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Abstract

This paper studies the 28 time series of Libor rates, classified in seven ma-
turities and four currencies), during the last 14 years. The analysis was
performed using a novel technique in financial economics: the Complexity-
Entropy Causality Plane. This planar representation allows the discrimina-
tion of different stochastic and chaotic regimes. Using a temporal analysis
based on moving windows, this paper unveals an abnormal movement of
Libor time series arround the period of the 2007 financial crisis. This al-
teration in the stochastic dynamics of Libor is contemporary of what press
called “Libor scandal”, i.e. the manipulation of interest rates carried out by
several prime banks. We argue that our methodology is suitable as a market
watch mechanism, as it makes visible the temporal redution in informational
efficiency of the market.
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1. Introduction1

Interest rates no only reflect the time value of money, but also show2

the tension in the financial market. From the investors’ point of view they3

provide a basic information for making decisions. From the government’s4

point of view they are key elements for effective monetary policy transmis-5

sion. Consequently fair market conditions in the money market arise as an6

important issue in political economy.7

Libor stands for London Interbank Offered Rate and was created in 19868

by the British Banking Association (BBA). It is one of the most important9

economic benchmarks, followed closely by those who make financial decisions.10

According to BBA definition, Libor is “...the rate at which an individual11

Contributor Panel bank could borrow funds, were it to do so by asking for and12

then accepting inter-bank offers in reasonable market size, just prior to 11:0013

[a.m.] London time”. In fact, Libor rate does not necessarily reflect the cost14

or price of actual transactions. It is a daily survey conducted by BBA among15

16 prime banks, about their fair perception on their own borrowing costs.16

Every London business day, each bank in the Contributor Panel (selected17

banks from BBA) makes a blind submission such that each banker does18

not know the quotes of the other bankers. A compiler, Thomson Reuters,19

then averages the second and third quartiles. This average is published and20

represents the Libor rate on a given day. In other words, Libor is a trimmed21

average of the expected borrowing rates of leading banks. Libor rates has22

been published for ten currencies and fifteen maturities. As it is defined,23

Libor is expected to be the best self estimate of leading banks borrowing cost24

at different maturities. It is calculated for several currencies and maturities,25

and the panel composition is not the same for all currencies.26

Until 2008, Libor was an uncontested benchmark. However, this situa-27

tion changed due to a journal publication. Mollenkamp and Whitehouse [1]28

published a disruptive article in the Wall Street suggesting that the Libor29

rate did not reflect what it was expected, i.e., the cost of funding of prime30

banks. This, and other publications (e.g. [2, 3]) triggered investigations con-31

ducted by the US Department of Justice, UK Financial Services Authority,32

EU European Comission and the Swiss Concurrence Commission. In June33
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2012 Barclays Bank pleaded guilty and accepted a fine of about $ 480 mil-34

lions. Other banks were also fined by improper financial conduct. For a full35

review of the Libor case from a regulator’ point of view, please see Hou and36

Skeie [4].37

Only a few papers deal with this topic in academic journals. Most of38

them uses basic econometric techniques aiming to detect varying differences39

between the Libor rate and another rate, supposedly not subject to manipula-40

tion. Among these papers we find Taylor and Williams [5], who documented41

the detachment of the Libor rate from other market rates such as Overnight42

Interest Swap (OIS), Effective Federal Fund (EFF), Certificate of Deposits43

(CDs), Credit Default Swaps (CDS), and Repo rates. Snider and Youle [6]44

studied individual quotes in the Libor bank panel and found that Libor quotes45

in the US were not strongly related to other bank borrowing cost proxies.46

Abrantes-Metz et al. [7] analyzed the distribution of the Second Digits (SDs)47

of daily Libor rates between 1987 and 2008 and, compared it with uniform48

and Benford’s distributions. If we take into account the whole period, the49

null hypothesis that the empirical distribution follows either the uniform or50

Benford’s distribution cannot be rejected. However, if we take into account51

only the period after the subprime crisis, the null hypothesis is rejected. This52

result calls into question the “aseptic” setting of Libor. Monticini and Thorn-53

