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Abstract
The composition and structure of the extracellular matrix (ECM) in the vascular wall and in

the atherosclerotic plaque are important factors that determine plaque stability. Statins can

stabilize atherosclerotic plaques by modulating ECM protein expression. Fibulins are impor-

tant components of the ECM. We evaluated the in vitro effect of simvastatin on the expres-

sion of fibulin-1, -2, -4 and -5 in human coronary artery smooth muscle cells (SMCs) and

the mechanisms involved. Cells were incubated with simvastatin (0.05–1 μM), mevalonate

(100 and 200 μM), geranylgeranyl pyrophosphate (GGPP) (15 μM), farnesyl pyrophosphate

(FPP) (15 μM), the Rho kinase (ROCK) inhibitor Y-27632 (15 and 20 μM), the Rac-1 inhibi-

tor (another member of Rho family) NSC23766 (100 μM), arachidonic acid (a RhoA/ROCK

activator, 25–100 μM) and other fatty acids that are not activators of RhoA/ROCK (25–

100 μM). Gene expression was analyzed by quantitative real-time PCR, and fibulin protein

levels were analyzed by western blotting and ELISA. Simvastatin induced a significant

increase in mRNA and protein levels of fibulin-2 at 24 hours of incubation (p<0.05), but it did

not affect fibulin-1, -4, and -5 expression. Mevalonate and GGPP were able to reverse sim-

vastatin’s effect, while FPP did not. In addition, Y-27632, but not NSC23766, significantly

increased fibulin-2 expression. Furthermore, activation of the RhoA/ROCK pathway with

arachidonic acid decreased fibulin-2 mRNA. Simvastatin increased mRNA levels and pro-

tein expression of the ECM protein fibulin-2 through a RhoA and Rho-Kinase-mediated

pathway. This increase could affect the composition and structure of the ECM.

Introduction
Atherosclerosis, the primary underlying cause of cardiovascular diseases, is a systemic disease
of the arterial wall that leads to plaque development[1, 2]. During the progression of athero-
sclerosis, the structure, abundance, and composition of the arterial wall extracellular matrix

PLOSONE | DOI:10.1371/journal.pone.0133875 July 24, 2015 1 / 16

OPEN ACCESS

Citation: Serra N, Rosales R, Masana L, Vallvé J-C
(2015) Simvastatin Increases Fibulin-2 Expression in
Human Coronary Artery Smooth Muscle Cells via
RhoA/Rho-Kinase Signaling Pathway Inhibition. PLoS
ONE 10(7): e0133875. doi:10.1371/journal.
pone.0133875

Editor: Pablo Garcia de Frutos, IIBB-CSIC-IDIBAPS,
SPAIN

Received: November 25, 2014

Accepted: July 2, 2015

Published: July 24, 2015

Copyright: © 2015 Serra et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported by a grant from
the Fondo de Investigación Sanitaria, Instituto de
Salud Carlos III, [FIS PI030786]; and Centro de
Investigación Biomédica de Diabetes y
Enfermedades Metabólicas Asociadas (CIBERDEM).

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0133875&domain=pdf
http://creativecommons.org/licenses/by/4.0/


(ECM) are deeply affected[3]. Moreover, the progression of plaque can lead to a so-called vul-
nerable-type plaque, characterized by a thin fibrous cap and intraplaque neovascularization
and hemorrhage[4, 5] among other factors. The breakdown of ECM components (collagen,
elastin, and others) by extracellular proteases in atherosclerotic plaques promotes fibrous cap
thinning and destabilization[6, 7], which has been associated with major adverse clinical out-
comes[8], such as myocardial infarction and stroke[4, 9, 10]. Intraplaque neovascularization is
characterized by new immature and thin-walled micro-vessels derived from the adventitial
vasa vasorum. The consequence of this reduced wall structure is a fragile network of new ves-
sels that can easily rupture, causing intraplaque hemorrhage[11]. Furthermore, an increased
density of these immature micro-vessels has been identified at the shoulders of atherosclerotic
lesions where rupture is more frequently described[12–14].

