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Abstract

Background: Digital image (DI) analysis avoids visual subjectivity in interpreting
immunohistochemical stains and provides more reproducible results. An automated
procedure consisting of two variant methods for quantifying the cytokeratin-19
(CK19) marker in breast cancer tissues is presented.

Methods: The first method (A) excludes the holes inside selected CK19 stained areas,
and the second (B) includes them. 93 DIs scanned from complete cylinders of tissue
microarrays were evaluated visually by two pathologists and by the automated
procedures.

Results and conclusions: There was good concordance between the two
automated methods, both of which tended to identify a smaller CK19-positive area
than did the pathologists. The results obtained with method B were more similar to
those of the pathologists; probably because it takes into account the entire positive
tumoural area, including the holes. However, the pathologists overestimated the
positive area of CK19. Further studies are needed to confirm the utility of this
automated procedure in prognostic studies.

Introduction
In the late 1990s, tissue microarray (TMA) technology began to revolutionize the inves-

tigation of potential prognostic and predictive biomarkers [1]. This technology has facili-

tated high-throughput immunophenotypic analysis in a large series of tissues from

different patients on a single glass slide and can serve as a powerful research tool [2].

TMAs can be used to study tissue morphology, protein and gene expression and

chromosomal aberrations using different stains, such as those of immunohistochemis-

try (IHC) and in situ hybridization. The combination of TMAs with clinical samples is

an elegant and cost-effective approach to studying panels of biomarkers under identical

experimental conditions and to developing prognostic or predictive patterns of patient

outcomes [3]. The degree of correlation between TMAs and whole-tissue sections may

not be considered ideal at the diagnostic level for individual patients, but is widely

regarded as adequate for research purposes [4].
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IHC, a cheap and accessible diagnostic technique, is used in daily clinical practice in

pathology departments. This technique is essential for the in situ assessment of protein

expression, complements morphological information with molecular information, and

enables the prediction of responses to targeted therapy [5]. Antibodies used in IHC are

the most frequently used in modern biomedical research and the abundance of IHC stu-

dies over the last 20 years attests to the technique’s popularity [6]. IHC combined with

TMA technology increases the throughput of protein expression analysis in tissues and

improves assay reproducibility [7,8]. However, the strategy generates a large amount of

information that requires painstaking and time-consuming interpretation. The method

most commonly used to evaluate and quantify IHC staining in TMAs is visual microsco-

pical analysis, but it is extremely tedious, prone to error and can outweigh the advan-

tages of the high-throughput TMA format. In addition, human interpretations are

highly subjective because of the difficulty of establishing the staining intensity para-

meters, thereby predisposing the process to inter- and intra-observer variability [9,10].

In recent years, pathology procedures have become significantly more automated.

Slide preparation, staining, scanning and digital image (DI) analysis of samples have all

benefited from such automation. Recent technological advances have made it possible to

acquire and store high-quality DIs [11]. Several platforms are commercially available for

scanning tissue sections and generating DIs of whole slides. Also, several commercial

image analysis applications for IHC quantification are available for some biomarkers and

have received clearance from the US Food and Drug Administration (FDA). Digital

imaging technology allows the interpretation of IHC results to be standardized, avoiding

visual subjectivity and providing more reliable and reproducible results [12,13]. The

combination of image analysis software readily available from the public domain, like

Image J, with the most commonly used IHC staining methods in surgical pathology

practice, is becoming an important approach to diagnostic pathology and research with

regard to prognosis and novel targeted therapies for pathologies of the breast and other

tissues [14].

Many published studies have compared the results from automated procedures and

from visual evaluation of DIs from a small portion of tissue in TMA cylinders [12,15].

Some studies have observed that the variability depends not only on the location of

the stain in the cell [16], but also on the number and distribution of the cells [17].

