SCHOLARONE™ Manuscripts

- 1 Effects of a low-fat yoghurt supplemented with a rooster comb extract on muscle
- 2 joint function in adults with mild knee pain: a randomized, double blind, parallel,
- 3 placebo-controlled, clinical trial of efficacy.
- 4 Rosa Solà^{a,b}, Rosa-Maria Valls^b, Isabel Martorell^b, Montserrat Giralt^b, Anna Pedret^b,
- 5 Núria Taltavull^b, Marta Romeu^b, Àurea Rodríguez^c, David Moriña^{c,d}, Victor Lopez de
- 6 Frutos^a, Manuel Montero^a, Maria-Carmen Casajuana^a, Laura Pérez^a, Jeny Faba^a, Gloria
- 7 Bernal^a, Anna Astilleros^a, Roser González^a, Francesc Puiggrós^c, Lluís Arola^c, Carlos
- 8 Chetrit^e, Daniel Martinez-Puig^e

10 Authors' affiliations

- ^aHospital Universitari Sant Joan, Reus, Spain.
- bFacultat de Medicina i Ciències de la Salut-Universitat Rovira i Virgili, Reus, Spain.
- ^cCTNS-TECNIO-Technology Center of Nutrition and Health, Reus, Spain.
- d'Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona,
- Avda de Can Domènech, Cerdanyola del Vallès 08193, Barcelona, Spain.
- ^eBioiberica S.A., Palafolls, Spain.

17

18 Author for correspondence:

- 19 Rosa SOLÀ, MD, PhD. E-mail address: rosa.sola@urv.cat.
- 20 Unitat de Recerca de Lípids i Arteriosclerosi (URLA), CIBERDEM,
- 21 Servei de Medicina Interna Hospital Universitari de Sant Joan,
- 22 Institut Investigació Sanitària Pere Virgili,
- 23 Facultat de Medicina, Universitat Rovira i Virgili,
- 24 C/ Sant Llorenc, 21
- 25 43201 Reus,

- 26 Spain
- 27 Running headline of not more than 40 characters (including spaces): yoghurt,
- 28 rooster comb extract and knee
- 29 **Abbreviations: ANCOVA**, analysis of covariance; **CTNS**, Nutrition and Health
- Technology Centre; GCP, good clinical practice; HA, hyaluronic acid; ICC, intra-class
- 31 correlation coefficients; ICH, International Conference of Harmonization; ITT,
- intention to treat; **JKOM**, Japanese Knee Osteoarthritis Measure; **KOA**, Knee
- osteoarthritis; **OA**, osteoarthritis; **PET**, polyethylene terephthalate; **PGE2**,
- prostaglandin E2; RCE, rooster comb extract; SOCS3, cytokine signaling 3; TLR4,
- Toll-like receptor 4; **VAS**, visual analogic scale.

- 37 Authors' contributions to manuscript were as following: (1) the conception and
- design of the study, or acquisition of data, or analysis and interpretation of data: RS, R-
- 39 MV, IM, AR, FP, LA, CC, DM-P were responsible for the overall study design
- 40 including project concept, development of the research plan, and study oversight.
- 41 IM, MG, AP, NT, MR, AR, VL-F, MM, M-CC, LP, JF, GB, AA, RG provided hands-
- on conduct of the experiments and data collection.
- 43 AR, CC, DM-P provided essential reagents or materials (applies to authors who
- contributed by providing animals, constructs, databases, etc. necessary for the research)
- DM analyzed data and performed statistical analyses
- 46 (2) drafting the article or revising it critically for important intellectual content
- 47 RS, R-MV, DM had major contributions to writing the manuscript
- 48 (3) final approval of the version to be submitted: All authors have read, revised and
- 49 approved the final manuscript.

51	Preliminary results suggested that oral-administration of rooster comb extract (RCE)
52	rich in hyaluronic acid (HA) was associated with improved muscle strength. Following
53	these promising results, the objective of the present study was to evaluate low-fat
54	yoghurt supplemented with RCE rich in HA on muscle function in adults with mild
55	knee pain; a symptom of early osteoarthritis. Participants (n=40) received low-fat
56	yoghurt (125 mL/d) supplemented with 80 mg/d of RCE and placebo group (n=40)
57	consumed the same yoghurt without the RCE, in a randomized, controlled, double-
58	blind, parallel trial over 12 weeks. Using an isokinetic dynamometer (Biodex System 4),
59	RCE consumption, compared to control, increased affected knee peak torque, total work
60	and mean power at 180°/s, at least 11% in men (p<0.05) with no differences in women.
61	No dietary differences were noted. These results suggest that long-term consumption of
62	low-fat yoghurt supplemented with RCE could be a dietary tool to improve muscle
63	strength in men, with attendant possible clinical significance. However, further studies
64	are needed to elucidate reasons for these sex difference response observed, and may
65	provide further insight into muscle function.

- 66 **Trial Registration:** ClinicalTrials.gov Identifier: NCT01303432.
- 67 **Word count** = 180
- **Key words:** knee discomfort, rooster comb extract, novel food, hyaluronic acid, muscle
- strength, isokinetic dynamometer