Fibulins are a family of seven proteins that are important components of the ECM[15, 16],
basement membranes[17] and elastic matrix fibers[18]. Exhibiting an extensive array of pro-
tein–protein interactions, fibulins act as intermolecular bridges between ECM components,
connecting various supramolecular structures. Fibulins participate in the correct assembly of
elastin and microfibrils to form elastic fibers. For instance, fibulin-1 and -2 bind to tropoelastin
and proteoglycans, and fibulin-5 binds to tropoelastin and elastin fibers[19, 20]. Moreover,
fibulin-2 binding to fibronectin and collagen in the basement membrane has been described
[21]. Therefore, fibulins have an important structural function in the arterial wall and in differ-
ent types of connective tissues. The dysregulation of certain fibulins occurs in a range of
human disorders[22–27]. Moreover fibulin-2 has been shown to colocalize with versican and
hyaluronan in in murine vascular atherosclerotic lesions[28].

Statins comprise a class of hypocholesterolemic agents used in people with or at risk for car-
diovascular disease. They lower cholesterol by inhibiting HMG-CoA reductase, but in addition,
statins have a wide range of pleiotropic effects[29–31], including the stabilization of atheroscle-
rotic plaques[32, 33]. In this regard, it has been shown that statin therapy in animal models
modifies the biology of the atherosclerotic plaque and increases its stability[34]. Moreover, col-
lagen and fibrotic content of plaques significantly increases in patients receiving statin treat-
ment, conferring resistance to rupture and plaque stabilization[35–39]. Some of these non-
lipid related actions may be explained by the inhibition of several intracellular pathways,
including kinases and small G proteins [30, 40, 41]. Statins inhibit posttranslational modifica-
tions of GTPases such as RhoA and Rac1 through the inhibition of isoprenoid intermediates of
the cholesterol pathway, such as farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophos-
phate (GGPP) [40]. RhoA function is regulated through the activation of the Rho-kinase
(ROCK) pathway, which is also inhibited by statins and can be activated by arachidonic acid
(AA), a polyunsaturated omega-6 fatty acid[42, 43], but not by other types of fatty acids.

The effect of statins on the expression of fibulin family members has not yet been examined.
Therefore, the aim of our study was to evaluate whether simvastatin could modify the expres-
sion of 4 ECM fibulin family (fibulin-1, -2, -4, and -5) in human coronary artery smooth mus-
cle cells (SMCs). Our results indicate that simvastatin increases the expression of fibulin-2 in
human coronary artery SMCs through a RhoA/ROCK-dependent mechanism.

Methods

Reagents
Medium 231, smooth muscle growth supplement (SMGS) and gentamicin/amphotericin B
solution were purchased from Cascade Biologics (Madrid, Spain). Simvastatin sodium salt was
purchased from Calbiochem (Darmstadt, Germany). GGPP, FPP and fatty acids [palmitic
(PA), oleic (OA), linoleic (LA), AA, eicosapentaenoic (EPA) and docosahexaenoic (DHA)]
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were purchased from Sigma-Aldrich (Madrid, Spain). Y-27632 dihydrochloride and NSC
23766 were purchased from Tocris Bioscience (Bristol, United Kingdom). Dimethyl sulfoxide
(DMSO) was purchased fromMerck (Darmstadt, Germany).