Nevertheless, the variability due to the evaluation of a whole image of each cylinder of

the TMA in images obtained by digital scanning of TMA has not been thoroughly

investigated. In this study, we present an automated processing procedure with two

variant methods developed in Fiji (Image J) for quantifying the IHC marker cytokera-

tin-19 (CK19) in breast cancer tissues using DIs of TMA cylinders. CK19, the main

cytoskeleton protein of epithelial cells, is highly expressed in tumoural breast cancer

cells [18,19] and is the most common single marker used for detecting disseminated

tumour cells [20]. The results obtained by the two automated methods were compared

with those from the visual quantification of the same DIs by two trained pathologists.

Material and methods
Tissue microarray preparation and immunohistochemistry

93 samples of ductal invasive breast cancer diagnosed between 2000 and 2007 were

selected from the collection of the Tumour Banks of the Pathology Department of the
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Hospital Verge de la Cinta. Two cores of representative tumour area were selected by

an expert pathologist from each paraffin-embedded breast tissue biopsy of the patient.

The 2-mm diameter cores were distributed into ready-made holes in a paraffin block

using the Arraymold tool. The TMAs contained 50 holes.

For IHC, 3 µm-thick sections of TMAs were dried, deparaffinized in xylene, rehy-

drated in graded ethanol, and washed in water and PBS [17]. Each slide was immunos-

tained with the monoclonal antibodies directed against the CK19 antigen (CK19; clone

RCK108, Dako, Carpinteria, CA). The IHC technique was performed by the ENDVI-

SIONTM FLEX (Dako, Carpinteria, CA) method, using the chromogen diaminobenzi-

dine (DAB) as a substrate. Finally, tissues were counterstained with haematoxylin,

dehydrated and mounted according to the manufacturer’s instructions and laboratory

protocol. The entire process was standardised to ensure high reproducibility and stain

homogeneity, since these are very important requirements for image analysis [21] and

also reduce the costs. The study received approval from the scientific and ethical com-

mittee from Hospital Joan XXIII.

Image acquisition

All stained slides were scanned with the Slide Scanner Aperio ScanScope XT at 40X

magnification (20X with 2X magnification changer) to obtain DIs of TMAs. The same

white balance values were used during the scanning of the slides to ensure maximum

reproducibility between the illuminations of the DIs and to minimize any differences

in the automated evaluation of the markers. The final resolution of the captured

images was 0.25 µm/pixel [11]. The correct digitization of each TMA was checked

using ImageScope software. The mean size of each scanned TMA was around 30 GB.

Each cylinder comprising the TMA was then extracted as an individual DI with algo-

rithms developed by the VISILAB group of the University of Castilla-La Mancha,

Spain. Each digital image corresponded to one cylinder and was assigned an individual

identification number. The DIs obtained were saved in uncompressed tagged-image file

(TIFF) format.

Manual quantification

For visual quantification, each DI was opened in Fiji. Two trained pathologists from

the Hospital de Tortosa Verge de la Cinta directly evaluated digital images of each

case on a computer screen, determining the percentage of the total area of the cylinder

that was positively stained with CK19. Before manual evaluation, evaluation criteria

were agreed by the pathologists, since quantification of the percentage of the CK19

positive area had no previously established criteria as part of their daily practice. All

results were exported to a Microsoft Excel 2003 worksheet.

Automated quantification

The automated quantification procedure consisted of two steps, carried out without

previous image calibration: the evaluation of the total area of each cylinder and the

evaluation of the area of each cylinder that was positively stained with CK19. Images

were analysed with Fiji image processing software, which supports a macro language

for specific procedures that allows the sequential reproduction and automation of all

steps a Lab colour model with L channel in range 0-255.
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First step: evaluation of total area of cylinder.