1. INTRODUCTION

74	Knee osteoarthritis (KOA) is a major public health problem ¹ because it causes chronic
75	disability in older people ² . Early KOA is recognized by knee discomfort with no clear
76	lesions or associated abnormalities, and requires a conservative approach in first choice
77	management ³ . Muscular functional limitations have been targeted in developing tools
78	directed at underlying mechanisms for KOA ⁴ . The muscles around the knee,
79	particularly the quadriceps and hamstring, are known to act as dynamic stabilizers. The
80	knee extensors are the main movers involved in physical activities such as running,
81	jumping or kicking the ball, whereas the knee flexors are involved in physical activities
82	where they influence stride length and stabilize the knee joint in changes of direction,
83	acceleration and deceleration, and during landing ^{5,6} . Both, knee extensor and knee
84	flexor strengths are lost with the progress of symptomatic KOA ⁷ . Weakness of knee
85	flexor and extensor muscles could lead to a decreased joint stability which, combined
86	with the decreased biomechanical efficiency, leads to debilitating falls, especially in the
87	elderly ^{7–9} . The quadriceps muscle weakness may precede KOA ^{8,9} .
88	Isokinetic muscle strength, which is evaluated by peak torque, total work and mean
89	power, can identify muscle weakness and can assist the diagnostic process, or can be
90	used to determine the effect of following different interventions ^{10,11} . Strength of the
91	knee flexors and extensors has been identified as an important parameter in prevention
92	of injury of knees ¹² . Depending on the joint, the muscle group and the movement to be
93	studied, multiple angular velocities were used. To evaluate muscle function, the
94	measurements included slow velocities (up to 60 °/s), intermediate velocities (90 to 120
95	°/s) and fast velocities (180-300°/s). The maximum work is lower at higher movement
96	velocity. Of note is that velocity of 180°/s appears to have gained general acceptance
97	and, currently, is being used widely ^{13,14} .

riyaninonic acid (riA) is composed of N-acetyl glucosamme (as the monosaccharide)
together with D-glucuronic acid. Glucosamine can prevent cytokine-induced DNA
demethylation of a specific CpG site in the IL1β promoter resulting in a decrease of
expression via NF-kB in human chondrocytes ^{15,16} . In addition, HA has a key role in
myogenesis and regulation of myocites cycle ¹⁷ . Further, orally-administered HA is
absorbed and ubiquitously distributed in organs and joints ¹⁸ , thus opening possibilities
for developing therapies to treat discomfort in various joints. A study with horses with
osteochondrosis demonstrated that the oral-administration of rooster comb extract
(RCE) rich in HA for a period of 90 days increased the intra-articular concentration of
hyaluronic acid ¹⁹ . A preliminary study ¹¹ involving intake of a low-fat yoghurt
containing added RCE produced a significant increase in the maximum peak torque of
the knee extensors at 180°/s and at 240°/s, while a similar pattern of response was
observed in total work and in mean power; the outcome being improved muscle strength
and flexibility 11. These promising results offer new therapeutic opportunities, albeit
studies with higher levels of scientific evidence are needed. RCE underwent a safety
assessment and, as a result of which, an authorization decision was taken by the
European Commission based upon a positive assessment by European Food Safety
Authority ²⁰ .
Foods naturally containing sodium hyaluronate are very limited. Only viscera and
rooster combs have high amounts of this substance. Cultural habits (not all countries
include rooster combs and/or viscera in their diets) often precludes these products in a
regular diet. Hence, a good way to make up this lack in sodium hyaluronate intake could
be to include rooster combs extract (RCE) in foods which are daily consumed, such as
dairy products.

122	Our hypothesis is that the consumption of a low-fat yogurt supplemented with RCE
123	improves muscle strength of the quadriceps and hamstring muscles in patients affected
124	with mild knee pain, resulting in greater knee joint stability.
125	The objective of this study is to determine the effect of intake of low-fat yoghurt
126	supplemented with RCE on muscle strength of the affected knee joint, as determined by
127	an isokinetic gold standard method. Additional evaluations included an echography,
128	subjective assessment of pain, and safety of the RCE-supplemented low-fat yoghurt.
129	2. MATERIALS AND METHODS
130	2.1 Study design, randomization and intervention
131	The study was a randomized, double-blind, placebo-controlled, two-arm study assessing
132	the effect of RCE on joint function in adults with mild knee pain. The randomization
133	code was computer generated. The randomization list was based on a block
134	randomization procedure (with block-size of 4) generated using PROC PLAN in the
135	SAS program (version 9.2). To guarantee allocation concealment, the randomization list
136	was guarded and was unavailable to investigators involved in the study. Participant
137	assignment to treatment or placebo arm was at a ratio of 1:1. The number sequence for
138	the subject, center, and treatment assignment were allocated via an interactive electronic
139	response system hosted by the Nutrition and Health Technology Centre (CTNS). The
140	Unit responsible for the randomization took no further part in the study.
141	Participants were randomized to receive a low-fat yoghurt (125 mL/d) supplemented
142	with 80 mg/d of RCE (Mobilee®; Bioiberica S.A., Palafolls, Spain), or the same low-fat
143	yoghurt without RCE, over a period of 12 weeks. The dose and treatment duration
144	followed that of previous studies ^{21,22} . The RCE was extracted from food grade rooster
145	combs using an extraction process. To guarantee the appropriate dosage, the RCE was
146	added before yogurt fermentation in the manufacture process. The concentrations,

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

structure and stability of the RCE were confirmed before the yogurts were made available to the participants. RCE contained HA (65%) together with hydrolyzed proteins (particularly collagen) and other polysaccharides. The content of HA in the final yogurt product was determined according to the method described by Coleman et al 1997 ²³. Each 100g of the low-fat yoghurt contains: 3.25% protein; 0.2% fat; 4.45% carbohydrates; 30 kcal. The only difference between investigation product and control was the supplementation with RCE (80 mg/unit). The participants were asked to consume the voghurt at the same time each day; preferably at lunchtime. The participants' diets were monitored using two 3-day dietary records, one prior to commencing the study, and the other at 12 weeks of the trial. Additionally, a list of foods and products rich in mucopolysaccharides and/or HA was provided to participants with instructions to avoid these dietary items so as to preempt their influence on the test substance measurements. 2.2 Participants Participants were outpatients at the *Hospital Universitari Sant Joan* (Reus, Spain). All had been suffering from mild pain knee (evaluated on VAS as being between 30 mm and 50 mm), for a minimum of 6 months. The exclusion criteria were: 1) regular use of paracetamol or other drugs to control joint discomfort; 2) active rheumatoid arthritis and any inflammatory arthritic conditions 3) treatment with oral corticosteroids within the 4 weeks prior to selection; 4) treatment with intra-articular corticosteroids within the 12 weeks prior to selection; 5) significant joint injury during the 3 weeks prior to

screening (identified from medical history); 6) patients who consume drugs or dietary

supplements for osteoarthritis (OA) at the time of screening; 7) individuals who depend

on prescription drugs to control pain; 8) patients participating in a concurrent clinical

trial, or having received a product being evaluated during the previous 30 days; 9)