Human coronary artery smooth muscle cell culture
Three different lots of human coronary artery SMCs were purchased from Cascade Biologics
(4C0915, 4C1284, and 886619). The donor for lot number 4C0915 was a 19-year-old male; for
lot number 4C1284, a 21-year-old male; and for lot number 886619, a 36-year-old woman. The
cells were cultured in medium 231 (HEPES + bicarbonate) supplemented with SMGS (fetal
bovine serum (4.9% v/v), human fibroblast grow factor (2 ng/ml), human epidermal grow fac-
tor (0.5 ng/ml), heparin (5 ng/ml), insulin (5 μg/ml) and bovine serum albumin (0.2 μg/ml))
and gentamicin/amphotericin B solution at a density of 2500 cells/cm2 according to the manu-
facturer’s protocol. Cells were grown at 37°C under a humidified atmosphere and 5% CO2. The
experiments were performed when cells had grown to 80–90% confluence. The experiments
were reproduced using the three different lots of cells. The lot of cells used in each experiment
is stated in the Figure Legend of each Figure.

Effect of simvastatin on fibulins
Human coronary artery SMCs were incubated with a wide range of concentrations of simva-
statin (0.05, 0.1, 0.5, 1 μM) for 6 or 24 hours. Depending on the objective of the experiments,
cells were used for either total RNA or protein extraction. Cells incubated with vehicle alone
(untreated cells) were designated as control.

Effect of mevalonate, GGPP, FPP, NCS 23766 and Y-27632 on fibulin-2
mRNA expression
Human coronary artery SMCs were pre-incubated for 2 hours with mevalonate (100 and
200 μM), GGPP (15 μM), and FPP (15 μM), and with the Rho kinase inhibitor Y-27632 (10,
15, 20 μM), and the Rac-1 inhibitor (another member of Rho family) NSC23766 (100 μM) for
24 hours. After incubation, cells were used for total RNA isolation. Cells incubated with vehicle
alone (untreated cells) were designated as control. In some cases the culture media was kept at
-80°C for fibulin 2 protein determination.

Preparation of Fatty acid (FA) sodium salt and FA-BSA complex
Preparation was made with some modifications according to the method of Wu et al.[44] Ten
milligrams of each FA were mixed with 0.5 ml EtOH and 5 M NaOH in a 1:1 ratio volume of
FA to NaOH. The mixture was dried under nitrogen gas until the FA sodium salt formed. The
salt was then dissolved in 2 ml sterile water (stock solutions of FA). To avoid FA oxidation,
1 μM BHT was added to the FA stock solutions. Stock solutions of FA complexed to BSA were
made by mixing FA and 5 mM BSA in a 3:1 ratio of FA to BSA. The FA-BSA solution was ster-
ile-filtered and used fresh.

Effect of FA-BSA on fibulin-2 mRNA expression
Human coronary artery SMCs were incubated with FA-BSA at 25, 50 or 100 μM for 24 h. The
fatty acids used were PA, OA, LA, AA, EPA and DHA. Cells were used for total RNA extrac-
tion. Cells incubated with vehicle alone (untreated cells) were designated as control.
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Cytotoxicity
The potential cytotoxic effect of all compounds on human coronary artery SMCs was assessed
by lactate dehydrogenase (LDH) release in the culture medium using the CytoTox 96 Non-
Radioactive Cytotoxicity Assay (Promega; Madrid, Spain) following the manufacturer’s
instructions and by observing cellular morphology (Olympus IX71; Barcelona, Spain). We did
not observe any cytotoxic effect of the compounds used at the concentrations and times
described.

RNA isolation
Cells were lysed in lysis buffer, and total RNA was isolated from the cells using the ABI PRISM
6100 Nucleic Acid PrepStation (Life Technologies; Madrid, Spain) following the manufactur-
er’s instructions. The absorbance at 260 nm was used to measure the RNA concentration, and
the 260/280 nm absorbance ratio was used to analyze RNA quality.

Quantitative real-time polymerase chain reaction
A total of 0.5 μg RNA was reverse transcribed to cDNA using Random Hexamers and Super-
Script II (Life Technologies) following the manufacturer’s protocol. Taqman primers and
probes for fibulin-1, -2, -4 and -5, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and
18s were obtained from validated and pre-designed Gene Expression Assays (Life Technolo-
gies) and were used in real-time polymerase chain reaction (rtPCR) amplifications. mRNA
expression for each gene and sample was calculated using the recommended 2-ΔΔCt method.
The control group (untreated cells) was defined as the calibrator in this experiment. GAPDH
and 18s were used as housekeeping genes to normalize the results of the gene of interest.