ton [8] found evidence of Libor under-reporting after analyzing the spread54

between 1-month and 3-month Libor and the rate of Certificate of Deposits55

using the Bai and Perron [9] test for multiple structural breaks.56

Bariviera et al. [10] unveil strange movements in the stochasticity of the57

3-month UK Libor, using the Complexity Entropy Causality Plane (CECP).58

More recently Bariviera et al. [11] studied the Libor scandal using the59

Shannon-Fisher plane, giving a new perspective under the lens of local-global60

information quantifies.61

Our approach greatly expands [10], studying the behavior of the Libor for62

seven maturities and four currencies using the Complexity Entropy Causality63

Plane. This study highlights that Libor manipulation was more extensive as64

originally thought and was more subtle for some maturities.65

The relevance for studying Libor manipulation is that, as stated in the66

independent study conducted by HM Treasury [12], more than $ 300 trilion67

valued contracts uses Libor as benchmark. This means that the value of68

syndicated loans, floating rate notes and interest rate swaps were affected.69

Even more, many mortgages have their interests linked to Libor evolution.70

As a consequence borrowers (mostly families) were directly affected by this71
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unfair behavior.72

The rest of the paper is structured as follows. Section 2 describes the73

methodology. Section 3 details the data under analysis. Section 4 comments74

the main findings of our study and, finally Section 5 concludes.75

2. Information theory quantifiers76

Many economic data are recorded as a sequence of measurements equally77

spaced in time. This kind of data, commonly referred as time series, are usu-78

ally the starting point for economic analysis. When the data are abundant,79

the number of adequate quantitative techniques increases. In particular,80

econophysics methods, as the one applied in this article, are innovative and81

appropriate to shed light on economic phenomena. In many cases, econo-82

physics complement the limitations of traditional econometric techniques.83

In this line, information-theory-derived quantifiers can help to extract84

relevant information from financial time series. The use of information quan-85

tifiers in economics is not new, but infrequent. The origins can be traced86

back to Theil and Leenders [13], who use entropy to predict short-term price87

fluctuations in the Amsterdam Stock Exchange. [14] and [15] replicate the88

same technique for the New York Stock Exchange and the London Stock Ex-89

change respectively. [16] analyzes the proportion of securities with positive,90

negative and null returns on the American Stock Exchange using information91

theory methods and conclude that this proportions are dependent on the pre-92

vious day and is not significantly influenced by the proportion of untraded93

securities. [17] proposes the average mutual information or shared entropy94

as a proxy of systematic risk. This technique was remained unused until re-95

cent years. For example, [18] uses entropy and symbolic time series analysis96

in order to relate informational efficiency and the probability of having an97

economic crash. Later, [19] uses Shannon entropy to rank the informational98

efficiency of several stock markets around the world. [20] uses multiscale99

entropy analysis to analyze the evolution of the informational efficiency of100

crude oil prices.101

2.1. Shannon entropy102

When studying dynamical systems, the discrimination of the presence of
correlations in time series, emerges as one key task. Given a time series, one
of the most natural measures of disorder, and thus absence of correlation, is
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Shannon entropy [21]. Given a discrete probability distribution P = {pi :
i = 1, . . .M}, Shannon entropy is defined as:

S[P ] =
M
∑

i=1

pi log(pi)

This formula measures the information embedded into the physical process103

decribed by P . It is a bounded function in the interval [0, log(M)]. S[P ] = 0104

means that one of the states pi∗ = 1 and the remaining pi = 0 for i 6= i∗, ∀i ∈105

M . In other words, null entropy means full certainty about the system’s106

outcome. On the other extreme, if S[P ] = log(M), our knowledge about107

the system is minimal, meaning that all states are equally probable. Even108

though entropy can describe globally the level of order/disorder of a process,109

the analysis of time series using solely Shannon entropy could be incomplete110

[22]. The reason is that an entropy measure does not quantify the degree111

of structure or patterns present in a process. Consequently, a measure of112

statistical complexity is necessary in order to characterize the system.113

2.2. Statistical complexity114

Although Shannon entropy is a good measure of the order of a physi-
cal system, it has limitations. An additional measure in order to measure
the hidden structure of the process is needed in order to fully characterize
dynamical systems: an statistical complexity measure. A family of statisti-
cal complexity measures, based on the functional form developed by [23], is
defined in [24, 25] as:

