
For Peer Review

 

 

 

 

 

 

Hydroxytyrosol and its complex forms (secoiridoids) 

modulate aorta and heart proteome in healthy rats: 

potential cardio-protective effects 
 

 

Journal: Molecular Nutrition and Food Research 

Manuscript ID Draft 

Wiley - Manuscript type: Research Article 

Date Submitted by the Author: n/a 

Complete List of Authors: Catalán, Úrsula; Functional Nutrition, Oxidation and Cardiovascular 
Diseases Group (NFOC-Salut), Unit of Lipids and Atherosclerosis Research 
(URLA), Centro de Investigación Biomédica en Red de Diabetes y 
Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitari 
Sant Joan, IISPV, Technological Center of Nutrition and Health (CTNS), 
Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Sant 
Llorenç, 21, 43201, Reus, Spain 
Rubió, Laura; Functional Nutrition, Oxidation and Cardiovascular Diseases 
Group (NFOC-Salut), Unit of Lipids and Atherosclerosis Research (URLA), 
Centro de Investigación Biomédica en Red de Diabetes y Enfermedades 
Metabólicas Asociadas (CIBERDEM), Hospital Universitari Sant Joan, IISPV, 
Technological Center of Nutrition and Health (CTNS), Faculty of Medicine 
and Health Sciences, Universitat Rovira i Virgili, Sant Llorenç, 21, 43201, 
Reus, Spain 
López de las Hazas, Maria-Carmen; Food Technology Department, 
Universitat de Lleida-AGROTECNIO Center, Lleida, Alcalde Rovira Roure 
191, 25198 Lleida, Spain 
Herrero, Pol; Centre for Omic Sciences, Universitat Rovira i Virgili (COS-
URV), Reus, Spain  
Nadal, Pedro; Centre for Omic Sciences, Universitat Rovira i Virgili (COS-
URV), Reus, Spain  
Canela, Núria; Centre for Omic Sciences, Universitat Rovira i Virgili (COS-
URV), Reus, Spain  
Pedret, Anna; Functional Nutrition, Oxidation and Cardiovascular Diseases 
Group (NFOC-Salut), Unit of Lipids and Atherosclerosis Research (URLA), 
Centro de Investigación Biomédica en Red de Diabetes y Enfermedades 
Metabólicas Asociadas (CIBERDEM), Hospital Universitari Sant Joan, IISPV, 
Technological Center of Nutrition and Health (CTNS), Faculty of Medicine 
and Health Sciences, Universitat Rovira i Virgili, Sant Llorenç, 21, 43201, 
Reus, Spain 
Motilva, Maria-José; Food Technology Department, Universitat de Lleida-
AGROTECNIO Center, Lleida, Alcalde Rovira Roure 191, 25198 Lleida, 
Spain 

Wiley-VCH

Molecular Nutrition and Food Research



For Peer Review

SOLA, Rosa; Unitat de Recerca en Lípids i Arteriosclerosis (CIBERDEM), 
Hospital Universitari St. Joan de Reus, IISPV, Universitat Rovira i Virgili,  

Keywords: 
hydroxytyrosol, secoiridoids, healthy rats, proteome, cardiovascular 
disease 

  

 

 

Page 1 of 36

Wiley-VCH

Molecular Nutrition and Food Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Hydroxytyrosol and its complex forms (secoiridoids) modulate aorta and heart 
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Abbreviations 

VOO, virgin olive oil 

HT, hydroxytyrosol 

SEC, secoiridoids 

CVD, cardiovascular diseases 

TMT, tandem mass tag 

3,4-DHPEA-EDA, 3,4-dihydroxyphenolethanol-elenolic acid di-aldehyde 

IPA, Ingenuity Pathway Analysis 

PCA, principal component analysis 

FC, fold change 

VSMC, vascular smooth muscle cells 
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Abstract 

SCOPE: Hydroxytyrosol (HT) is the major phenolic compound in virgin olive oil 

(VOO) in both free and complex forms (secoiridoids; SEC). Proteomic of tissues related 

to cardiovascular system such as aorta or heart represents a novel and promising tool to 

uncover the mechanisms of action of phenolic compounds in healthy animals. 