Fibulin protein extraction and quantification
The culture plates were placed on ice and the medium was removed and kept at -80°C. Next,
the plates were washed with phosphate buffered saline (PBS). Then, 800 μl of PBS was added,
and the cells were scraped from the surface of the culture plates with a cell filter and centrifuged
at 1500 rpm for five minutes at 4°C. The supernatant was discarded. A total of 100 μl hypotonic
buffer was added, and the samples were passed through a syringe with a 26½ G needle. Next,
the samples were centrifuged at 16,000 x g for 10 minutes at 4°C. The supernatant, now con-
taining cytoplasmic extracts, was stored at -80°C. For protein quantification, a Qubit Fluorom-
eter (Life Technologies) was used.

Secreted fibulin-2 in the cell medium was determined by commercial ELISA kits (Uscn Life
Science, Inc.), according to the instructions.

Western blotting
Human coronary artery SMCs were cultured as previously described and incubated with sim-
vastatin at concentrations of 0.05–1 μM for 6 or 24 hours. For fibulin-1 and fibulin-2, cell
extracts were denatured in 20X Tris-Acetate SDS Running Buffer, separated on Novex 3–8%
Tris-Acetate gels (Life Technologies) and transferred to nitrocellulose membranes (0.45 μM).
This procedure was also followed for fibulin-2 determination in the cell medium prior to con-
centration of the samples with Amicon 10K centrifugal filters (Millipore). For fibulin-5, cell
extracts were denatured in 20X MOPS SDS Running Buffer, separated on Novex 10% Bis-Tris
gels (Life Technologies) and transferred to nitrocellulose membranes (0.22 μM). The mem-
branes were blocked in 1X Tris-buffered saline (TBS), 0.1% Tween and 4% ECL advance
(Western blotting detection kit (GE Healthcare; Barcelona, Spain)) for 1 hour, washed in 1X
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TBS and incubated with fibulin-1 and -5, actin (1:500) (Santa Cruz Biotechnology; Heidelberg,
Germany) or fibulin-2 (1:500) (Novus biologics; Cambridge, United Kingdom) antibodies
overnight at 4°C with continuous shaking. After further washing in 10% 1x TBS, 1% SDS and
0.5% Nonidet P-40, the blots were incubated for 30 minutes with secondary anti-goat P-0049
antibodies (1:10,000) (DACO; Barcelona, Spain) for fibulin-1, fibulin-5, and actin and with sec-
ondary anti-rabbit P-0048 antibodies (1:10,000) (DACO) for fibulin-2. Bands were visualized
using ECL reagents (Life Technologies) with Versadoc (Bio Rad; Barcelona, Spain), normalized
to actin expression and quantified with Quantity One Analysis Software version 4.6.2.

Statistical analysis
All of the results are expressed as the Mean ± Standard Error of the Mean (SEM). The number
of independent experiments conducted for each result is stated in the Figure Legends. Statisti-
cal analyses were performed using one-way analysis of variance (ANOVA), followed by Dunett
post-test correction for multiple comparisons. Differences were considered significant at
p<0.05. Statistical analyses were performed using GraphPad Prism software (San Diego, Cali-
fornia, USA) version 5.01.

Results

Effect of simvastatin on fibulin expression
Six hours after simvastatin treatment, fibulin-1, -2, -4, and -5 mRNA levels were unchanged
(S1 Fig). However, after 24 hours of treatment, simvastatin produced a significant increase in
fibulin-2 mRNA levels in human coronary artery SMCs compared to controls (Fig 1). The low-
est simvastatin concentration showing a significant effect was 0.1 μMwith a 1.7-fold increase
in fibulin 2 mRNA levels. The maximum effect of simvastatin was at 1 μMwith a 2.9-fold
increase. In addition to increasing fibulin-2 mRNA expression, simvastatin treatment also
increased fibulin-2 protein expression. We quantified western blot band intensity and normal-
ized them to actin expression and found a significant increase with a maximum effect also at a
concentration of 1 μMwith a 2.1-fold increase (Fig 1). In contrast, mRNA and protein levels of
fibulin-1, -4, and -5 did not change, after 24 hours of simvastatin treatment (S1 and S2 Tables).

