

dynamics and type of dilemma [14–17]. However, real social

networks may have features (such as, e.g., hierarchical levels of

organization or communities) that are not well captured by model

networks and that may have an important effect on the emergence

and evolution of cooperation. Thus, in spite of its original aim,

evolutionary game theory on graphs has not addressed the

problem of cooperation in human societies in a sufficiently realistic

manner yet.

In view of this, among the necessary ingredients for a realistic

model of social interaction, we here focus on improving the

description of the underlying interaction network. To that end we

use real social networks as the substrate on which the model games

will be played, our aim being to scrutinize the incidence of the

topology on the evolutionary outcome. It is important to note that

studies restricted to the Prisoner’s Dilemma [18,19] have already

reported that different social networks with apparently similar

characteristics can lead to largely different behavior. To gain a

deeper insight on the effect of the network, we enlarge the range of

possible social interactions to consider. As we will see, this allows

us to pinpoint coordination games such as the Stag Hunt (see

below) as the proper microscope to probe the details of the

network. Thus, we show the emergence of coordination failures

and uncover the mechanism behind it: topological traps

connecting different groups of nodes in regions where redundant

paths are scarce, which turn out to be responsible for the failure of

global coordination in the network. It is important to note,

however, that our findings are relevant much beyond the realm of

the social sciences. As we will argue in the concluding discussion,

topological traps may be present in many real networks that
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exhibit different types of slowing down or even stopping of

dynamical phenomena, in a very similar manner to the one we

have found with coordination games.

Results

Games on social networks
As a realistic approach to modeling social behavior, we have

used two social substrates obtained by sampling real relational

data. We have chosen these substrates instead of other social

network data available, such as the IMDB network for actor

collaboration in movies or scientific collaboration networks,

because their links are defined through true personal exchanges.

In contrast, in those other data links are defined by joining the

collaboration framework (movies, research projects, articles, etc.),

which does not necessarily imply mutual interaction. Our first

substrate is a social network obtained from the email traffic

between members of the University Rovira i Virgili (in Tarragona,

Spain), where nodes represent individual email addresses and

undirected links between two nodes indicate bidirectional

communication (at least one email in each direction) [20]. Our

second real social substrate consists of nodes representing users of

the ‘‘Pretty-Good-Privacy’’ encryption algorithm, where links

trace trust relationships between those persons who sign each

other’s public keys [21]. For a comparison of some of their

statistical properties see [18].

Regarding the interaction among agents, we consider a wide set

of 262 social dilemmas. They consist in games with 2 players who

choose between 2 strategies and with no difference in role. While

by no means this is the most general scenario of interaction

between individuals, understanding binary interactions is a first

and crucial step towards dealing with more complex, n-ary

settings. Games are defined by the following payoff matrix

C D

C

D

1 S

T 0

� �
,

ð1Þ

where rows represent the strategy of the player who obtains the

payoff and columns that of her opponent, player and opponent

being any of the two individuals. Strategies are labeled C and D for

cooperate and defect, because we interpret the game as a social

dilemma. Restricting the values of the coefficients within the

intervals 21,S,1 and 0,T,2, we have the Harmony game (HG

from now on) [22] (0,S, T,1) and three classic social dilemmas:

Prisoner’s Dilemma (PD) (21,S,0,1,T,2), Stag Hunt (SH) [23]

(21,S,0,T,1), and Snowdrift (SD) [24] (also called Hawk-Dove

[25]) (0,S,1,T,2). Each game corresponds, thus, to a unit

square in the ST-plane, which in turn corresponds to a specific

tension context in the social interaction under consideration [26].

Indeed, the Prisoner’s Dilemma, the reference game in much of the

published work on this issue, poses a very demanding scenario on

cooperation, subject to both the temptation to defect and the risk in

cooperation [26]. The Stag Hunt game, however, is less problematic

in the sense that it is a coordination game dominated by the risk in

cooperation alone, or in other words, by the question of trust. Note

that in PD the conflict is between individual rationality and mutual

benefit, whereas in SH one player’s rational choice depends on her

beliefs about what the other will do. In addition, there are situations

that apparently correspond to a PD which are in fact better modeled

by means of a SH. This is the case, for instance, when the PD is

repeated and the players have in mind the ‘‘shadow of the future’’

[27], i.e., the possibility of future interactions, or for psychological

reasons [28], or else when group selection is taken into account [29].