METHODS AND RESULTS: Twelve female Wistar rats were separated into three 

groups and fed with standard diet and diets supplemented in phenolic compounds (HT 

and SEC) adjusted to 5 mg/kg/day during 21 days. Proteomic analyses of aorta and 

heart tissues were performed by nano-liquid chromatography and mass spectrometry. 

Ingenuity Pathway Analysis was used to generate interaction networks. HT or SEC 

modulated aorta and heart proteome compared to the control group. The top-scored 

networks were related to Cardiovascular System Development. The aortic proteins, 

Rac1, T-kininogen 2, Gja1 and Hsp1a1 that promote proliferation and migration of 

endothelial cells and occlusion of blood vessels were down-regulated after treatments. 

In heart, Camk2d and Fkbp1a, related to heart failure, were also positively regulated.  

CONCLUSION: Results suggest that free HT reach target cardiovascular tissues 

inducing changes at proteomic level, which may partially account for the underlying 

mechanisms involved in the cardiovascular protection of VOO phenols.  

Word count: 200 
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Introduction 

 Hydroxytyrosol (HT) is the major phenolic compound in virgin olive oil (VOO) 

in either free and complex forms, which are commonly named secoiridoids (SEC) or 

oleuropein aglycone derivates. HT has shown a wide range of biological functions, such 

as antioxidant, anticancer and neuroprotective activities, as well as having beneficial 

effects on the cardiovascular system [1,2]. With a more significant impact, VOO 

phenolic compounds have been shown to beneficially alter lipid composition, platelet 

and cellular function as well as reduce the inflammation [3]. These effects have been 

related with the low rate of cardiovascular disease (CVD) mortality and certain types of 

cancer in populations residing in the Mediterranean countries [3].   

 The impact of the diet and dietary components on CVD has been widely 

recognized in recent years [4,5]. Therefore, prevention through the introduction of 

lifestyle and proper nutrition habits is now considered a primary strategy for what we 

call healthy aging. Omics-based studies, including genomics, transcriptomics, 

proteomics, and metabolomics, have been recognized as powerful analytical tools in 

cardiovascular research [6]. Specifically, the proteomic approach offers an unbiased 

way to study changes in protein levels induced by different experimental conditions and 

a major challenge of proteome research is detecting clinically useful biomarkers of 

disease, treatment response and aging [7]. Moreover, proteomic approach instead of the 

analysis of gene expression, focuses on the products that perform the biological function 

[8].  

 Despite that proteomics represents a novel and promising tool to uncover the 

mechanisms of action as a response to diet or nutrients, the actual use of this technique 

in dietary interventions is still rather limited [9]. Regarding proteomics focused on 
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cardiovascular tissues, very few studies have been performed up to now investigating 

the possible protective effect on diseased animals of food bioactive compounds on the 

protein expression of aortic tissue testing vitamin E and omega-3 fatty acids [10,11] and 

heart tissue testing resveratrol [12,13]. Other studies analyzing  proteome on diseased 

cardiovascular tissues, such as calcific aortic valve or infarcted myocardium have 

reflected important changes in protein induced by disease [14]. However, to the best of 

our knowledge, no study has reported so far the modulation of aorta and heart proteome 

by bioactive compounds, specifically phenolic compounds, in healthy animals to 

address future cardiovascular protection. Small animal models have provided insight 

into the fundamental mechanisms driving early atherosclerosis, but it is increasingly 

clear that new strategies and research tools are needed to translate these discoveries into 

improved prevention and treatment of symptomatic atherosclerosis in humans. 