172	allergy to dairy products; 10) individuals following an energy-restricted diet for weight
173	loss; 11) pregnant or lactating; 12) currently taking nutraceuticals with HA and/or other
174	types of joint regenerators; 13) suffering from axis alterations. Baseline characteristics
175	of the participants are summarized in Table 1. Participant flow throughout the study is
176	shown in Figure 1.
177	The study was conducted between February 2011 and June 2011 in Hospital
178	Universitari Sant Joan (Reus, Spain). The adverse events were coded according to the
179	Medical Dictionary for Regulatory Activities (MedDra dictionary; version 9). We
180	approached the present manuscript when RCE had been approved by the European
181	Commission as a Novel Food ingredient ²⁰ .
182	2.3 Packaging characteristics
183	The investigational and control products were packed in 125 mL polyethylene
184	terephthalate (PET) containers sealed with an aluminum foil cover. The test units were
185	batched in cartons containing 6 units each. The labels on each included the following
186	information: EU code for products of animal origin, consume-by date, trial code / name
187	of the promoter, the inscription "sample for nutritional investigation", storage
188	conditions, blank space for noting information, consume-by date if necessary, and
189	participant's code identification number in the study. The palatability and general
190	acceptability of the low-fat yoghurt supplemented with RCE compared with the placebo
191	was evaluated by means of a subjective acceptance questionnaire.
192	2.4 Ethics
193	The study was approved by the Clinical Research Ethical Committee of the <i>Hospital</i>
194	Universitari Sant Joan. Protocol was according to the Helsinki Declaration and good
195	clinical practice guidelines of the International Conference of Harmonization (ICH

196	GCP). All participants provided written informed consent prior to enrolment into the
197	trial.
198	This trial was registered with ClinicalTrials.gov: number NCT01303432.
199	2.5 Outcomes
200	Main outcome: To assess evolution of muscle function over 12 weeks from baseline as
201	measured by isokinetic evaluation of the affected knee joint
202	Secondary outcomes: To assess change over 12 weeks from baseline in the
203	echographic evaluation of the affected joint using an OA risk parameter scale, and pain
204	evaluation on the VAS scale
205	2.6 Clinical assessment
206	Isokinetic test: The evaluation was conducted with an isokinetic dynamometer as gold
207	standard method (Biodex System 4; Biodex Medical Systems, New York, USA) using
208	five repetitions at two angular velocities (180°/s, 240°/s) ²⁴ . This allows a quantitative
209	evaluation of muscle function through variables such as torque, work and power. As we
210	have observed, the maximum work is lower at higher movement velocity, thus fast
211	velocities such as 180°/s and 240°/s would be optimal for our purpose. The participant
212	assumed a seated position with the hips flexed at 90°. The degree of freedom of the knee
213	was restricted to extension/flexion of 0 to -90. A break of 2 min was allowed between
214	sets of measurements. Based on the data retrieved from all the sets, the maximum total
215	work (J), maximum peak torque (Nm) and mean power (W) at 180 and 240% were
216	determined. The maximum peak torque (Nm) was defined as the maximum force
217	produced by the tested musculature at the two different angular velocities. Total work

(J) was defined as the workload at a defined angular velocity, while mean power (W)

was defined as total work over a specific period of time 11.

218

220	The intra-and inter observer reliability (consistency) of the isokinetic strength-testing
221	protocol for knee extension and flexion was determined ²⁵ . For inter-observer, the intra-
222	class correlation coefficients (ICC) of the isokinetic variable peak torque was 0.91
223	(95%CI: 0.85-0.97) and for intra-observer, the ICC was 0.95 (95%CI: 0.70-0.99), both
224	representing 'good' to 'very good' reliability according to Landis and Koch
225	interpretation ²⁶ .
226	2.7 Statistical analyses
227	Sample size was calculated using the results obtained in a previous trial ¹⁵ on the
228	isokinetic evaluation of peak torque under specific analytical conditions of 240° in
229	extension. Assuming a standard deviation (SD) of 8.5 Newton (Nm), 40 participants per
230	group were necessary to detect differences between the two groups (placebo and
231	experimental) of 5.5 Nm under an α =0.05 significance level, and a power of 80%.
232	Descriptive results were expressed as mean±standard deviation (SD) or percentages,
233	according to the variable being measured.
234	To compare the effects of the two products (test and placebo) on the efficacy of the
235	principal variable, as well as on the main secondary efficacy variables, an analysis of
236	covariance was performed (ANCOVA) with the baseline value as covariate. The studied
237	population was analyzed by intention-to-treat, defined as all randomized subjects who
238	met inclusion/exclusion criteria, who received the study products (placebo or active-
239	ingredient yoghurts), and had at least a baseline efficacy measurement. For the main
240	efficacy analysis, missing values were imputed by means of the Baseline Observation
241	Carried Forward (BOCF) method, and sensitivity analysis based on Available Data
242	Only (ADO) approach were also performed, finding no remarkable differences,
243	improving the robustness of the statistical results. For the rest of efficacy variables,