In this step, the total area of each cylinder was calculated as the total number of

pixels inside the cylinder by using the L channel of CIE L*a*b* colour model and

applying a median filter before segmenting the image. First, the digital image was

divided into the three greyscale channels of the model colour CIE L*a*b* and the L

channel was selected for further processing. This channel contained the lightness

image information, allowed better discrimination between the values of the pixels

inside and outside the cylinder based on thresholding. A 3x3 median filter was then

applied to the L channel image, which replaced each pixel inside the cylinder with

the median of neighbouring pixels. This filter reduced noise and homogenised pixel

values inside and outside the cylinder. Finally, the pixels inside the cylinder were

segmented with the threshold tools of Fiji software in order to select those objects

containing pixels with greyscale values from 0 to 238 and with an area larger than

1 million pixels. It was applied in order to select all the pixels that made up the

cylinder. Under these conditions we were able to select a single object representing

the entire cylinder (Figure 1A).

Second step: quantification of CK19-stained area

The second step evaluated the total number of positive brown pixels inside each

cylinder. For this purpose, the original image was split into three single images, one

for each colour channel of the RGB model. Then, an empirical method to establish a

“colour translation” formula to create a “brown channel” was used. The formula,

developed by Ruifrok, generated a greyscale image with the brown channel by apply-

ing the following mathematical operations to the RGB channels: Brown channel =

Blue-0.3*(Red + Green). It is a completely automatic method with no need for inten-

sity or colour calibration, or to know in advance the spectral properties of the pure

dyes that are to be separated [22]. Subsequently, the greyscale image was segmented

using a threshold from 0 to 70 from range 0-255 to select the brown colour pixels

and thereby the tumour area stained by CK19. Finally, after evaluation of different

cut-offs, we selected the objects with an area greater than 1000 pixels in order to

exclude background pixels and artefacts. The sum of all the segmented areas corre-

sponds to the total positive area of CK19 staining (Figure 1B).

Figure 1 Steps in the automated quantification procedure. First step, with the total area of the cylinder
delimited in blue (A). Second step, with the area selected inside the TMA cylinder marked in red (B).
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At the end of the second step, two variant methods (A and B) were employed to deter-

mine the total tumour area stained with CK19. Method A excluded the segmentation

holes inside the positively stained area. These holes are the pixels that correspond to the

light of the tumour glands and the pixels of the nuclei inside the segmented objects. In

method A, the final result was the sum of all positive brown objects, consisting of all pix-

els corresponding to the tumour area stained with CK19. Conversely, method B con-

sisted of the same positive objects as in method A and the pixels of the segmentation

holes inside the positively stained area. The final result of method B was the sum of all

positive brown objects, the nuclei and the light of the tumour glands of these objects.

Calculation of the positively stained CK19 area

All the values corresponding to the total number of pixels in the cylinder and the pix-

els of the stained area inside the cylinder were automatically exported to a Microsoft

Excel 2003 worksheet. The percentages of positively stained CK19 area were taken as

the ratio of the number of brown pixels evaluated in the second step of the procedure

(method A or B) to the total number of pixels in each cylinder, as determined in the

first step of the procedure.

Statistical analysis

All statistical analyses were done using SPSS version 21.0 (SPSS Inc., IBM). The intra-

class correlation coefficient (ICC), Bland-Altman and Kaplan-Meier analyses, with their

corresponding graphical output, were used to evaluate the agreement between the

results of the pathologists’ observations (inter-observer) and between the results of

each pathologist with each automated method. The results of the two automated meth-

ods (inter-method) were compared solely with the Bland-Altman graphs.

The Bland-Altman analysis assumes that neither system is a gold standard but merely

compares two methods or procedures. The conditional probabilities of observing a dif-

ference between paired measurements were estimated by the Kaplan-Meier procedure.

The ICC is a measure of the reliability of measurements or ratings, for the purpose of

assessing inter-rater reliability. In this study we calculated the ICC of absolute agree-

ment, which included the variability due to the observers. The ICC was calculated from

a two-way random-effects analysis of variance with an index of agreement ranging from

0 (no agreement) to 1 (perfect agreement). The following ICC interpretation scale was

used as poor (below 0.40), acceptable (0.40-0.74) and excellent (0.75-1) [23].