 The hypothesis of the present work is that VOO phenolic compounds could 

promote protective effects in cardiovascular system in healthy animals. In an effort to 

understand the underlying molecular mechanisms of VOO phenols and to identify their 

potential target protein molecules in cardiovascular tissues, in the present study we 

performed a proteomic comparative analysis of the aorta and heart tissues of healthy 

female rats in response to supplemented diet with the equivalent of 5 mg phenol/kg rat 

weight during 21 days of HT as a pure molecule or its complex occurring forms in VOO 

through an extract rich in SEC, respectively. 

2. Materials and Methods 

2.1. Chemicals and reagents 

HT was provided by Seprox Biotech (Madrid, Spain), homovanillic acid by 

Fluka Co. (Steinheim, Switzerland) and catechol from Sigma-Aldrich (St. Louis, MO, 
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USA). HT-3’-O-sulfate was purchased from Toronto Research Chemicals Inc. (Toronto, 

Ontario, Canada). Methanol and acetonitrile (HPLC-grade) were purchased from 

Scharlab (Barcelona, Spain). Milli-Q water was obtained from a Milli-Q water 

purification system (Millipore Corp., Medford, MA, USA). Tandem mass tag (TMT) 

10-plex isobaric reagents were from Thermo Fisher Scientific (San José, CA, USA). 

Organic solvents were liquid chromatography-mass spectrometry grade from Panreac 

(Barcelona, Spain). Unless otherwise noted, all other chemicals were from Sigma-

Aldrich (St. Louis, MO, USA). 

2.2. Secoiridoid extract  

 Ethanolic phenolic extract rich in SEC was obtained from Arbequina olive cake 

by pressurized liquid extraction (ASE 100 Dionex, Sunnyvale, California, USA) based 

on the method of Suárez et al [15],Extraction conditions were: ethanol/water (80:20, 

v/v) at 80ºC, 60% setting volume and two static cycles of 5 min in each extraction, then, 

sample was purged with nitrogen (≥ 99.99% purity, Alphagaz, Madrid, Spain). After 

that, ethanol was rotary evaporated until its elimination (Buchi, New Castle, DE, USA). 

Aqueous extract was freeze-dried and stored at -80ºC in N2 atmosphere until use. The 

extract was mainly composed by dialdehydic form of decarboxymethyl EA linked to 

HT or 3,4-DHPEA-EDA (85%). It also contained minor proportions of free HT and 

other secoiridoids providing HT such as the isomer of oleuropein aglycone or 3,4-

DHPEA-EA (Supporting information: Table 1). In order to calculate the administered 

dose of 5 mg/kg weight of SEC, only 3,4-DHPEA-EDA was considered as it is the main 

secoiridoid derivative providing HT. 

2.3. Animals and experimental procedure 

Twelve female Wistar rats weighted among 300-350 g were obtained from 

Charles River Laboratories (Barcelona, Spain). They were separated into three groups 
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with different diets (4 rats in each group): control group (A), HT group (B) and SEC 

group (C). Animals were housed two per cage in a temperature (21 ± 1ºC) and humidity 

(55 ± 10%) controlled room with a 12-h light/dark cycle. Food and water were available 

ad libitum in cage and metabolic cages. The animal procedures were conducted in 

accordance with the guidelines of the European Communities Directive 86/609/EEC 

regulating animal research and approved by the local ethical committee (CEEA-

Universitat de Lleida, reference 7675). 

Supplemented diet preparation was based on follow up the food intake and animal 

weight during 3 days a week. . Briefly commercial fed pellets (Harlan laboratories, 

Barcelona, Spain) were crushed andmixed with Milli-Q water containing the equivalent 

of 5 mg of HT or SEC/kg rat weight in average of daily consumption of each rat and 

were then freeze-dried.  

After 21 days of treatment rats were sacrificed by intracardiac puncture after 

isoflurane anaesthesia (IsoFlo, Veterinarian Esteve, Bologna, Italy). After blood 

collection, rats were perfused by isotonic solution of NaCl 0.9% to remove the 

remaining blood irrigating tissues and heart and aorta were excised from the rats. All 

samples were stored at – 80ºC until analysis.  