CJS = QJ [P, Pe]H[P ] (1)

whereH[P ] = S[P ]/Smax is the normalized Shannon entropy, P is the discrete115

probability distribution of the time series under analysis, Pe is the uniform116

distribution and QJ [P, Pe] is the so-called disequilibrium. This disequilib-117

rium is defined in terms of the Jensen-Shannon divergence, which quantifies118

the difference between two probability distributions. [26] demonstrates the119

existence of upper and lower bounds for generalized statistical complexity120

measures such as CJS . Additionally, as highlighted in [27], the permutation121

complexity is not a trivial function of the permutation entropy because they122

are based on two probability distributions. A complete discussion about this123

measures and details about their calculation is in [28].124
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2.3. Bandt-Pompe symbolization method125

In order to evaluate this quantifiers, a symbolic technique should be se-126

lected in order to obtain the appropriate probability distribution function.127

Following [28, 29, 30, 31], we use the Bandt and Pompe [32] permutation128

method, because it is the single symbolization technique that considers time129

causality. This methodology requires only weak stationarity assumptions.130

The appropriate symbol sequence arises naturally from the time series.
“Partitions” are devised by comparing the order of neighboring relative val-
ues rather than by apportioning amplitudes according to different levels. No
model assumption is needed because Bandt and Pompe method makes parti-
tions of the time series and orders values within each partition. Given a time
series S(t) = {xt; t = 1, · · · , N}, an embedding dimension D > 1, D ∈ N,
and an embedding delay τ, τ ∈ N, the BP-pattern of order D generated by

s 7→
(

xs−(D−1)τ , xs−(D−2)τ , · · · , xs−τ , xs

)

(2)

is the one to be considered. To each time s, BP assign a D-dimensional
vector that results from the evaluation of the time series at times s − (D −
1)τ, s− (D − 2)τ, · · · , s− τ, s. Clearly, the higher the value of D, the more
information about “the past” is incorporated into the ensuing vectors. By the
ordinal pattern of order D related to the time s, BP mean the permutation
π = (r0, r1, · · · , rD−1) of (0, 1, · · · , D − 1) defined by

xs−rD−1τ
≤ xs−rD−2τ

≤ · · · ≤ xs−r1τ
≤ xs−r0τ

. (3)

In this way the vector defined by Eq. (2) is converted into a definite symbol131

π. So as to get a unique result BP consider that ri < ri−1 if xs−riτ
= xs−ri−1τ

.132

This is justified if the values of xt have a continuous distribution so that equal133

values are very unusual.134

For all the D! possible orderings (permutations) πi when embedding di-
mension is D, their associated relative frequencies can be naturally computed
according to the number of times this particular order sequence is found in
the time series, divided by the total number of sequences,

p(πi) =
♯{s|s ≤ N − (D − 1)τ ; (s) has type πi}

N − (D − 1)τ
(4)

In the last expression the symbol ♯ stands for “number”. Thus, an ordinal135

pattern probability distribution P = {p(πi), i = 1, · · · , D!} is obtained from136

the time series.137
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As we mention previously, the ordinal-pattern’s associated PDF is in-138

variant with respect to nonlinear monotonous transformations. Accordingly,139

nonlinear drifts or scalings artificially introduced by a measurement device140

will not modify the quantifiers’ estimation, a nice property if one deals with141

experimental data (see i.e. [33]). These advantages make the BP approach142

more convenient than conventional methods based on range partitioning. Ad-143

ditional advantages of the method reside in (i) its simplicity (we need few144

parameters: the pattern length/embedding dimension D and the embedding145

delay τ) and (ii) the extremely fast nature of the pertinent calculation-process146