Mevalonate reverses simvastatin-induced fibulin 2 expression
By inhibiting HMG-CoA reductase, statins cause a depletion of mevalonate in the cells. To
determine whether this depletion was involved in simvastatin increase of fibulin 2 expression,
we incubated human coronary artery SMCs with simvastatin alone (1 μM) or in combination
with mevalonate. We found that pre-incubating the cells for 2 hours with increasing concentra-
tions of mevalonate (100, 200 μM), completely and significantly reversed the simvastatin-
dependent induction of fibulin 2 mRNA and protein (Fig 2), confirming the specificity of sim-
vastatin’s effect. Mevalonate alone did not affect fibulin 2 mRNA or protein expression. Fur-
thermore, we showed that mevalonate alone or in combination with simvastatin did not affect
fibulin -1, -4, or -5 gene expression (S2 Fig).

Effect of simvastatin on secreted fibulin-2 expression
To determine whether the intracellular effects described above for fibulin-2 were valid for
secreted fibulin-2, the culture media of those experiments were analyzed by ELISA and western
blotting. We found that simvastatin (1 μM) significantly increased secreted fibulin-2 concen-
tration (Fig 3) after 24 h of incubation and that pre-incubating the cells with mevalonate
(200 μM), completely and significantly reversed the simvastatin-dependent induction of
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secreted fibulin protein (Fig 3). These results confirm the specificity of the effect of simvastatin
and provide evidence of the secretion of fibulin-2 by these cells. Mevalonate alone did not affect
soluble fibulin 2 expression.

Downstream isoprenoids are involved in simvastatin effect
Mevalonate is a precursor of isoprenoid compounds such as FPP and GGPP in the cholesterol
biosynthetic pathway. To evaluate which downstream isoprenoid was involved in fibulin 2
mRNA expression, we incubated human coronary artery SMCs with simvastatin alone or in
combination with one of the isoprenoids. We found that GGPP (15 μM) but not FPP (15 μM)
markedly reversed simvastatin-induced fibulin 2 mRNA expression, whereas the respective iso-
prenoids alone had no effect (Fig 4A). These results were specific for fibulin 2 because no
change in the mRNA levels of fibulin-1, -4, or -5 was observed after incubation of cells with iso-
prenoids alone or in combination with simvastatin (S3 Fig).

ROCK inhibitor Y-27632 upregulates fibulin 2 expression
Because ROCK is one of the major downstream targets of RhoA, we next evaluated in human
coronary artery SMCs the involvement of the RhoA/ROCK pathway on simvastatin-induced
fibulin-2 expression. As shown in Fig 4B, treatment of cells with the selective ROCK inhibitor
Y-27632 significantly increased fibulin-2 mRNA levels. We found that 24 h treatment with Y-
27632 at 10, 15 and 20 μM significantly increased fibulin-2 mRNA expression by 1.5, 2.6, and
2.3-fold, respectively. In contrast, treatment with the selective Rac-1 inhibitor NSC23766 had
no effect on fibulin-2 mRNA levels (Fig 4B). Again, this effect was specific for fibulin-2 because
incubation of cells with different concentrations of the ROCK inhibitor did not affect the
mRNA levels of any of the other fibulins tested (fibulin-1, -4, and -5) (S4 Fig).