2.4. Heart tissue sample pre-treatment and phenolic chromatographic analysis 

In order to study the disposition of phenolic compounds on heart tissue after HT 

or SEC treatments, the free HT and its biological metabolites were determined. Aorta 

was not analyzed as it was entirely used for proteomic analysis. Prior to the 

chromatographic analysis, heart was freeze-dried and homogeneus samples were 

sequentially pre-treated with a combination of liquid-solid extraction combined with 

micro solid phase extraction as previously described [16]. Phenolic compounds were 

then analyzed by Acquity Ultra-PerformanceTM liquid chromatography coupled to 
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tandem MS as the detector system from Waters (Milford, MA, USA), as reported in our 

previous study [16].  

2.5. Proteomic sample preparation and quantitative analysis of the aorta and heart 

tissues 

A quantitative proteomic study in aorta and heart rat tissues was performed 

using TMT isobaric tag labelling, off-gel fractionation and mass spectrometry based on 

nanoLC-Orbitrap technology was performed (Figure 1). The different analytical steps 

are explained in detail in supporting information: Materials and Methods. 

2.6. Clustering and pathway analysis  

Various bioinformatics tools were employed for the biological interpretation of 

the results. Proteins were referred to by their gene encode symbol. Each protein 

identifier (Swiss-Prot ID) was mapped to its corresponding protein object in the Wiki 

Pathways, KEGG, Reactome and BioCyte data bases. 

Ingenuity Pathway analysis (IPA; Ingenuity System Inc., Redwook, CA, USA, 

www.ingenuity.com) was used to analyze canonical pathways and protein networks 

involving the differentially expressed proteins for biological interpretation. Significance 

levels were assessed with Fisher’s exact tests (p<0.01). The differentially expressed 

proteins were overlaid with IPA-curated canonical pathways to explore possible 

metabolic and cell signaling pathways that were over- or under-represented by the 

experimentally determined genes. Specifically, we conducted two analysis: a) the 

common proteins up- or down-regulated in the same direction after both treatments (HT 

and SEC) in aorta or heart tissue compared to control group, to study the potential 

common HT and SEC mechanisms of action, and b) the whole dataset of proteins 

differentially expressed after HT or SEC treatments in aorta or heart tissue compared to 

Page 9 of 36

Wiley-VCH

Molecular Nutrition and Food Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

control group in order to acquire a global vision and focused on cardiovascular system 

(Figure 2).  

In addition, possible connections between mapped genes were evaluated and 

graphical networks were algorithmically generated. Nodes representing genes and gene 

products were linked by biological relationships. Networks were ranked by a score that 

defines the probability of a collection of nodes being equal to or greater than the number 

in a network achieved by chance alone.  

2.7. Statistical analysis 

The statistical analysis to find the significant protein changes between conditions 

included in the present studies was done by Mass Profiler Professional software v. 13.0 

from Agilent Technologies (Santa Clara, CA, USA). 

The statistical analysis was the same for aortic and heart tissue. The study 

comprises three different groups named as control, HT and SEC. A 1-Way ANOVA 

statistical test was applied with a p-value correction of Benjamin-Hochberg false 

discovery rate for multiple comparisons using the quantified proteins that appears in 

more than 66% of samples. Moreover multivariate statistical technique based on 

principal components analysis (PCA) was applied. There are 3 replicates for control 

condition (one is used for normalization and is not considered for statistical analysis) 

and 4 replicates for each treatment condition.  

3. Results  

3.1. Disposition of HT and its metabolites in heart tissue 

As shown in Table 1, after diet supplementation with 5 mg of HT or SEC/kg 

weight/day during 21 days, free HT was detected in heart tissue mainly in its free form 

and in a minor proportion as phase II metabolite HT-3-O-sulfate, which only appeared 
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after HT treatment. When comparing both treatments, the free form of HT presented 

significant higher concentrations after SEC diet supplementation compared to HT.  

The free HT detected in the heart tissue of the control group could be related to 

the endogenous origin of this compound from dopamine metabolism previously 

described [17]. 