Results
Inter-observer comparisons

Figure 2A illustrates the results of the Bland-Altman analysis, showing the spread of

the values around the mean difference between the two observers. These differences

were not homogeneous, since observer 1 tended to discern a larger positive area per-

centage than did observer 2. However, the spread of the differences around the mean

difference between the two observers was more or less constant in all digital images

and did not appear to be influenced by the complexity of the images (low or high per-

centages of brown positive objects). These differences ranged from -20% to 10% and

65% of the results had differences of less than 5%. The ICC indicated an excellent level

of agreement between the two observers (0.823; 95% CI: 0.631 - 0.905).
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Inter-method comparisons

Figure 2B illustrates the results of the Bland-Altman analysis, showing the spread of

the values around the mean difference between the two methods. This demonstrates

the close agreement between the two automated methods excluding (method A) or

including (method B) the segmentation holes inside the positively stained area, as

explained above. The differences between methods A and B were closer to zero when

the positive area was less than 10% of the whole; when the percentage positive area

was less than 55% the differences between the two methods were less than 10%. On

the other hand, when the cylinder area was more than 55% positive, we found differ-

ences of 10% to 30% between the two automated methods.

Comparison between the manual and automated methods

Figures 3A and 3B respectively show the superimposed Bland-Altman graphs compar-

ing the results obtained by observers 1 and 2 with those from the two automated

methods. The two observers tended to estimate a larger positive area than was calcu-

lated by the automated methods. However, observer 1’s results showed greater discre-

pancies with the automated methods than those of observer 2. The differences

Figure 2 Overall results obtained by manual and automated evaluation. Bland-Altman graphs reveal
the differences between the two observers (A) and between the two automated methods (B).

Figure 3 Superimposed Bland-Altman graphs. The curves showed the differences between the observer
1 and the two automated methods (A) and between observer 2 and the automated methods (B). Black
and grey dots indicate methods A and B, respectively.
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between the visual and automated methods were more pronounced for method A

(holes excluded) than for method B (holes included). The results obtained by observer

2 showed an acceptable level of agreement with those obtained by method A (ICC =

0.663; 95% CI: 0.00 - 0.882) and excellent agreement with those obtained by method B

(ICC = 0.772; 95% CI: 0.209 - 0.909). Observer 1’s results showed an acceptable level

of agreement with those obtained by the method B (ICC = 0.563; 95% CI: 0.001 -

0.794). The ICC between the results of observer 1 and of method A was not an appro-

priate measure because the condition of equality of variances was not satisfied.

The conditional probabilities of observing differences between the measurements

were estimated by the Kaplan-Meier procedure (Figure 4). Comparison of the Kaplan-

Meier curves confirmed the differences between the two observers and between the

observers and the two automated methods. The curves indicated that differences were

less likely to arise when comparing the two pathologist’s counts. The use of method B

produced the smallest differences between the results of the automated procedure and

those obtained by the two pathologists.

Discussion
TMAs facilitate high-performance immunohistochemistry, but their analysis presents a

number of problems when done manually by optical microscopy. As for single biopsy,

the time required, the subjectivity arising from the heterogeneity of staining intensities,

and the size, shape and distribution of the cells are major disadvantages of manual eva-

luation that can be resolved through the use of automated DI analytical procedures.

The automated analysis of immunohistochemically stained cells in DIs of complete

Figure 4 Superimposed Kaplan-Meier graphs. The curves compared the probability of difference
between the two observers (black line), observer 2 and automated methods A (solid red line) and B
(dashed red line), and observer 1 and the automated methods A (solid blue line) and B (dashed blue line).
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cylinders extracted from TMAs have been little studied [3,9,24]. Here, we present two

automated methods that allow us to measure the percentage of the total area of each

cylinder of the TMA that is positively immunohistochemically stained by CK19. We

compared these results with the quantifications of two trained pathologists who viewed

the same DIs on the computer screen.