[34]. The BP methodology can be applied not only to time series representa-147

tive of low dimensional dynamical systems but also to any type of time series148

(regular, chaotic, noisy, or reality based). In fact, the existence of an attrac-149

tor in the D-dimensional phase space in not assumed. The only condition150

for the applicability of the BP method is a very weak stationary assumption151

(that is, for k = D, the probability for xt < xt+k should not depend on t152

[32]). The selected pattern length should fulfill N ≫ D! , in order to obtain153

reliable quantifiers .154

2.4. The Complexity Entropy Causality Plane155

When the Shannon entropy and the statistical complexity measures de-156

fined before are computed using the [32] symbolization technique, the quanti-157

fiers are named permutation entropy and permutation statistical complexity.158

Both quantifiers can be represented in a Cartesian plane, forming the Com-159

plexity Entropy Causality Plane (CECP). This planar representation was160

introduced in efficiency analysis in [28] and was successfully used to rank161

efficiency in stock markets [29], commodity markets [30], and to link infor-162

mational efficiency with sovereign bond ratings [35]. Given the power of the163

CECP for the discrimination of random and chaotic signals, its application164

goes across disciplines. For example, [36] studies the daily stream flow of165

United States rivers, and [37] reviews the main biomedical and econphysical166

applications of this methodology.167

3. Data168

We analize the Libor rates in British Pounds (GBP), Euro (EUR), Swiss169

Franc (CHF) and Japanese Yen (JPY), for the following seven maturities:170

overnight (O/N), one week (1W), one month (1M), two months (2M), three171

months (3M), six months (6M) and twelve months (12M). The data coverage172
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is from 02/01/2001 until 06/10/2015, for a total of 3851 datapoints. All data173

were retrieved from Datastream.174

We computed the permutation entropy and permutation statistical com-175

plexity for D = 4, using daily values (τ = 1). In order to assess the changes176

in the dynamical process that generates Libor time series, we used sliding177

windows. The sliding window approach works as follows: we compute the178

information quantifiers for the first 300 datapoints, then we move forward179

20 datapoints (δ = 20) and compute again the quantifiers for the next 300180

datapoints. We continue in this way until the end of the data. Using this181

procedure, we obtained 177 windows, each one spanning slightly more than182

a year (≈ 13 months)183

4. Results184

The results of the permutation entropy and statistical complexity are dis-185

played in cartesian planes called Complexity Entropy Causality Planes. This186

graphical representation allows the discrimination of stochastic and chaotic187

dynamics, as described in [31]. According to the classical financial literature,188

prices in a competitive market should follow a memoryless stochastic pro-189

cess [38]. Thus, if Libor is freely set, without exogenous altering forces, it190

should approximately follow a random walk. In this situation, permutation191

entropy is maximized and permutation statistical complexity is minimized.192

We can safely say that, the closer the quantifiers to the point (1, 0), the more193

informational efficient the market is.194

A simple observation of Figures 1-4 shows that we are facing a changing195

dynamic. The process governing interest rates does not seem to be stable196

over time. The reflection of this is that the position of the estimators changes197

radically in different temporal windows. However, this change is not random,198

but rather seems to follow a directed path. To make a more visual presen-199

tation, we have grouped the windows in 11 periods of 16 windows each (17200

windows in the last period). So we can differentiate each period with a color201

and a different marker. Additionally, we have put a number to each period202

and we have located in the average values of entropy and complexity of that203

period. As a general rule, we can see that GBP, EUR and CHF Libor be-204

haves very efficiently during the first three periods (years 2001-2005). Indeed,205

entropy is greater than 0.8 and less than 0.2 complexity. Period 4 appears206

to be a certain transition. Entropy decreases and complexity increases. This207

trend is deepened in subsequent periods, with periods 6, 7 and 8 being the208
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most inefficient (years 2007-2012). Periods 9, 10 and 11 (years 2012-2015)209