3.2. Tissue proteome modulation by HT and SEC 

3.2.1. Aorta 

After performing the proteome analysis of aorta tissue samples, we reached to 

identify and quantify 1247 proteins. The comparative analysis revealed that from the 

identified proteins, 115 significantly differed after HT and SEC treatments compared to 

control group (p<0.05). All these up- or downregulated proteins with their 

corresponding fold change (FC) values compared to the control group are listed in 

Table 2 and they have been also classified in a Venn diagram in Figure 2A. The 

corresponding information for all identified proteins in aorta is available in supporting 

information: Table 2. 

The comparative analysis between HT treatment and control group in aorta 

tissue revealed an up-regulation of 26 proteins ranging from 1.0 to 1.3 FC and a down-

regulation of 89 proteins from -1.0 to -1.7 of FC. When comparing SEC treatment with 

control group, we observed an up-regulation of 34 proteins ranging from 1.2 to 16.3 of 

FC and a down-regulation of 81 proteins from -1.2 to -18.8 of FC. As shown in the 

Venn diagram (Figure 2A) most of these proteins were significantly modulated in the 

same direction after the two treatments (HT or SEC) compared to control group, and in 

most of the proteins FC values were strengthened after SEC diet supplementation 

compared to HT (Table 2). The PCA of aortic tissue samples after the statistical test 

showed that only a slightly differentiation between control group and HT group is 
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observed but both are significantly different compared to SEC (Supporting 

information: Figure 1A), which is in accordance with the higher FC values of SEC. 

3.2.2. Heart  

In heart tissue we identified and quantified 1124 proteins and 34 proteins that 

significantly differed after HT and SEC treatments compared to control group (p<0.05). 

All the up- or downregulated proteins with their corresponding FC values compared to 

the control group are listed in Table 3 and have been classified in a Venn diagram 

shown in Figure 2B. The corresponding information for all the identified proteins in 

heart is available in supporting information: Table 3. 

Comparative between HT treatment and control group revealed an up-regulation 

of 12 proteins ranging from 1.0 to 1.4 of FC and a down-regulation of 22 proteins 

ranging from -1.0 to -1.4 of FC. Comparing SEC treatment to control group, we 

observed an up-regulation of 22 proteins ranging from 1.0 to 3.4 of FC and a down-

regulation of 12 proteins ranging from -1.1 to -1.5 of FC. Comparing SEC treatment to 

HT treatment revealed that 23 proteins were up-regulated (from 1.0 to 3.3 of FC) and 11 

were down-regulated (from -1.0 to -2.0 of FC). As in aorta, some of the proteins were 

differentially expressed in the same direction after the two treatments (HT or SEC) 

compared to control group (Figure 2B), but in heart, most of the proteins were 

modulated in opposite directions depending on the treatment. The PCA analysis showed 

a clear differentiation between the three groups (control, SEC and HT) in heart tissue 

(Supporting information: Figure 1B).  

Among all the differentially expressed proteins, only two proteins, Actn4 and 

Rpl8, were found to be significantly modulated in both aorta and heart tissues. 

 

3.3. Pathway analysis of common proteins modulated by HT and SEC 
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Following the pathway analysis strategy “a” described in section 2.6, we 

analyzed in IPA the common proteins that were differentially up- or downregulated in 

the same direction in response to both the HT and SEC consumption in order to 

investigate common mechanisms after both treatments. Results regarding the top-scored 

canonical pathways, molecular and cellular functions, diseases and disorders and 

potential upstream regulators are presented in detail in Supporting information: 

Results. 

3.4. Global proteome changes after HT or SEC and its relation with Cardiovascular 

System 

 Following the analysis strategy “b” the whole dataset of significantly expressed 

proteins after HT and SEC treatments in aorta (115 proteins) or heart (34 proteins) 

tissue compared to control group was analyzed in IPA with special focus on 

Cardiovascular System functions. 

3.4.1 Aorta tissue 

 When the complete dataset of proteins differentially expressed in aorta was 

analyzed, the top network found by IPA was “Cardiovascular System Development” 

(score = 11). 11 proteins of the 115 regulated proteins in aorta were part of this network. 