244	hypotheses were tested using Fisher's exact test for categorical variables, the Student's
245	<i>t</i> -test for continuous variables and Mann-Whitney's U-test for ordinal variables.
246	All statistical analyses were performed with the SAS 9.2 (SAS Institute, Cary NC)
247	package. Significance level was fixed at bilateral 5%. Previous to the opening of the
248	randomization codes and the lock of the database, a Statistical Analysis Plan was
249	performed, and all analyses were conducted in accordance.
250	3. RESULTS
251	3.1 Baseline characteristics of the study participants
252	From the 89 eligible volunteers, 84 were randomized and 80 were analyzed (30 men and
253	50 women). The mean (\pm SD) age was 42.52 \pm 13.16 years and the BMI was 25.36 \pm 3.72
254	kg/m2, as described in Table 1 and Figure 1.
255	3.2 Attrition rates
256	At 12 weeks, both groups had 95% adherence to the study protocol and no statistically
257	significant differences in attrition rates were observed between intervention and control
258	groups $(P = 0.89)$.
259	3.3 Evaluation of compliance, tolerance with the product and adverse events
260	Of the participants, 76 (94%) included in the safety population completed the trial
261	without significant protocol deviations; 93% (n=37) in the placebo group and 95%
262	(n=39) in the intervention group. The palatability and general acceptability of the low-
263	fat yoghurt supplemented with RCE was well and no differences were observed with
264	placebo. Adverse events were reported in 9 volunteers and were related to
265	gastrointestinal discomfort such as flatulence and stomach ache. The severity of the
266	adverse events was mild and in none of the cases the intervention was modified or
267	interrupted. Moreover, there were no statistically significant differences between groups
268	with respect to adverse events reported.

269	3.4 Dietary intake
270	The intake of energy, macronutrients, cholesterol and alcohol did not change during the
271	12 weeks intervention period, and no significant differences were observed between
272	groups.
273	3.5 Isokinetic evaluation of muscle function in the affected knee joint
274	No significant differences were observed when comparing RCE group isokinetic
275	variables with placebo globally (Supplementary Table 1). When the isokinetic data on
276	peak torque (Nm), total work (J) and mean power (W) at 180°/s and 240°/s is segregated
277	by gender, significant differences where observed in men. At 12 weeks, men in the RCE
278	group significantly increased the muscle strength in the affected knee-joint in flexion
279	and extension improving the mainly isokinetic variables measured at 180°/s and also at
280	240% compared to placebo. The % of change from baseline in the RCE intervention is
281	in all the isokinetic parameters over 19%. Moreover, the % of difference from placebo
282	is in all the variables determined over 11%. No statistically significant changes were
283	observed in women between RCE and placebo. The most relevant isokinetic data at
284	180°/s and segregated by gender are summarized in Table 2.
285	3.6 Effusion of affected knee joint
286	The effusion of the affected knee joint was evaluated using echography, and no
287	significant changes were observed between control and intervention groups. At 12
288	weeks, the RCE-supplemented group had a reduction of -5.35 % (in mm) while, in
289	placebo group, this was increased by +1.92 %; albeit the difference was not statistically
290	significant (P=0.276).
291	3.7 Pain evaluation
292	Pain evaluation on the VAS scale showed no statistically significant differences

between intervention and control group.

4. DISCUSSION

294

The present study confirms that low-fat yoghurt supplemented with a natural compound 295 RCE rich in HA (80 mg/d) consumed over 12 weeks can improve the muscular status in 296 the affected knee-joint, at least a 11% in men, compared to control group. Peak torque, 297 total work, and mean power in flexion and extension evaluated in two angles (180°/s 298 299 and 240°/s) increased at least 19% in men suffering from mild knee pain compared to 300 baseline. From our knowledge, the information about clinical significance of knee 301 isokinetic measures improvement is scarce. It is proposed that when the comparison 302 between two isokinetic variable data is greater than 10% is generally considered as being functionally significant ^{27,28}. Thus, the improvement in the affected knee-joint 303 muscle strength that was observed after the RCE intervention could suggest a clinical 304 practical importance leading to clinical significance ²⁹. 305 In a healthy population, women have lower muscle strength than men at all age groups. 306 Male muscle strength declines progressively and linearly with age, while female muscle 307 strength decreases from around the age of 41 years ¹⁰. Kasai et al. ³⁰ observed sex and 308 age related differences in thigh cross-section area, composition and muscle quality. 309 310 With age the thigh cross-sectional area decreases mainly because of a reduction in muscle in men and, in contrast, because of fat reduction in women. Moreover, the rate 311 of decrease in muscle cross-sectional area was 1.5-fold higher in men than in women. 312 313 However, different studies have suggested that loss of ovarian function associated with 314 decreased circulating concentrations of 17b-estradiol could indirectly be associated with the accelerated decline in muscle strength after the menopause ³¹. Hence, sex 315 steroidogenesis-related mRNA and protein expressions, such as for 17β-hydroxysteroid 316 317 dehydrogenase (HSD), 3β -HSD, 5α -reductase and aromatase cytochrome P-450 (P450arom) enzymes, are detected in the skeletal muscle while testosterone, estradiol, 318