show a return to the area of greatest informational efficiency.210

A more detailed analysis by currency allows us to discover that not all211

maturities followed the same pattern. Indeed, the most affected are the212

maturities of 1, 2 and 3 months. At the other extreme, the least affected213

were maturities of overnight and 12 months. Further analysis should JPY214

Libor. The behavior is similar to other currencies, but all maturities have215

also been affected in the rate rigging.216

Probably one of the reasons for the distinct behavior of JPY and the rest217

of the currencies is that Libor JPY is less used as a benchmark for pricing218

other financial instruments. On the other hand, the distinct behavior in the219

different maturities can be also explained by their use as a reference rate1.220

We cannot discard that the financial crisis itself produced a disruption221

in the Libor market, making it less efficient. Its influence seems to depend222

on the nature of the financial assets under study. For example, [39] report223

an asymmetric impact of the crisis in the long memory of corporate and224

sovereign bonds. However, it is at least a remarkable coincidence that the225

changes in informational efficiency is contemporary with the alleged manipu-226

lation, specially in some maturities. Additionally, the informational efficiency227

recovery begins when banks were fined by improper conduct. Moreover, our228

results agree with the finding in [40], that between 2007 and 2009 the Libor229

time series was more predictable than either before or after those years.230

In order to observe more clearly the temporal changes in informational
efficiency, we compute the metric introduced in [41]:

Inefficiency = +
√

(HS − 1)2 + (CJS)2. (5)

This measure represents the Euclidean distance to the point HS = 1 and231

CJS = 0 , i.e. the maximal efficiency point. The results can be observed in232

Figure 5.233

5. Conclusions234

This paper studies the 28 time series of Libor rates during the last 14235

years. The information theory based symbolic analysis is known as Complexity-236

Entropy Causality Plane, a novel approach in financial economics. The use237

1see the use of the different Libor rate maturities and currencies as a reference rate for
interest rate swaps and floating rate notes in Table C.2 in [12]

9



of the CECP allows the discrimination of different stochastic and chaotic238

regimes. We used moving windows in order to introduce temporal dimension239

into our analysis. According to our results an abnormal movement of Libor240

time series arround the period of the 2007 financial crisis is detected. This241

alteration in the stochastic dynamics of Libor is contemprary of what press242

called “Libor scandal”, i.e. the manipulation of interest rates carried out by243

several prime banks. We argue that our methodology is suitable as a market244

watch mechanism, as it makes visible the temporal redution in informational245

efficiency of the market. Our results could be useful for regulatory authori-246

ties, since the procedure detailed in this paper could act as an early warning247

mechanism to detect unusual dynamics in the Libor market.248
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Rosso, Commodity predictability analysis with a permutation informa-327

tion theory approach, Physica A: Statistical Mechanics and its Appli-328

cations 390 (2011) 876–890.329

12



[31] O. A. Rosso, H. A. Larrondo, M. T. Mart́ın, A. Plastino, M. A. Fuentes,330

Distinguishing noise from chaos, Physical Review Letters 99 (2007)331

154102.332

[32] C. Bandt, B. Pompe, Permutation entropy: A natural complexity mea-333

sure for time series, Physical Review Letters 88 (2002) 174102.334

[33] P. M. Saco, L. C. Carpi, A. Figliola, E. Serrano, O. A. Rosso, En-335

tropy analysis of the dynamics of el niño southern oscillation during336

the holocene, Physica A: Statistical Mechanics and its Applications 389337

(2010) 5022 – 5027.338

[34] K. Keller, M. Sinn, Ordinal analysis of time series, Physica A: Statistical339