In addition, we also include the Snowdrift game, which isolates the

other tension present in PD, namely the temptation to defect,

avoiding the undesirable consequences of being defected upon,

because in SD mutual defection becomes the worst case scenario.

We have carried out simulations of the evolution of populations

playing these games and embedded in our two real social

networks, PGP and URV. See Methods for a detailed description

of the simulations.

Cooperation in 262 games
In Fig. 1 we present the results of the asymptotic (or stationary)

cooperation density obtained from the simulations in the PGP

network, the URV email network and a randomized version of the

PGP network. The general appearance of the results resembles

those found in highly heterogeneous or scale-free networks [14],

with a large increase of the cooperation level in the SD quadrant

(note that the numbers appearing in the plots over or below each

quadrant represent the average value of the cooperation level in

that quadrant). The most salient feature, however, arises from the

comparison of results on the PGP network with those on the URV

network: the PGP network shows a smooth transition in the SH

quadrant (bottom left), from cooperation to defection, which to the

best of our knowledge has never been reported with model

networks [11,12]. This transition is observed both under the

replicator rule and the unconditional imitation rule, which implies

that this is not a consequence of the presence or lack of

stochasticity in the dynamics. We have also verified that this

result is asymptotic, in the sense that longer simulation times do

not change it, and that it does not result from an average over

realizations with asymptotic homogeneous states (all cooperators

or all defectors), but all realizations with the same parameter set

end up with very similar heterogeneous outcomes. This is certainly

an striking result, as it means that there is a wide range of game

payoffs in which the population ends up in a mixed-strategy or

polymorphic state, without converging to one of the two Nash (also

evolutionary) equilibria of the basic game. Therefore, this is a true

characteristic of the evolutionary outcome of coordination games

on the PGP network, which makes it different from both mean-

field or well-mixed population results and from all model networks

studied so far, and whose origin we have to unveil. Furthermore,

as Fig. 1 shows, this effect disappears when the original network is

randomized, by rewiring it while preserving the degree of each

node, following a procedure introduced in [30]. Notice also that

the anomalous heterogeneous states appear around the sharp

transition where the population is expected to behave in a bistable

manner, so that the effect mostly takes place in the region of SH

and part of PD games. Finally, the fact that the URV network

shows only a small region of coordination failures, and that its

randomized version does not give rise to significant differences

with the original one, suggests that the phenomenon we are

reporting on the PGP network is deeply engraved in the details of

the topology, in so far as their global characteristics are similar.

Coordination failures
This initial observation leads us to concentrate our study on the

explanation of the continuous transition observed in the SH

quadrant with the PGP network, when coordination failures appear

and the differences with the asymptotic behavior observed on model

networks are dramatic. We focus on the diagonal S = -T, and study

the evolutionary outcome with selective rewirings of the original

network, which allow us to activate or deactivate correlations for

high or low degree nodes (see Methods). The results of this analysis

are reported in Figure 2. It shows that the selective deactivation of

Topological Traps on Real Networks
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correlations does alter the essence of the transition. To begin with,

rewirings that preserve not only the degree distribution, but also the

degree-degree correlations, make the smooth transition disappear

almost completely, reducing the range where coordination failures

are observed to a very narrow one around T = 0.6. On the contrary,

if the rewiring preserves the three-node correlations, the result is

practically the same as on the original PGP network, even though

the number of rewirings is still significant. To shed further light on

this phenomenon, we resorted to randomizations in which only

nodes with degree smaller than or equal to a given one were affected

by the rewirings. In this case, Figure 2 shows that these rewirings

mostly affect the T,0.6 region, bringing more and more nodes into

cooperation. Importantly, the plot also shows that it is enough to

work with nodes of degree 7 or less (see purple line on right panel of

Fig. 2) to suppress most of the coordination failure region.