The graphical representation of the network is shown in Figure 3, in which the 

modulated proteins (located in the cell compartments) have been highlighted in color 

and indicated when HT and SEC differently modulated a protein (up or down-regulated).  

We observed a significant increase of Hk2, Fabp5, Ldh proteins and a decrease 

of Akr1b1, Capn2, Gja1, Rac1, Ilk, Vcl and Kng1/Kng1l1 proteins after both treatments. 

Vim protein was up-regulated by HT treatment and down-regulated after SEC treatment. 

Some of these proteins (Kng1, Hk2, Gja1 and Rac1) were found by IPA to have a 
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strong relation with specific cardiovascular system functions, which are listed in Table 

4. These proteins were mainly related to cardiac functions in this tissue such as 

occlusion of blood vessel and proliferation of endothelial cells.  

 Other proteins implicated in the network and connected with the proteins 

detected in our study were: NF-κB, Hspb1, Prkce, Pten, Mapk14, Prkca, Nos2, Erk1/2, 

Pka, Akt, Pdpk1, Pak2, Pxn, Rhoa, Nos3, Casp3, Pik3r1, Dock7, Cav3, Agtr2, Slc2a4, 

Igf1r, Cav1 and Ctgf. As shown NF-κB complex and Akt appeared to be key proteins in 

the network. 

3.4.2. Heart tissue 

In the case of heart tissue, the top network found by IPA was “Cardiovascular 

System Development and Cancer” (score = 57). 21 proteins of the 34 regulated proteins 

in heart were part of this network, which is represented in Figure 4. 

 The up-regulated proteins after HT and SEC treatments implicated in this 

network were Npm1, Fkbp1a, Tuba4a, Arhgdia, Msn and Alpha tubulin proteins and the 

down-regulated were Por, Dlat, Dld, Cys, Cytochrome C and Magi 2 proteins (Figure 

4). Some proteins, such as Hmgb1, Hbb, Actn4, Psma6, Dnm1l, Map4 and Clic4, were 

down-regulated by HT treatment and up-regulated in response to SEC treatment. On the 

other hand, Samm50, Glrx3, Prep and Camk2d were up-regulated by HT treatment and 

down-regulated after SEC treatment. As in aorta, some of these proteins had a strong 

relation with specific cardiovascular system functions, which are listed in Table 4. 

Some of these proteins such as Camk2d, Fkbp1a and Tuba4a, were related to cardiac 

functions and other proteins such as Dlat, Dld and Por were related to lipid metabolism. 

Other proteins implicated in the network were Ppil4, Nf-kB, estrogen receptor, Hsp90, 

Calcineurin proteins, Caspase, Akt, P38 Mapk, Pka, Cd3 and N-methyl-R-salsolinol. 

NF-κB complex also resulted in a pivotal position as in aorta network. 
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4. Discussion 

Under the hypothesis that VOO phenolic compounds could promote benefits in 

cardiovascular system by inducing changes in the heart and aorta protein levels, in the 

present study we performed a proteomic analysis of the aorta and heart tissues of 

healthy rats in response to a diet supplemented with HT to investigate the underlying 

molecular mechanism of HT and to identify potential target proteins in cardiovascular 

tissues. HT was administrated either as a pure molecule or through its complex 

occurring forms in VOO (SEC) at the same daily dose (5 mg/kg rat weight) in order to 

investigate possible differences in the molecular mechanisms depending on the 

chemical structure administered. 