Arachidonic acid, but not other FAs, decreases fibulin-2 gene expression
It is well known that AA, but not PA, OA, LA, EPA or DHA, activates the RhoA/ROCK
pathway. Therefore, we tested whether RhoA/ROCK pathway activation with increasing AA
concentrations affected fibulin 2 expression. As shown in Fig 5, AA produced a significant
decrease in fibulin-2 mRNA levels compared to controls. At 50 and 100 μM, we observed a
45% and 42% decrease, respectively. However, PA, OA, LA, EPA and DHA had no significant
effect on fibulin 2 mRNA expression at any of the concentrations used (S5 Fig).

Discussion
The main objective of the current study was to evaluate whether simvastatin treatment could
affect the expression of 4 fibulin family members (fibulin-1, -2, -4, and -5) and the mechanisms
involved. We have shown that 24 hours of simvastatin treatment of human coronary artery
SMCs upregulates intracellular and secreted fibulin-2 expression at both the mRNA and pro-
tein levels. This effect is specific to fibulin-2, as neither fibulin-1, -4 nor -5 were affected by sim-
vastatin treatment. Moreover, we have shown that the mechanism involved is a depletion in

Fig 1. Effect of simvastatin on fibulin-2 mRNA (A) and protein (B) levels in human coronary artery
SMCs.Cells were treated with simvastatin for 24 hours. Blot bands were normalized to actin and quantified
with Quantity One Analysis Software version 4.6.2. A representative Western blot is shown. The results are
shown as the mean with the standard error of the mean (SEM) for eight independent experiments in 1A (2
with cell lot number 4C0915, 3 with cell lot number 4C1284, and 3 with cell lot number 886619) and six
independent experiments in 1B (2 with cell lot number 4C0915, 2 with cell lot number 4C1284, and 2 with cell
lot number 886619). Comparisons were performed using ANOVA followed by Dunett post-test correction.

doi:10.1371/journal.pone.0133875.g001
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Fig 2. A: Effect of mevalonate on simvastatin-induced fibulin-2 mRNA levels in human coronary artery SMCs. Cells were preincubated for 2 hours
with mevalonate (100, 200 μM) and treated with simvastatin for 24 hours. B: Effect of mevalonate on simvastatin-induced fibulin-2 protein levels in human
coronary artery SMCs. Cells were preincubated for 2 hours with mevalonate (200 μM) and treated with simvastatin for 24 hours. Blot bands were normalized
to actin and quantified with Quantity One Analysis Software version 4.6.2. A representative Western blot is shown. The results are shown as the mean with
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the cells of mevalonate and GGPP. Simvastatin by inhibiting the rate-limiting enzyme in the
cholesterol synthesis pathway HMG-CoA reductase, decrease levels of these compounds which
are intermediates of the pathway. Because GGPP is also responsible for the posttranslational
activation of the small GTPase RhoA, the simvastatin-induced depletion of GGPP is linked to
an inhibition of RhoA and its effector ROCK. In addition, we observed that the inhibition of
ROCK was specific, as treatment with a ROCK inhibitor (Y-27632) increased fibulin-2 expres-
sion whereas treatment with a Rac inhibitor (NCS23766) did not. Furthermore, neither meva-
lonate nor GGPP, FPP, Y-27633, or NSC23766 affect the expression of fibulins -1, -4 or -5. We
also found that the induction of RhoA/ROCK pathway with AA decreased fibulin-2 expression,
while other fatty acids (PA, OA, LA, EPA and DHA) that don’t induce the pathway, had no
effect on fibulin 2 expression. To our knowledge, the simvastatin-induced increase in fibulin-2
expression reported here is a novel non-lipid related effect of simvastatin. Because simvastatin
is a lipophilic statin, extrapolation of our results to hydrophilic statins would be just specula-
tion. Therefore, new experiments should be performed with this type of statins to confirm
these results.

Statins primarily protect against coronary disease by reducing lipid levels. However, pleio-
tropic effects of statins can further protect patients on statin therapy. These effects are well
characterized and include improvement in endothelial dysfunction, increased nitric oxide bio-
availability, antioxidant properties, reduction of blood thrombogenicity, and inhibition of pro-
inflammatory responses[29–31].