Admittedly, these nodes represent a large portion of the network

(more than 80%, see inset of Fig. 2B). However, the quantity to

assess the amount of rewiring performed is the distribution of stubs,

i.e. of half links that emerge from each node. The inset of Fig. 2B

shows that the stubs of nodes with degree 7 or less account for less

than 50% of the total amount.

Topological traps
To understand and explain the above results, it is important to

recall the evolution of coordination games on model networks. As

it was shown in [16], the evolution of coordination games on

degree homogeneous networks (e.g., lattices or random homoge-

neous networks) proceeds in two stages: an initial one in which

isolated cooperators disappear whereas regions with high local

density of cooperators engulf their defector neighbors and form

compact clusters, and a subsequent stage in which these clusters

grow and end up making the whole population coordinate in the

cooperative equilibrium. This second stage takes place for an

appropriate parameter region (along the restriction line S = -T, it

ranges around the interval 0.5,T,0.7, depending on the specific

network of choice). Therefore, there must be a mechanism

preventing this two-step process to take place in the PGP network.

We believe that such mechanism arises from the combination of

two main features: degree heterogeneity and scarcity of redundant

paths, which altogether give rise to topological traps for the

propagation of the cooperative strategy. As a simple example, let

us consider the configuration displayed in Fig. 3, with a link

between two nodes of different degrees k1.k2. Let us assume for

the moment that node 1 is a cooperator with all the neighbors

except node 2 being cooperators, and node 2 is a defector fully

surrounded by defectors except for node 1. For the two dynamics

we are considering here, the strategy of a given node changes

(under unconditional imitation) or can change (under the

replicator rule) only if it has a neighbor with larger payoff. In

this case, node 2 becoming a cooperator requires k1.T2S+1. If

Figure 1. Cooperation maps for different values of S and T show coordination failures on the PGP network. Asymptotic density of
cooperators for 2|2 social dilemmas on the URV (left), PGP (middle) and degree-preserving randomized PGP networks (right). Top row:
Unconditional imitation rule; bottom row: replicator rule. In the upper left quadrant of each panel we have the Harmony game (0,S, T,1), in the
upper right quadrant the Snowdrift game (0,S,1,T,2), in the bottom left the Stag Hunt game (21,S,0,T,1), and in the bottom right the
Prisoner Dilemma (21,S,0, 1,T,2). Numbers above and below each quadrant represent the average value of the cooperation level in the
quadrant. Note the anomalous smooth transition in the PGP network (middle column), which indicates the existence of coordination failures. For
comparison, the URV network shows a very small region where coordination is not achieved, comparable to the results of model networks. The
randomized version (not shown) gives essentially the same results as the original network, indicating the absence of peculiar features in its topology.
doi:10.1371/journal.pone.0015210.g001

Topological Traps on Real Networks
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we consider now the opposite case, when node 2 is a cooperator

and node 1 is a defector, then cooperation spreads when

k2.T2S+1. Therefore, we see that if k1.k2, i.e. when there is

degree heterogeneity, for some range of game parameters

cooperation can spread from node 1 to node 2, but not vice

versa. This implies that ‘‘coordination waves’’ will not propagate

over the network uniformly and, when there are no redundant

paths available, they will not reach certain regions of the network.

On the other hand, for games such that the evolution of the

population does not feature these coordination waves, the effect of

topological traps is not expected to take place. Accordingly, the

heterogeneous states which are found with the PGP network, and

which are lost when the network is randomized (see Fig. 1), mostly

occur for SH and PD games.

Figure 4 presents some examples of topological traps that we

find in our study. We assume that the cooperators that are shown

as squares in the plots are frozen and connected to a group of

cooperators such that the payoff coming from the part of the graph

not shown is k (i.e., they have k cooperative neighbors, or a set of

cooperators and defectors such that the net balance is k). To begin

with, panel A shows a branch linked to cooperators. For the two

dynamics we are considering here, the strategy of a given node

changes (under unconditional imitation) or can change (under

proportional update) only if it has a neighbor with larger payoff

(i.e., players do not make mistakes). In this case, irrespective of

what node 1 did at the previous round, at the next one (under

unconditional imitation) or eventually (under proportional update)

it will adopt the strategy C. This in turn implies that node 2, if

originally a defector, can only change to cooperation if T,1+S.