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

and 5α-dihydrotestosterone are locally synthesized in skeletal muscle from dehydroepiandrosterone ³². Therefore, acute exercise may increase muscle estrogen synthesis in males, and may increase testosterone synthesis in females. Indeed, muscle estrogen levels were observed to be increased in males, while muscle testosterone levels in females were increased by acute exercise ³². This interesting approach to muscle metabolism suggests that the difference in sex steroidogenesis enzymes and sex steroid hormone levels in skeletal muscle could be upregulated by products as RCE, and the response may be higher in men. However, future studies are needed to elucidate reasons for these sex difference response and may also provide further insight into muscle function. In the present study, muscle measurements were performed using gold standard methodology with a dynamometer and a computerized system that enables arcs of movement to be measured at a constant angular velocity ³³; the objective standardized isokinetic assessment being the most accurate method to evaluate muscle activity ³³. In KOA, the loss in extensor and flexor strength is attributed to weakness of the quadriceps muscle because its strength (peak torque generation) is an important determinant of physical function in subjects with KOA ⁷. Muscle impairments in patients with KOA are not limited to quadriceps, but also involve hamstring muscles ⁷. In individuals with KOA, a decrease in the external flexion moment has been reported, and is believed to be a compensation strategy employed to reduce load on the knee joint ³⁴. The present results suggest that RCE consumption can improve impairments in affected knee muscle strength. The differences in muscle activity following RCE consumption were not translated into changes in pain perception, probably due to the low intensity of the baseline pain. The muscle activity could be related to intrinsic hyaluronan synthesis, which is necessary for myoblasts to differentiate and form syncytial muscle cells ¹⁷. Similarly, RCE has been

shown in vitro in human synovial fibroblasts to have a concentration-dependent effect 344 consistent with the stimulation of endogenous HA synthesis ³⁵. Since endogenous 345 synthesis of hyaluronan is associated with myogenesis, the effects of RCE consumption 346 on muscle function could be explained by an improvement in myogenesis, which would 347 widen the current perspectives on OA prevention. 348 The efficacy of the oral administration of HA had been observed ³⁶ in sixty individuals 349 350 with OA (Kellgren-Lawrence grade 2 or 3) who were randomly assigned to HA (200 mg once a day) or placebo for 12 months. The subjects in both groups were required to 351 perform quadriceps strengthening exercises every day, as part of the treatment. The 352 improvement tended to be clearer with the HA group, and this trend was more obvious 353 with the subjects aged <70 years. For the relatively younger subjects, the oral HA effect 354 was better than in the placebo group at the 2nd and 4th months after the start of 355 consumption ³⁶. 356 The clinical and biochemical effects of 250 mg/d oral RCE (65% HA) were measured in 357 young horses with osteochondrosis at time 0, at the end of treatment (90 d) and 358 thereafter (every 30 d). The results indicated that animals receiving the RCE supplement 359 had a lower score for synovial effusion as well as higher HA, nitric oxide and 360 prostaglandin E2 (PGE2) concentrations in synovial fluid; the differences, however, did 361 not reach statistical significance compared to control ¹⁹. 362 363 The effusion values observed in our volunteers were between 10 and 11 mm which indicate suspicion of pathological joint effusion ^{37,38}. Although no statistically 364 significant differences were observed between groups, an effusion reduction tendency 365 of -5.35% (in mm) was shown after RCE intervention indicating that RCE could also 366 had a beneficial effect on this parameter. 367

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Orally administered HA is absorbed and ubiquitously distributed to joints. Experimental results in rats and beagles using radiolabelled HA indicated that orally administered HA would be absorbed and distributed to the skin, bone, and synovial joints, including knee joints, and would be retained in these tissues for protracted periods. The pattern of distribution within the body and the time-course of clearance from the tissues indicated that a substantial part of orally administered HA would be absorbed, without substantial degradation ¹⁸. The oral absorption as well as distribution and excretion of hyaluronic acid (HA) have been studied ^{39,40}. The percentage of the ingested dose of HA entering systemic circulation is similar to that reported for other glycosaminoglycans (between 5-20%) ³⁹. Oral absorption of RCE has been determined using the ex vivo everted gut sac model in rats ⁴⁰. Intestinal absorption was confirmed using this model, with absorption rates estimated to range between 38% in duodenum and 9% in ileum. That HA reaches peripheral tissues, especially joints and skin, has also been demonstrated ¹⁸. The uptake and transport of high-molecular weight glycosaminoglycans has been suggested to occur through the lymphatic system^{18,41}. However, therapeutic effects of HA on KOA patients may not necessarily require the absorption of HA. A recent study by Asari et al 42 reported that a high molecular weight HA can bind to Toll-like receptor 4 (TLR4) at intestinal epithelium, and exert biological activity without being absorbed; the association of HA with TLR4 was shown to increase the secretion of suppressor of cytokine signaling 3 (SOCS3), which leads to the suppression of pro-inflammatory cytokine expression. The binding of HA to TLR4 also suppresses the expression of pleiotrophin which, again, contributes to the suppression of inflammation. Thus, the therapeutic effects of HA observed in the study ⁴² may have resulted from these mechanisms, with the HA remaining in the intestines without absorption.

Another possibility is that the therapeutic effect of HA is obtained via mechanisms similar to glucosamine. Glucosamine is another supplement which can alleviate symptoms of KOA, and can inhibit the progression of the disease. Although its mechanism is not fully understood, glucosamine is thought to inhibit disease progression by exhibiting chondro-protective and anti-inflammatory activities ¹⁵. Nacetyl glucosamine is the monosaccharide that forms HA in combination with Dglucuronic acid. Recently, the potential for glucosamine to modulate NF-kB activity and cytokine-induced abnormal gene expression in human articular chondrocytes isolated from the articular cartilage of femoral heads following fractured neck-of-femur surgery, was proposed to occur via an epigenetic process. Glucosamine can prevent cytokineinduced demethylation of a specific CpG site in the IL1\beta promoter, and this can decrease the expression of IL1β. These studies provide a potential mechanism-of-action for KOA disease-modifying agents via NF-kB. These findings demonstrate the need for further studies to elucidate the role of NF-kB in DNA demethylation in human chondrocytes ¹⁶. It is possible that N-acetyl glucosamine released from orally-ingested HA may improve KOA symptoms in the same manner as glucosamine ³⁵. The strength of the present study is its design as a randomized, controlled, clinical trial which provides first level of scientific evidence. One potential limitation of the study is that it is underpowered to detect differences in sub-group analysis based on sex and, therefore, the sub-analyses conducted need to be considered exploratory. Another limitation is that the mechanisms-of-action of oral RCE consumption were not assessed. Further research is needed to confirm the results described, and to define the mechanisms-of-action of oral RCE. Confirmation of these findings in other groups of patients with mild knee pain of muscular origin could be socio-economically valuable.