Fibulin 2 has important features in connection with atherosclerosis. It is an important com-
ponent of the vascular ECM and can influence the organization and structure of the vascular
wall[45–48] by binding to matrix components such as proteoglycans, fibronectin, fibrillin, and
laminins [17, 45, 46, 49–51]. Additionally, fibulin 2 can bind to tropoelastin and to fibrillin-1,
suggesting that it may act as an anchor for elastin to microfibrils[18, 48, 52]. Moreover, it has
been shown in murine models that fibulin-2 is expressed in SMC-rich regions of atheroscle-
rotic lesions, where it colocalizes with versican and hyaluronan[28]. Moreover, it has been
shown that thinning of the plaque fibrous cap and the presence of immature intraplaque
neovessels are key events in the transformation of atherosclerotic plaques to a vulnerable phe-
notype, thus contributing to the onset of complications[53]. In this regard, an important pleio-
tropic effect of statins is the improvement in the characteristics that stabilizes atherosclerotic
plaques[37, 39]. For instance, 12-month treatment of patients with atorvastatin has resulted in
significant increases in the fibrotic content of the plaque [36]. Immunohistochemistry studies
of human carotid plaques have shown that patients on pravastatin have plaques with a signifi-
cant higher collagen content [35]. Moreover, 9-month statin treatment after acute myocardial
infarction significantly increased the fibrous-cap thickness in patients with hyperlipidemia[38].
But fibulin-2 not only is a scaffold protein, there is also evidence that it has a regulatory func-
tion because it can modify SMCmigration[28, 51]. Moreover, it has been proposed that
changes in fibulin-2 structure or levels may partially control systolic blood pressure[54]. Over-
all, the role of fibulin-2 in the atherosclerotic process needs to be clarified with more studies.

We describe a mechanism that has been widely reported as a mode of action of statins.
One example related to the stabilization effect of statins is that statins inhibit MMP-2 and
MMP-9 secretion through the suppression of RhoA activation and Rab prenylation, respec-
tively[55, 56]. Statins inhibit the isoprenylation of small G-proteins by inhibiting the synthesis

the standard error of the mean (SEM) for twelve independent experiments in 2A (2 with cell lot number 4C0915, 4 with cell lot number 4C1284, and 6 with cell
lot number 886619) and six independent experiments in 2B (2 with cell lot number 4C0915, 2 with cell lot number 4C1284, and 2 with cell lot number 886619).
Comparisons were performed using ANOVA followed by Dunett post-test correction.

doi:10.1371/journal.pone.0133875.g002
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Fig 3. Effect of simvastatin andmevalonate in secreted fibulin 2 expression in culture medium from
human coronary artery SMCs. Cells were preincubated for 2 hours with mevalonate (200 μM) and treated
with simvastatin for 24 hours. Blot bands were normalized to actin and quantified with Quantity One Analysis
Software version 4.6.2. A representative Western blot is shown. The results are shown as the mean with the
standard error of the mean (SEM) for four independent experiments in 3A (1 with cell lot number 4C1284 and
3 with cell lot number 886619) and three independent experiments in 2B with cell lot number 886619.
Comparisons were performed using ANOVA followed by Dunett post-test correction.

doi:10.1371/journal.pone.0133875.g003
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Fig 4. Effect of GGPP and FPP (A) and the ROCK inhibitor Y-27632 and Rac inhibitor NCS23766 (B) on
simvastatin-induced fibulin-2 mRNA levels in human coronary artery SMCs.Cells were incubated with
simvastatin and isoprenoids or with the inhibitors for 24 hours. The results are shown as the mean with the
standard error of the mean (SEM) for twelve independent experiments in both A and B (2 with cell lot number
4C0915, 4 with cell lot number 4C1284, and 6 with cell lot number 886619). Comparisons were performed
using ANOVA followed by Dunett post-test correction. FPP: farnesyl pyrophosphate, GGPP: geranylgeranyl
pyrophosphate.

doi:10.1371/journal.pone.0133875.g004
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of important isoprenoids, which prevents the attachment of the small G-proteins to the cell
membrane, thereby inhibiting their ability to transduce signals through MAPK pathways.