Note that this is also the case if node 2 is a leaf or it is connected

only to defectors, as well as in many other cases. Therefore,

strategy C will not be able to propagate further from 1 to 2 and

beyond. The situation in Fig. 4B is similar, but in this case the

condition for cooperation to propagate to nodes at position 2 is

T,1+2S. Because S,0 we arrive at the conclusion that

cooperation has even more difficulties to propagate along

bifurcations, the situation becoming worse the larger the order

of the bifurcation. Finally, our third example, shown in Fig.4C,

illustrates the fact that propagation of strategy C can also be

difficult in situations other than branches. For this particular

example, nodes of type 1 will be cooperators if k.4S (k. (n22)S

(in case of a n-clique with two outwards connections), whereas

nodes of type 2 will remain defectors unless T,1+2S, as in the

bifurcation case above.

It is important to realize that, considering these structures as

isolated ones, they will be frozen forever, no further evolution

being possible with our learning rules, which do not allow for

mistakes or innovative exploration of strategies. It can be shown,

however, that for best response dynamics [17,31–34], which is a

innovative rule, similar parameter regions with coordination

failures arise. On the other hand, in actual networks such as the

PGP, there will be many different types of mesoscopic structures

similar to those presented here. This will in turn induce a number

of different thresholds of the form T,1+nS, so that different

topological traps will yield to the propagation of clusters at

different values of T, leading to the smooth transition we observe

Figure 3. Topological traps are obstacles to the growth of
clusters of equal strategists. A simple example is a link between two
nodes of different degrees, connected to all cooperators (in red) or all
defectors (in blue). See main text for a discussion.
doi:10.1371/journal.pone.0015210.g003

Figure 2. Effect of correlation-preserving rewirings on the evolutionary outcome, along the parameter diagonal S = 2T (SH
quadrant). Panel A: Stationary density of cooperators as a function of T, for substrates constructed by rewiring the PGP network but preserving
degree correlations up to the indicated order. We observe that the smooth transition, which characterizes the coordination failure in the PGP
network, disappears when degree correlations of order 3 are destroyed, indicating that the origin of this phenomenon is related to such correlations.
Panel B: Influence of bottom-up rewirings. Black and green symbols correspond, respectively, to the original PGP network and a randomized version
preserving degree correlations up to order 2. Symbols in other colors correspond to intermediate cases, where only nodes with the indicated degrees
are rewired. We observe that the change between the extreme cases (sharp vs. smooth transitions) depends on the degree of the nodes involved in
the rewiring process. Inset of Panel B: normalized cumulative distributions of number of nodes (blue circles) and number of stubs (green squares) vs
node degree k, of the PGP network. Nodes of lower degrees are the majority, but their stubs represent a much smaller portion in the total network.
doi:10.1371/journal.pone.0015210.g002
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in our simulations. Our identification of such topological traps,

arising from degree heterogeneity and lack of redundant paths, is

further supported by the analysis presented below. As it is shown

there, the PGP network has a structure consistent with our

interpretation, in so far as most of its nodes are in non-redundant

paths, whereas this is not the case with the URV network. In

addition, we have also verified that when rewirings are restricted

to nodes connected to nodes of larger degree, and only in this case,

coordination failures disappear, thus pointing again at topological

traps as the mechanism behind the phenomenon.

Unveiling the structure of topological traps
The examples considered in Fig. 4 point directly to the

mechanism of topological traps. In all three examples, we see

that the wave of cooperation stops at nodes playing a bridging role

and that are linked to other nodes with a higher degree. This

immediately leads to a testable hypothesis on our two social

networks: Given that coordination failures are a much more

general phenomenon on the PGP network than on the URV one

(where they hardly exist at all), there should be many more nodes

of this class in the former than in the latter.

First we tested the occurrence of bridging nodes sitting on

unique paths for cooperation to spread. Specifically we focused on

nodes that are not in 2-components. A 2-component is a subset of

nodes with every node connected to 2 or more nodes of the set.

Nodes that are not in 2-component are, therefore, embedded in a

tree-like region, where there is no path redundancy allowing the

spreading of cooperation to circumvent topological traps. Figure 5

shows that, although this kind of nodes is present in both networks,

they are by far more common in PGP.