Mechanics and its Applications 356 (2005) 114–120.340

[35] L. Zunino, A. F. Bariviera, M. B. Guercio, L. B. Martinez, O. A. Rosso,341

On the efficiency of sovereign bond markets, Physica A 391 (2012)342

4342–4349.343

[36] F. Serinaldi, L. Zunino, O. A. Rosso, Complexityentropy analysis of344

daily stream flow time series in the continental united states, Stochastic345

Environmental Research and Risk Assessment 28 (2014) 1685–1708.346

[37] M. Zanin, L. Zunino, O. A. Rosso, D. Papo, Permutation entropy and347

its main biomedical and econophysics applications: A review, Entropy348

14 (2012) 1553–1577.349

[38] P. A. Samuelson, Proof that properly anticipated prices fluctuate ran-350

domly, Industrial Management Review 6 (1965) 41–49.351

[39] A. F. Bariviera, M. B. Guercio, L. B. Martinez, A comparative anal-352

ysis of the informational efficiency of the fixed income market in seven353

european countries, Economics Letters 116 (2012) 426–428.354

[40] A. F. Bariviera, M. T. Mart́ın, A. Plastino, V. Vampa, LIBOR troubles:355

Anomalous movements detection based on maximum entropy, Physica356

A: Statistical Mechanics and its Applications (2016) –.357

[41] A. F. Bariviera, L. Zunino, M. B. Guercio, L. B. Martinez, O. A.358

Rosso, Revisiting the European sovereign bonds with a permutation-359

information-theory approach, The European Physical Journal B 86360

(2013) 509.361

13



0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 90 . 0 50 . 10 . 1 50 . 20 . 2 5
H S

C JS
G B P . L I B O R . O v e r n i g h t

1 2345678 91 0 1 1J a n H 0 1 H H A p r H 0 3M a r R 0 2 R R J u l R 0 4J u n \ 0 3 \ \ O c t \ 0 5S e p f 0 4 f f D e c f 0 6N o v o 0 5 o o M a r o 0 8F e b y 0 7 y y J u n y 0 9M a y � 0 8 � � A u g � 1 0A u g � 0 9 � � N o v � 1 1O c t � 1 0 � � F e b � 1 3J a n ¡ 1 2 ¡ ¡ M a y ¡ 1 4A p r ª 1 3 ª ª A u g ª 1 5 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 90 . 0 50 . 10 . 1 50 . 20 . 2 50 . 3
H S

C JS
G B P ä L I B O R ä 1 W

12345 67 89 1 0 1 1 1 2345 678 9 1 0 1 1J a n � 0 1 � � A p r � 0 3M a r � 0 2 � � J u l � 0 4J u n � 0 3 � � O c t � 0 5S e p � 0 4 � � D e c � 0 6N o v ( 0 5 ( ( M a r ( 0 8F e b 2 0 7 2 2 J u n 2 0 9M a y < 0 8 < < A u g < 1 0A u g F 0 9 F F N o v F 1 1O c t P 1 0 P P F e b P 1 3J a n Z 1 2 Z Z M a y Z 1 4A p r c 1 3 c c A u g c 1 5

0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 90 . 10 . 1 50 . 20 . 2 50 . 3
H S

C JS
G B P � L I B O R � 1 M

1 2345678 9 1 0 1 1J a n ª 0 1 ª ª A p r ª 0 3M a r ´ 0 2 ´ ´ J u l ´ 0 4J u n ¾ 0 3 ¾ ¾ O c t ¾ 0 5S e p È 0 4 È È D e c È 0 6N o v Ñ 0 5 Ñ Ñ M a r Ñ 0 8F e b Û 0 7 Û Û J u n Û 0 9M a y å 0 8 å å A u g å 1 0A u g ï 0 9 ï ï N o v ï 1 1O c t ù 1 0 ù ù F e b ù 1 3J a n � 1 2 � � M a y � 1 4A p r � 1 3 � � A u g � 1 5 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 90 . 10 . 1 20 . 1 40 . 1 60 . 1 80 . 20 . 2 20 . 2 40 . 2 60 . 2 80 . 3
H S

C JS
G B P W L I B O R W 2 M

1 23 45 678 9 1 0 1 1J a n j 0 1 j j A p r j 0 3M a r t 0 2 t t J u l t 0 4J u n ~ 0 3 ~ ~ O c t ~ 0 5S e p � 0 4 � � D e c � 0 6N o v � 0 5 � � M a r � 0 8F e b � 0 7 � � J u n � 0 9M a y ¥ 0 8 ¥ ¥ A u g ¥ 1 0A u g ¯ 0 9 ¯ ¯ N o v ¯ 1 1O c t ¹ 1 0 ¹ ¹ F e b ¹ 1 3J a n Ã 1 2 Ã Ã M a y Ã 1 4A p r Ì 1 3 Ì Ì A u g Ì 1 5