In conclusion, the simvastatin-induced upregulation of fibulin-2 expression may affect the
composition and structure of the ECM. Whether this effect has a beneficial impact on athero-
sclerosis plaque characteristics needs further investigation.

Supporting Information
S1 Fig. Effect of simvastatin on fibulin-1, -2, -4 and -5 mRNA levels in human coronary
artery SMCs. Cells were treated with simvastatin for 6 hours. The results are shown as the
mean with standard error of the mean for three independent experiments. Comparisons were
performed using ANOVA followed by Dunnett post-test correction.
(DOCX)

S2 Fig. Effect of mevalonate and simvastatin on fibulin-1, -4, and -5 mRNA levels in
human coronary artery SMCs. Cells were pre incubated for 2 hours with mevalonate
(100 μM) and treated with simvastatin (1μM) for 24 hours. The results are shown as the mean
with the standard deviation for at least three independent experiments. Comparisons were per-
formed using ANOVA followed by Dunett post-test correction.
(DOCX)

S3 Fig. Effect of FPP, GGPP, and simvastatin on fibulin-1, -4, and -5 mRNA levels in
human coronary artery SMCs. Cells were incubated with simvastatin (1μM) and isoprenoids
(15μM) for 24 hours. The results are shown as the mean with the standard deviation for at least
three independent experiments. Comparisons were performed using ANOVA followed by
Dunett post-test correction. FPP: farnesyl pyrophosphate, GGPP: geranylgeranyl pyrophos-
phate, Simv: simvastatin.
(DOCX)

S4 Fig. Effect of the ROCK inhibitor Y-27632 and Rac inhibitor NCS23766 on fibulin-1, -4,
and -5 mRNA levels in human coronary artery SMCs. Cells were incubated with the

Fig 5. Effect of AA on fibulin-2 mRNA levels in human coronary artery SMCs.Cells were treated with AA
for 24 hours. The results are shown as the mean with the standard error of the mean (SEM) for three
independent experiments (2 with cell lot number 4C0915 and 1 with cell lot number 4C1284). Comparisons
were performed using ANOVA followed by Dunett post-test correction. AA: arachidonic acid.

doi:10.1371/journal.pone.0133875.g005
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inhibitors for 24 hours. The results are shown as the mean with the standard deviation for at
least three independent experiments. Comparisons were performed using ANOVA followed
by Dunett post-test correction.
(DOCX)

S5 Fig. Effect of fatty acids on fibulin-2 mRNA levels in human coronary artery SMCs.
Cells were treated with different concentrations of fatty acids for 24 hours. The results are
shown as the mean with the standard deviation for three independent experiments. Compari-
sons were performed using ANOVA followed by Dunett post-test correction. PA: Palmitic
acid, OA: oleic acid, LA: linoleic acid, EPA: eicosapentaenoic acid, DHA: docosahexaenoic
acid.
(DOCX)

S1 Table. Effect of simvastatin on fibulin -1, -4, and -5 mRNA levels in human coronary
artery SMCs. Cells were treated with different concentrations simvastatin for 24 hours. The
results are shown as the mean with standard deviation for three independent experiments.
Comparisons were performed using ANOVA followed by Dunnett post-test correction.
(DOCX)

S2 Table. Effect of simvastatin on fibulin -1 and -5 protein levels in human coronary artery
SMCs. Cells were treated with different concentrations simvastatin for 24 hours. The results
are shown as the mean with standard deviation for three independent experiments. Compari-
sons were performed using ANOVA followed by Dunnett post-test correction.
(DOCX)
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