Second, in order to check the influence of degree heterogeneity,

we carried out a new set of rewirings. We began by rewiring only

those nodes that have at least one neighbor with greater degree,

i.e., nodes i that satisfy kivmax kj

� �
, j[Ni (recall that Ni is the

neighborhood of node i). This is done by (1) randomly finding a

node which complies with this condition, (2) randomly finding any

other node with degree ki, and (3) interchanging any two

neighbors of them. Note that this rewiring preserves the 2K-

distribution, while operating only on nodes of specific degrees.

With the so rewired networks, we considered the same line in the

SH quadrant, focusing on how the cooperation level was affected.

Panel A in Fig. 6 shows that it is certainly enough to operate on

this particular kind of nodes to remove coordination failures, in a

similar way as it is displayed in Fig. 2B. On the other hand, we also

checked that the complementary set of nodes, i.e. those that verify

ki§max kj

� �
, j[Ni, has a much slighter effect on the cooperation

level. It is interesting to note that some effect cannot be avoided

because any single rewiring actually affects four nodes and hence it

can incidentally reconnect a low-to-high degree link.

The additional analyses described here confirm that coordina-

tion failures are caused by the two topological features that we

have pinpointed above: differences in degree between neighboring

nodes and lack of redundant paths, which altogether give rise to

topological traps that prevent the spreading of coordination.

Clustering and topological traps
Both networks studied, PGP and URV, have some clustering

[20,21], i.e. there is some number of closed triangles of links

between three nodes. In addition, triangles are very closely

related to the 3K-distribution [35], which is precisely the order of

degree correlations needed to preserve the existence of

topological traps. Thus, an interesting question is to which

extent clustering itself plays a role in this phenomenon. On one

hand, it is virtually impossible to affect the degree distribution of

clustering without changing the degree correlations of order 3,

and vice versa. On the other hand, it is possible to randomize a

network in a way that destroys correlations of order 3 but

preserves the total number of existing triangles (see Methods).

Figure 4. Characterization of the robustness against invasions
for different topological structures. Shown are three example
cases: A, a branch, B, a bifurcation, and C, a clique. Nodes indicated by a
square with a C enclosed are assumed to be locked in a cooperative
strategy due to their large number of connections to other cooperators
(not shown).
doi:10.1371/journal.pone.0015210.g004

Figure 5. Bridging ties are the origin of coordination failures. The PGP network has many more tree-like structures than the URV network.
Shown is the fraction of nodes that are not in 2-components for both empirical networks. Clearly, they are much more frequent in the PGP network
(panel A, left) than in the URV (panel B, right). This is in agreement with our claim that they are responsible for the observed effect, as discussed in the
main text.
doi:10.1371/journal.pone.0015210.g005

Topological Traps on Real Networks
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Figure 7 shows the effect of this rewiring in comparison to those

used above. Panel A displays the distribution of clustering per

degree Ck, whereas panel B presents the the stationary state of the

population. It is clear that the rewirings that preserve correlations

to order 2 (and destroys those of order 3) remove the topological

traps, independently of the amount of triangles in the network.

Notice also that the rewiring that maintains the number of

triangles reduces the clustering for low-degree nodes, something

completely in agreement with the analysis presented above. Very

remarkably, clustering manifests itself as a displacement of the

transition between the two homogeneous population states, an

effect that has been reported for other network topologies which

feature clustering, namely regular lattices and small-world

networks [16].

As an additional proof of the irrelevance of clustering for the

phenomenon under discussion, Fig. 8 presents the simulation

results for Barabási-Albert scale-free networks of average degrees

k = 2, 4 and 8. This network topology features very low clustering

(strictly zero for k = 2), while it yields strong coordination failures

for k = 2, but none for k = 4 or k = 8. Again in agreement with our

analysis, the case with k = 2 is the only one that, besides high

heterogeneity in degree, exhibits lack of redundant paths between

nodes.