5. CONCLUSIONS

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

418	In conclusion, long-term intake of low-fat yoghurt supplemented with HA-containing
419	RCE increases muscle strength in men with possible clinical significance, including
420	better performance of the quadriceps and hamstring muscles of the knee. These findings
421	could provide the basis of new dietary therapeutic objectives in the treatment of early
422	osteoarthritis. However, further studies are needed to elucidate reasons for these sex
423	difference response observed, and may provide further insight into muscle function.
424	
425	ACKNOWLEDGMENTS
426	We thank the following for their enthusiastic support in the conduct of the study:
427	Mercedes Heras: laboratory technician; Joan Fortuny: administrative support; Luisa
428	Iniesta and Miguel Querol: nurses who performed the blood extractions.
429	ROLE OF THE FUNDING SOURCE
430	Rosa Solà received financial support from the CENIT program SENIFOOD from the
431	Spanish Ministry of Industry, and non-directed grants from a consortium of companies
432	(including Bioiberica SA; Palafolls, Barcelona, Spain) made available directly to the
433	Universitat Rovira i Virgili. Anna Pedret and Nuria Taltavull are post-graduate research
434	students funded, respectively, by the Universitat Rovira i Virgili and the CTNS-
435	TECNIO (CT09-1-0019)-Technology Center of Nutrition and Health (Reus, Spain).
436	Àurea Rodriguez and David Moriña are employees of CTNS-TECNIO-Technology
437	Center of Nutrition and Health (Reus, Spain). Logistic support, analysis and
438	interpretation of the data were provided by CTNS; Hospital Universitari Sant Joan;
439	Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain.
440	The funding bodies had no role in study design, data collection and analysis, decision to
441	publish, or preparation of the manuscript.
442	

443	COMPETING INTEREST STATEMENT
444	Daniel Martínez-Puig and Carlos Chetrit are the only employees of Bioiberica S.A.
445	They participated in the study as experts on the use of the product under investigation.
446	Bioiberica S.A as a corporate entity had no role in data acquisition and the
447	interpretation, or in manuscript preparation and the decision to submit it for publication.
448	The authors also declare there have not been any other involvements such as
449	employment, consultancy and product patents that can be construed as conflicts of

interest.

451 REFERENCES

- 452 1 A. D. Woolf and B. Pfleger, *Bull. World Health Organ.*, 2003, **81**, 646–56.
- 453 2 A. A. Guccione, D. T. Felson, J. J. Anderson, J. M. Anthony, Y. Zhang, P. W.
- Wilson, M. Kelly-Hayes, P. A. Wolf, B. E. Kreger and W. B. Kannel, *Am. J.*
- 455 *Public Health*, 1994, **84**, 351–8.
- E. Kon, G. Filardo, M. Drobnic, H. Madry, M. Jelic, N. van Dijk and S. Della
- 457 Villa, Knee Surg. Sports Traumatol. Arthrosc., 2012, 20, 436–49.
- 458 4 N. A. Segal, J. C. Torner, D. Felson, J. Niu, L. Sharma, C. E. Lewis and M.
- 459 Nevitt, *Arthritis Rheum.*, 2009, **61**, 1210–7.
- 460 5 B. C. Cerrah AO, Gungor EO, Soylu AR, Ertan H, Lees A, *Isokinet Exerc Sci.*,
- 461 2011, **19**, 181–190.
- 462 6 W. U. Stølen T, Chamari K, Castagna C, Sport. Med., 2005, 35, 501–536.
- 463 7 A. R. Hafez, A. H. Al-Johani, A. R. Zakaria, A. Al-Ahaideb, S. Buragadda, G. R.
- 464 Melam and J. K. Shajji, *J. Phys. Ther. Sci.*, 2013, **25**, 1401–5.
- 465 8 C. Slemenda, K. D. Brandt, D. K. Heilman, S. Mazzuca, E. M. Braunstein, B. P.
- 466 Katz and F. D. Wolinsky, *Ann. Intern. Med.*, 1997, **127**, 97–104.
- 467 9 M. V Hurley, *Rheum. Dis. Clin. North Am.*, 1999, **25**, 283–98, vi.
- 468 10 B. Danneskiold-Samsøe, E. M. Bartels, P. M. Bülow, H. Lund, A. Stockmarr, C.
- 469 C. Holm, I. Wätjen, M. Appleyard and H. Bliddal, *Acta Physiol. (Oxf).*, 2009,
- 470 **197 Suppl**, 1–68.
- 471 11 D. Martinez-Puig, I. Möller, C. Fernández and C. Chetrit, Med. J. Nutrition
- *Metab.*, 2012, **6**, 63–68.
- 473 12 W. J. Hughes G. Sport. Med., 2006, **36**, 411–428.
- 474 13 W. L. Wright J, Ball N, *Isokinet Exerc Sci*, 2009, **17**, 161–67.
- 475 14 G. G. Coombs R, J Sport. Sci Med, 2002, 56–62.
- 476 15 J. Hua, K. Sakamoto, T. Kikukawa, C. Abe, H. Kurosawa and I. Nagaoka,
- 477 *Inflamm. Res.*, 2007, **56**, 432–8.
- 478 16 K. Imagawa, M. C. de Andrés, K. Hashimoto, D. Pitt, E. Itoi, M. B. Goldring, H.
- I. Roach and R. O. C. Oreffo, *Biochem. Biophys. Res. Commun.*, 2011, **405**, 362–
- 480 7.
- 481 17 L. C. Hunt, C. Gorman, C. Kintakas, D. R. McCulloch, E. J. Mackie and J. D.
- 482 White, J. Biol. Chem., 2013, **288**, 13006–21.