The ICC coefficient indicated excellent agreement between the two observers. Never-

theless, the range of differences (-20% to 10%) in the results of the two observers sug-

gested the existence of some inter-observer variability in the evaluation of DIs. Besides

the subjectivity of the visual determination of positivity arising from the interpretation

of DAB intensity [16], the differences between the observers did not appear to be influ-

enced by the percentage of positive area of CK19. So, to the human eye, the evaluation

of the percentage positive area in a large image corresponding to an entire cylinder is

not influenced on the cell concentrations. On the contrary, it has been observed that

the percentage or the number of positive cells in small images, influence in the varia-

bility of human eye evaluation. The difficulties in evaluating the whole area are prob-

ably greater because the human eye discerns as positive not only the stained area but

also some of the regions within it.

We found a good concordance between the results from automated methods A and

B only when the positive area of the cylinders was less than 10%. The larger differences

observed when the percentage of positive area in the cylinders was greater than 55%

were probably because the number of “tumoural glands” in these DIs is more impor-

tant. Exclusion (method A) or inclusion (method B) of the pixels corresponding to the

light of the tumour glands and the pixels of the nuclei inside the segmented objects,

could explain the differences observed in our study. On the other hand, our results

also showed that these automated methods tended to identify a smaller positive area

than the two manual evaluations. It may be due to the difficulty the human eye has in

determining the percentage positive area in large images with a large amount of brown

stain without using tools. When manual and automated evaluations of whole slide

images of breast tissue stained only with haematoxylin-eosin (without DAB staining)

were compared, the two methods proved to have similar accuracy, precision and repro-

ducibility [11]. For both observers, the differences were more pronounced with method

A (holes excluded) than with method B (holes included). This may be because the lat-

ter method more closely mimics the process of manual quantification. The pathologists

interpreted the total positive tumoural area as the area stained with brown colour, the

nuclei included in them and also the light of all the tumoural glands. Then, they inter-

preted the total positive tumoural area, automatically including the total positive

tumoural area, rather than solely the brown pixels. However, even when these areas

were included in the automated method the pathologists still overestimated the posi-

tive area.

Other comparative studies of manual and automated IHC evaluations have already

been published [16,25-28]. The pattern of staining of the markers evaluated, the type

and size of the DIs analysed, and the manner of portraying the results (e.g., frequency

of positive cells, percentage of positive area, and threshold levels of positivity or cut-off

values) may explain some of the discrepancies between the manual and automated

results obtained in these studies. A relatively good correlation has been found in a

study of prostate cancer specimens when the percentage of positively stained areas in a
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TMA cylinder evaluated by image analysis software was compared to the manual quan-

tification [15]. However, in that study the percentage of stained epithelial cells was

reduced to categorical scores (1, <33%; 2 33%-66%; 3, >66%), which simplified the

manual evaluation and thereby considerably reduced the differences that may arise

between manual and automated methods.

Conclusion
As compared to manual evaluation, automated image analysis is a simple and econom-

ical method of quantifying and scoring immunohistochemically stained markers that

improve the levels of sensitivity, precision, reproducibility and standardization of these

kinds of measurements. Moreover the advances in automated evaluation of immuno-

histochemical markers in whole-slide digital images offer a practical means of improv-

ing the accuracy and reproducibility of these measurements for diagnosis, education

and research purposes. The analysis of complete TMA cylinders provides more infor-

mation about the prognostic biomarkers in a single image and avoids the loss of infor-

mation needed to detect prognostic biomarkers. This study is the first part of a project

that aims to compare the quantity of different immune response markers in relation to

the percentage of the tumoural area (CK19) for the purpose of developing a prognostic

factor. Further work is needed to evaluate which of these methods (automated meth-

ods A or B versus manual evaluation) will be the best one to use in future prognostic

studies.
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