Discussion

As we have seen, social dilemmas on real social networks may

exhibit largely different outcomes from those expected from model

Figure 6. Targeted rewirings verify the degree profile of nodes involved in topological traps. Rewirings are applied separately to two
complementary sets of nodes in the PGP network, namely those ones connected to at least one other node of higher degree (panel A) and all the
rest, i.e. those ones with a degree equal or larger than that of any of their neighbors (panel B). In both panels thick lines correspond to the extreme
cases: The original PGP network (black) and a network where all the nodes that satisfy the condition were rewired (green). Thin lines represent
different intermediate cases defined by the degree of the nodes affected by the rewirings (see legends). We observe that coordination failures are
strongly prevented in A but only slightly in B, supporting our claim that the former set of nodes are the ones involved in the reported phenomenon.
See Methods for more details on the randomization procedures.
doi:10.1371/journal.pone.0015210.g006

Figure 7. Clustering is irrelevant to topological traps. Clustering distribution per node degree k (panel A) and stationary density of
cooperators x* as a function of game parameter T (panel B), for the PGP network and some rewirings presented in Fig. 2, along with a rewiring which
preserves correlations of order 2 (and breaks those of order 3) while maintaining the total number of triangles in the network (see legend). Both
rewirings that destroy correlations of order 3 suppress coordination failures, irrespective of the large difference in clustering. Notice that the rewiring
which preserves the number of triangles only removes clustering from nodes of low degree. This removed clustering logically corresponds to the
correlations of order 3 that are relevant to the reported phenomenon.
doi:10.1371/journal.pone.0015210.g007

Topological Traps on Real Networks
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networks. In fact, this is true when social networks are compared

with each other (as we have done with URV and PGP networks)

but the comparison to model networks is most dramatic. A

particularly striking and relevant feature arises in the case of

coordination dilemmas, where certain networks, such as PGP,

show coordination failures for a wide range of parameters, i.e.,

network regions are not able to coordinate on one of the two

equilibria, leading a subset of individuals to dissatisfaction or

frustration (the use of the word ‘frustration’ here is not unrelated to

the manner in which it is employed in physics, for instance when

speaking of antiferromagnetic Ising models or spin glasses, where

many ‘spins’ cannot find a low energy configuration due to

opposite sign interactions [36]). This phenomenon is observed

even in the strongest case of the PD, where the range of

parameters in which a high level cooperation is achieved is also

affected, as the comparison between randomized and original

networks shows (cf. Fig. 1).

A detailed analysis of the topology of the PGP network has

allowed us to conclude that coordination failures arise from certain

mesoscopic structures, more concretely from bottlenecks or

topological traps that prevent the Pareto-efficient equilibrium

from propagating to the whole network, effectively leading to a

disruption of the information flow. The key features of these

mesoscopic structures is the existence of nodes connected to nodes

of higher degree, which find it difficult to induce neighbors to

imitate their strategy, and the lack of redundant paths to

circumvent those topological bottlenecks. The fact that the PGP

network has many more of these structures than the URV network

corroborates that they are responsible for the very different

behavior we have found in the simulations. By the same token, the

URV example shows that coordination failures are not necessarily

observed on every real network, although, as we will argue below,

the mechanism behind the failures seems to be quite general. In

fact, this mechanism can also explain the results in [33], where

small networks were exhaustively studied by numerical simulation

and it was found that failures of coordination, not frequent in the

sizes they studied, were related to segmentation and lack of

centralization of the networks. On the other hand, the appearance

of these mesoscopic structures is related to the community

structure [37–39] of the networks. As it was discussed in [18],

the PGP network consists of scale-free-like communities loosely

interconnected, whereas the URV network is formed by

communities which are almost complete graphs which in turn

are connected almost to every other one (cf. Fig. 2 in [18], where

the existence of the topological trap structures in typical PGP

communities can also be appreciated). Therefore, a community

analysis of a given network can provide a first indication as to

whether it is going to exhibit coordination failures or not, although

it must be realized that communities themselves may contain inner

topological traps which could prevent them from coordinating in a

unique equilibrium (as seen also in [34]).