0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 90 . 1 20 . 1 40 . 1 60 . 1 80 . 20 . 2 20 . 2 40 . 2 60 . 2 80 . 3
H S

C JS
G B P � L I B O R � 3 M

12345 67 89 1 0
1 1J a n * 0 1 * * A p r * 0 3M a r 4 0 2 4 4 J u l 4 0 4J u n > 0 3 > > O c t > 0 5S e p H 0 4 H H D e c H 0 6N o v Q 0 5 Q Q M a r Q 0 8F e b [ 0 7 [ [ J u n [ 0 9M a y e 0 8 e e A u g e 1 0A u g o 0 9 o o N o v o 1 1O c t y 1 0 y y F e b y 1 3J a n � 1 2 � � M a y � 1 4A p r � 1 3 � � A u g � 1 5 0 . 4 0 . 4 5 0 . 5 0 . 5 5 0 . 6 0 . 6 5 0 . 7 0 . 7 5 0 . 8 0 . 8 5 0 . 90 . 1 20 . 1 40 . 1 60 . 1 80 . 20 . 2 20 . 2 40 . 2 60 . 2 80 . 3

H S
C JS

G B P ä L I B O R ä 6 M
1 234567 89 1 0

1 1J a n ÷ 0 1 ÷ ÷ A p r ÷ 0 3M a r � 0 2 � � J u l � 0 4J u n � 0 3 � � O c t � 0 5S e p � 0 4 � � D e c � 0 6N o v � 0 5 � � M a r � 0 8F e b ( 0 7 ( ( J u n ( 0 9M a y 2 0 8 2 2 A u g 2 1 0A u g < 0 9 < < N o v < 1 1O c t F 1 0 F F F e b F 1 3J a n P 1 2 P P M a y P 1 4A p r Y 1 3 Y Y A u g Y 1 5

0 . 4 5 0 . 5 0 . 5 5 0 . 6 0 . 6 5 0 . 7 0 . 7 5 0 . 8 0 . 8 5 0 . 90 . 10 . 1 50 . 20 . 2 50 . 3
H S

C JS
G B P � L I B O R � 1 2 M

1 234567 89 1 0 1 1J a n  0 1   A p r  0 3M a r · 0 2 · · J u l · 0 4J u n Á 0 3 Á Á O c t Á 0 5S e p Ë 0 4 Ë Ë D e c Ë 0 6N o v Ô 0 5 Ô Ô M a r Ô 0 8F e b Þ 0 7 Þ Þ J u n Þ 0 9M a y è 0 8 è è A u g è 1 0A u g ò 0 9 ò ò N o v ò 1 1O c t ü 1 0 ü ü F e b ü 1 3J a n � 1 2 � � M a y � 1 4A p r � 1 3 � � A u g � 1 5
Figure 1: Complexity Entropy Causality Plane, with D = 4, τ = 1, δ = 20 of GBP Libor
for different maturities. Numbers {1, . . . , 11} are the central points of each of the clusters.
The solid lines represent the upper and lower bounds of the quantifiers as computed by
Mart́ın et al. [26]
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Figure 2: Complexity Entropy Causality Plane, with D = 4, τ = 1, δ = 20 of EUR Libor
for different maturities. Numbers {1, . . . , 11} are the central points of each of the clusters.
The solid lines represent the upper and lower bounds of the quantifiers as computed by
Mart́ın et al. [26]
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Figure 3: Complexity Entropy Causality Plane, with D = 4, τ = 1, δ = 20 of CHF Libor
for different maturities. Numbers {1, . . . , 11} are the central points of each of the clusters.
The solid lines represent the upper and lower bounds of the quantifiers as computed by
Mart́ın et al. [26]
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Figure 4: Complexity Entropy Causality Plane, with D = 4, τ = 1, δ = 20 of JPY Libor for
different maturities. Numbers {1, . . . , 11} are the central points of each of the clusters.The
solid lines represent the upper and lower bounds of the quantifiers as computed by Mart́ın
et al. [26]
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Figure 5: Inefficiency evolution for each currency and maturity of Libor rates, according
to equation 5
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