- L. Balogh, A. Polyak, D. Mathe, R. Kiraly, J. Thuroczy, M. Terez, G. Janoki, Y. Ting, L. R. Bucci and A. G. Schauss, *J. Agric. Food Chem.*, 2008, **56**, 10582–93.
- D. Martinez-Puig, J. U. Carmona, D. Arguelles, R. Deulofeu, A. Ubia and M. Prades, *Osteoarthr. Cartil.*, 2007, **15**, C62–C63.
- 487 20 N. and A. (NDA) EFSA Panel on Dietetic Products, EFSA J. 2013, 2013, 11.
- 488 21 C. C. D. Martínez-Puig, I. Möller, C. Fernández, *Med. J. Nutrition Metab.*, 2013, **6**, 63–68.
- J. Sánchez, M. L. Bonet, J. Keijer, E. M. van Schothorst, I. Mölller, C. Chetrit, D.
 Martinez-Puig and A. Palou, *Genes Nutr.*, 2014, 9, 417.
- 492 23 P. J. Coleman, D. Scott, J. Ray, R. M. Mason and J. R. Levick, *J. Physiol.*, 1997,
 493 503 (Pt 3, 645–56.
- 494 24 R. W. McCleary and J. C. Andersen, *J. Athl. Train.*, 1992, **27**, 362–5.
- 495 25 A. Hartmann, R. Knols, K. Murer and E. D. de Bruin, *Gerontology*, 2009, **55**, 496 259–68.
- 497 26 J. R. Landis and G. G. Koch, *Biometrics*, 1977, **33**, 159–74.
- J. J. Knapik, C. L. Bauman, B. H. Jones, J. M. Harris and L. Vaughan, *Am. J. Sports Med.*, 1991, 19, 76–81.
- 500 28 M. P.-J. and C. D. M. Dauty, M. Dupré, *Isokinet Exerc Sci*, 2007, **15**, 37–41.
- 501 29 W. C. Leung, *Postgrad. Med. J.*, 2001, 77, 201–4.
- 502 30 T. Kasai, N. Ishiguro, Y. Matsui, A. Harada, M. Takemura, A. Yuki, Y. Kato, R. Otsuka, F. Ando and H. Shimokata, *Geriatr. Gerontol. Int.*, 2015, **15**, 700–6.
- 504 31 J. Sirola and T. Rikkonen, J. Br. Menopause Soc., 2005, 11, 45–50.
- 505 32 K. Sato and M. Iemitsu, *J. Steroid Biochem. Mol. Biol.*, 2015, **145**, 200–5.
- 506 33 L. Molczyk, L. K. Thigpen, J. Eickhoff, D. Goldgar and J. C. Gallagher, *J. Orthop. Sports Phys. Ther.*, 1991, **14**, 37–41.
- 508 34 J. L. Astephen, K. J. Deluzio, G. E. Caldwell, M. J. Dunbar and C. L. Hubley-509 Kozey, *J. Biomech.*, 2008, **41**, 868–76.
- 510 35 A. Torrent, R. Ruhí, J. Theodosakis and F. Blanco, *Osteoarthr. Cartil.*, 2009, **17**, 511 S277–S278.
- 512 36 T. Tashiro, S. Seino, T. Sato, R. Matsuoka, Y. Masuda and N. Fukui, *ScientificWorldJournal.*, 2012, **2012**, 167928.

514	37	M. W. Johnson, Am. Fam. Physician, 2000, 61, 2391–400.
515 516	38	K. K. W. Chan, R. W. S. Sit, R. W. K. Wu and A. H. Y. Ngai, <i>PLoS One</i> , 2014, 9 , e92901.
517	39	S. AG, B. L, P. A, M. D, K. R and G. J, <i>FASEB J.</i> , 2004, A150–A151.
518 519	40	C. CC. A. Torrent, R. Ruhí, C. Martínez, G. Castells, <i>Osteoarthr. Cartil.</i> , 2010, 18 , 246–247.
520 521	41	M. F. McCarty, A. L. Russell and M. P. Seed, <i>Med. Hypotheses</i> , 2000, 54 , 798–802.
522	42	A. Asari, T. Kanemitsu and H. Kurihara, <i>J. Biol. Chem.</i> , 2010, 285 , 24751–8.

		~
F162	HRE	LEGEND
UI	UIL	LEGEND

Figure 1	. Flow of	particip	oants th	rough 1	the stud	ly

- Intervention: low-fat dairy product (125 mL/d yoghurt) with 80 mg/d of Rooster Comb
- 527 Extract (RCE) over 12 weeks. Control: the same low-fat yoghurt without RCE over 12
- weeks. ITT: statistical analyses: intention-to-treat; PP: per protocol.

524

Table 1. Baseline characteristics of the study participants

Variable	Placebo group	RCE group
	n=40	n=40
Age; years	43.10±13.14	42.38±10.16
Weight; Kg	69.32±13.46	71.55±14.26
Height; cm	166.83±8.50	166.10±11.45
Body Mass Index; Kg/m ²	25.06±3.72	25.64±4.95
Gender; male, n (%)	16 (40.0%)	14 (35.0%)
Race; Caucasian, n (%)	40 (100.0%)	40 (100.0%)
> 50 years of age, n (%)	13 (32.5%)	12 (30.0%)
BMI $> 30 \text{ Kg/m}^2$, n (%)	4 (10.0%)	8 (20.0%)