Topological traps can indeed be a very general feature, arising

in contexts related to different social issues. Thus, Castelló and

coworkers [40,41] have observed similar structures giving rise to

long-lived metastable states of coexistence between languages in a

population or, in other words, making consensus more difficult in

opinion models. While their model cannot be exactly mapped to

ours for several reasons, such as the larger number of states or the

kind of strategy update dynamics, the phenomenology is quite

similar and the structures we have considered here are also

identified as key factors to their findings. Another instance where

topological traps may play a role is the propagation of sexually

transmitted diseases, which has been shown [42] to be slower

when the bipartite nature of the network is taken into account; it is

clear that topological traps similar to those considered here arise in

a very natural manner in bipartite networks and they should

certainly contribute to slowing down the transmission process.

Similar phenomena can hence take place in other bipartite

ecological and organizational networks [43]. In addition, meso-

scopic motifs very similar to those considered here are also found

in other contexts, such as communication [44,45] and metabolic

[46] networks; in this last case, considering the effect of such

bottlenecks may be relevant to understand their extraordinary

robustness.

In view of all these largely different examples, we envisage that

topological traps will have important, non-trivial effects in almost

all dynamical processes on networks, going from physical and

biological to social and economical applications. This has crucial

implications in two directions. First, it becomes clear that

modeling actual networks with artificial models may be missing

topological features as the ones we are discussing here and as a

consequence lead to inaccurate results or predictions. A word of

caveat is in order here: as we have seen in the case of the URV

network, not all real networks exhibit topological traps. Therefore,

there may be instances in which currently available model

networks are adequate enough so as to account for the behavior

of the system. What we claim here is that the presence of

topological traps is a key feature which, when present, leads to

highly nontrivial consequences. The discussion above shows that

this phenomenon may arise in many real networks, and hence one

should check their existence when observing anomalous behaviors

on a given system. Indeed, it is particularly interesting that the

reported behavior is rooted in degree correlations of order three

(next-nearest neighbors), a feature whose reproduction is out of

reach for most model networks. In this regard, it would be very

interesting to study whether networks arising from co-evolutionary

dynamics [47–49] exhibit this kind of structures (the persistence of

defector hubs on networks arising from a PD game is a hint in this

direction [50]). Second, the effect of these bottlenecks in the

propagation of consensus or the diffusion of information must be

kept in mind when designing networks for specific purposes, such

as, e.g., innovation networks, albeit they might be useful to block

Figure 8. Synthetic heterogeneous networks (Barabási-Albert
scale-free networks) only give rise to coordination failures
when there is lack of redundant paths. Stationary density of
cooperators x* as a function of game parameter T, for three instances of
Barabási-Albert scale-free networks with degrees k = 2, 4, and 8 (see
legend). Redundant paths between nodes are only scarce for the case
of k = 2, which is strictly a tree by construction. Notice also that
clustering is very low in all three cases (mean value ,0.01). Network size
is N = 104 nodes, network generation parameters are m0 = m = k/2 [54].
doi:10.1371/journal.pone.0015210.g008
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diffusion processes in other contexts, most notably to prevent

systemic risk in financial networks.

Methods

Topological null cases: Randomizations
To understand the effects of mesoscopic structure, we have

compared the results on the PGP network with those obtained

with several randomized versions of it. The most common

randomization found in networks’ literature follows the rewiring

procedure proposed in [30]. The process consists of choosing

randomly two nodes and exchanging one neighbor of each node

(also selected randomly), which preserves the degree of each node

and destroys degree-degree correlations between nodes. If the

network has a well defined community structure, this process

ensures its dilution. However, one can go deeper in the

randomization process and preserve more quantities that just the

degree of each node. In [35] the authors propose new rewiring

strategies that preserve not only the original degree distribution

P(k) (for simplicity 1K -distribution), but also the joint degree-

degree distribution P(k, k’) (2K-distribution) and the P(k, k’, k0) (3K -

distribution), etc. The idea is basically the same that the one

followed to rewire preserving the 1K -distribution. When

increasing the order of the correlations to be preserved, the

selection of the rewired nodes is more restrictive. For example, to

preserve the 2K -distribution, there must be at least two nodes of

equal degree adjacent to the nodes in the edge pair. Then,

preserving the nK-distribution means preserving all degree

correlations up to order n. Generally speaking, increasing the

number of correlations to be preserved shrinks significantly the

possible rewirings and eventually for some nK-distribution the

rewiring is impossible. We applied this rewiring method to the

PGP network, whose limit turns out to be the 4K-distribution.

Indeed, using a rewiring preserving the 3K-distribution, the

resulting topology, after more than 104 randomizations, is almost

identical to the original one, in particular its community structure.

Here we propose a refinement of this kind of rewiring, which

allows the screening of the topological characteristics in between

the 2K -distribution and the 3K -distribution, in order to unravel

the contribution of specific topological patterns to our results, and

in the form of a partial 2K -rewiring. The idea is to also control the

degree of the nodes involved in the trials of the edge pairs to be

rewired. We can restrict the degree of the nodes that will

interchange edges to any value between 2 and a greater number.

For instance, we start with a rewiring that preserves the 2K -

distribution but only nodes of degree 2 can participate in the

process. This rewiring will thus break 3K correlations for nodes of

degree 2. The process can be iterated increasing the allowed

degrees, i.e. for degrees 2 and 3, for 2, 3 and 4, etc. Alternatively,

one can proceed from the other end of the degree range, fixing the

largest degree dm and adding progressively lower values: dm – 1, dm

– 2, dm – 3, etc. Note that both strategies are complementary, but

not equivalent.

The rewiring conceived to study the relevance of clustering in

topological traps proceeds as follows: First, a pair of links to be

shuffled is found according to the 2K -distribution preserving

algorithm mentioned above. Then, the number of triangles of

which the links are part is computed, for both cases before and

after the shuffling. If the number is the same, then the rewiring is

actually performed.

Simulations
All the simulations were performed for an initial density of

cooperators x0 = 0.5. The update of strategies was done synchro-

nously: all the individuals in the population play the game once

with all their neighbors, compare payoff with them and decide the

new strategy for the next time step, following one of the two rules

described below. Then, they all update their strategy at once and

their payoffs are set to zero before the next step. In addition, we

have verified that asynchronous update leads to very similar

results. The time of convergence in the simulations was T = 104

steps. If the population did not reach full cooperation or defection,

an average of the cooperator density during the last tenth of the

time evolution is taken as the asymptotic cooperator density for

that realization. The studied region in the ST-plane was sampled

in steps of 0.05. For each point in the resulting 41641 grid, which

corresponds to a concrete game, 100 realizations were performed

to obtain an average value of the asymptotic density of

cooperators. Each realization started from a newly generated

population, with strategies randomly assigned.

Our first evolution rule for strategies is the replicator rule or

proportional imitation rule [51,52]. The replicator rule is

implemented as follows: let i = 1…N label the individuals in the

population. Let si be the strategy of player i, pi her payoff and Ni

her neighborhood, with ki neighbors. With the replicator rule one

neighbor j[Ni is chosen at random. The probability of player i

adopting the strategy of player j is given by

pt
ij:P st

j?stz1
i

n o
~

pt
j{pt

i

� �.
Wij , pt

jwpt
i ,

0 , pt
jƒpt
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with Wij~max ki,kj
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As a second strategy update rule, we have considered another

imitative rule that has received attention in previous research

[11,53], namely unconditional imitation. It makes each player

choose the strategy of the neighbor with largest payoff, provided

this payoff is greater than the player’s one. This is a deterministic

rule, in contrast to the replicator update rule, which is stochastic,

and therefore it is a good reference to assess the influence of

stochastic effects on our results. In addition, we have verified that

results are similar with other imitative rules, such as the Moran

rule [12].
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11. Szabó G, Fáth G (2007) Evolutionary games on graphs. Phys Rep 447: 97–216.

12. Roca CP, Cuesta J, Sánchez A (2009) Evolutionary game theory: temporal and
spatial effects beyond replicator dynamics. Phys Life Rev 6: 208.

13. Rapoport A, Chammah AM (1965) Prisoner’s Dilemma. Ann Arbor: University
of Michigan Press.

14. Santos FC, Pacheco JM, Lenaerts T (2006) Evolutionary dynamics of social

dilemmas in structured heterogeneous populations. Proc Natl Acad Sci USA
103: 3490–3494.
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