531

532

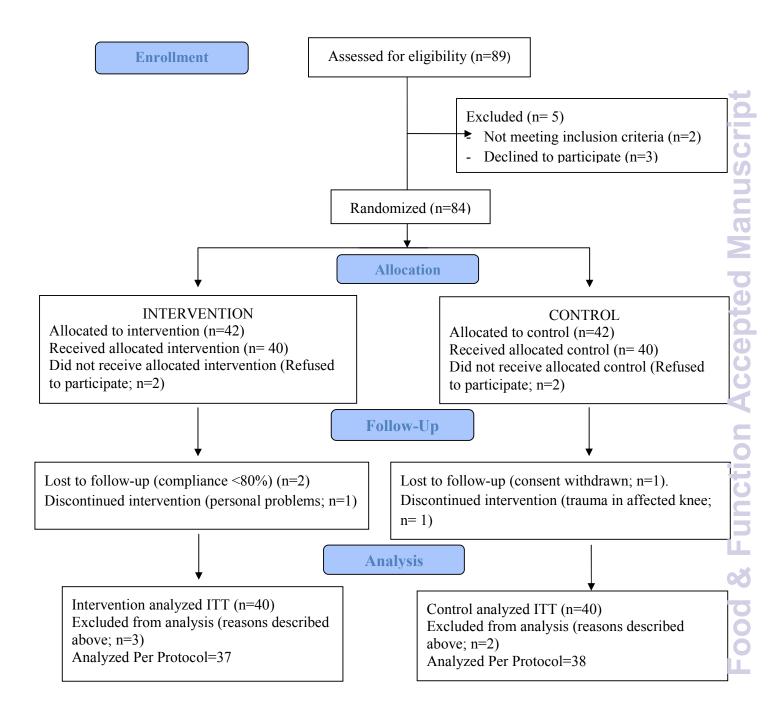
RCE: low-fat yoghurt supplemented with a rooster comb extract (RCE) rich in

533 hyaluronic acid (65%)

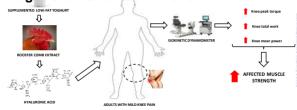
25 of **27**

Table 2. Change in the isokinetic values of the affected knee muscle function, segregated by gender

Gender	Parameter	Position	Angle (°/sec)	Treatment	Baseline Mean±SD	Change at 12 weeks relative to baseline Adjusted mean [95%CI] (% change from baseline)	Changes of RCE vs placebo Adjusted mean [95%CI] (% difference from placebo)	P RCE vs. Placebo
Males	Peak Torque (Nm)	Extension	180	Placebo	96.23±45.0 1	7.20 [0.20; 14.20] (7.48%)	16.14 [0.11; 32.17] (11.85%)	0.048
				RCE	112.86±37. 28	21.82 [5.64; 38.01] (19.33%)		
		Flexion	180	Placebo	48.99±25.1 1	6.24 [1.66; 10.83] (12.74%)	10.21 [2.92; 17.50] (12.67%)	0.007
				RCE	60.89±19.5 8	15.47 [9.47; 21.47] (25.41%)		
	Total Work (J)	Extension	180	Placebo	476.56±262 .99	75.09 [19.86; 130.33] (15.76%)	139.1 [23.00; 255.1] (22.21%)	0.020
				RCE	539.76±195 .15	204.94 [86.61; 323.26] (37.97%)		
		Flexion	180	Placebo	239.47±161 .55	60.59 [24.92; 96.25] (25.30%)	74.53 [15.94; 133.1] (17.68%)	0.014
				RCE	294.33±135 .03	126.49 [71.36; 181.62] (42.98%)		
	Mean Power (W)	Extension	180	Placebo	140.34±83. 24	35.76 [16.43; 55.08] (25.48%)	46.32 [5.00; 87.64] (21.77%)	0.029
				RCE	167.76±67. 95	79.26 [38.26; 120.27] (47.25%)		
		Flexion	180	Placebo	73.04±55.0	22.19 [9.96; 34.42] (30.38%)	25.56 [3.93; 47.19] (18.52%)	0.022
				RCE	92.18±44.5 2	45.08 [24.70; 65.46] (48.90%)	, , , ,	


Females	Peak	Extension	180	Placebo	55.10±19.2	10.43 [3.57; 17.30]	-1.37 [-8.84; 6.10] (-	0.713
	Torque				1	(18.93%)	1.37%)	
	(Nm)			RCE	55.17±19.5	9.69 [4.60; 14.77]		
					4	(17.56%)		
		Flexion	180	Placebo	30.43±12.7	4.33 [-0.76; 9.43]	-0.065 [-5.29; 5.16]	0.980
					9	(14.23%)	(4.27%)	
				RCE	28.11±10.8	5.20 [2.28; 8.13]		
					5	(18.50%)		
	Total	Extension	180	Placebo	278.51±119	54.70 [11.31; 98.09]	11.47 [-36.09; 59.03]	0.629
	Work (J)				.02	(19.64%)	(9.04%)	
				RCE	260.01±108	74.56 [44.42; 104.69]		
					.65	(28.68%)		
		Flexion	180	Placebo	119.04±75.	33.54 [4.33; 62.74]	15.03 [-19.26; 49.31]	0.381
					00	(28.18%)	(17.51%)	
				RCE	112.48±69.	51.39 [28.96; 73.81]		
					82	(45.69%)		
	Mean	Extension	180	Placebo	83.35±38.2	26.77 [12.33; 41.21]	-2.67 [-18.87; 13.54]	0.741
	Power (W)				7	(32.12%)	(2.02%)	
				RCE	77.63±40.9	26.50 [16.14; 36.86]		
					5	(34.14%)		
		Flexion	180	Placebo	35.83±23.7	15.24 [5.68; 24.81]	-0.17 [-11.30; 10.96]	0.976
					6	(42.53%)	(4.60%)	
				RCE	33.59±24.2	15.83 [8.86; 22.80]		
					4	(47.13%)		

All results are expressed as means ± standard deviation and baseline adjusted least square means [95%CI]. Values computed on ITT population


537 by ADO approximation. ANCOVA model

RCE: a low-fat yoghurt supplemented with a rooster comb extract rich in hyaluronic acid (65%)

Figure 1.

Page 29 of 28 Food & Function