4.1. Aorta and heart proteome modulation by HT and SEC 

Proteomic analysis revealed that the heart and aorta proteome significantly 

changed after the administration of VOO phenolics compared to the control group, 

observing a clearer differentiation when diet was supplemented with SEC (Supporting 

information: Figure 1). As expected, most of the proteins were similarly modulated 

after SEC and HT and FC values did not exceed in most cases 2.5-fold. The relatively 

low FC after the supplemented diets could be attributed to the healthy status of the 

animals. Previous studies have focused on the proteomic profiling of aorta diseased 

tissues in order to gain knowledge of the molecular events underlying pathological 

processes such as the atherosclerotic lesions [18]. However, based on the general 

consensus that VOO phenolic compounds have a protective role in the cardiovascular 

system [1], in this study we present the proteomic technique applied to healthy 

cardiovascular tissues as a novel approach to gain knowledge in the possible prevention 

mechanisms of these bioactive compounds. 
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There are scarce data in the bibliography regarding the effect of olive phenols on 

the tissue proteome modulation and so far no studies have been performed with heart 

and aorta tissues. Only some studies performed in injured liver of rat or mice and the 

hepatic proteome analysis revealed that VOO phenolic compounds could have benefits 

against chronic liver injury and steatosis, which was attributed to the modulation of 

proteins related to antioxidant mechanisms [19–21]. In other studies, the effect of VOO 

on the plasma proteome during aging in rats was analyzed [22] and also the impact on 

the HDL protein cargo of the intake of VOO and two other phenol-enriched VOO in 

hypercholesterolemic subjects [23]. In both cases, a modulation of proteins related to 

cholesterol homeostasis, protection against oxidation and blood coagulation was 

observed. 

  When comparing HT and SEC, diet supplementation with SEC leaded to higher 

FC values. These differences could be attributed to the higher concentration of free HT 

detected in heart tissue after SEC diet (Table 1). In our previous work it was 

demonstrated that despite that HT and SEC were administered at the same dose (5 

mg/kg rat weight), the urinary recovery of HT metabolites was higher with SEC, 

indicating that the bioavailability of HT was more effective with the intake of the more 

complex structure as SEC (Lopez de las Hazas 2016; J Func Foods, submitted). 

Consequently, higher amounts of HT and HT metabolites were able to reach the target 

tissue (heart) and could have exerted a greater modulation of the proteome. These 

results highlight that the complementary information regarding the bioavailability and 

the tissue disposition of the phenolic metabolites is critical to understand and determine 

the bioactivity exerted in that tissue. Our results demonstrate that phenolic compounds 

were effectively absorbed and could reach target tissues such as heart. In accordance, in 

a previous study performed by our group demonstrated that the free HT at physiological 
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concentrations and in a dose-dependent manner, could exert significant effects reducing 

adhesion molecules (vascular adhesion molecule-1, intracellular adhesion molecule-1, 

E-selectin and P-selectin) and in a chemokine (monocyte chemoattractant protein-1) in 

human aortic endothelial cells stimulated by tumor necrosis factor alpha-1 [24].  

4.2. Pathway analysis of common proteins modulated by HT and SEC 

In a first step, we analyzed in IPA the common proteins that were differentially 

expressed in the same direction after HT and SEC supplementation. From these results 

we highlight the potential upstream regulators that appeared to be implicated, which 

allowed us to identify the molecules upstream of the proteins that potentially explain the 

observed expression changes.  

In the case of aorta, Myc, Myocd, Pias1, Yap1 and Srf appeared to be potentially 

implicated in the modulated pathways. All these proteins have been shown to play a role 

in proliferative vascular disorders in vascular smooth muscle cells (VSMC) [25]. 

Specifically, Yap1, Myc and Myocd have been related in the modulation of VSMC 

phenotype in response to the environmental stimuli through a process characterized by 

an increased proliferation and migration [26]. Phenotypic switch of VSMC is one of the 

major cellular events underlying many VSMC-related pathological conditions, such as 

atherosclerosis.  

 In heart tissue, the top upstream regulators that appeared to be potentially 

implicated were E2f4 and PPAR-γ. The transcription factor E2f4 has been shown to act 

as an activator of cardiomyocyte proliferation, a required regulator for cardiac 

regeneration [27]. PPAR-γ has been well recognized to be a central player participating 

in various biological responses, including lipid metabolism, inflammation, and cell 

proliferation, the underlying pathological processes of metabolic diseases and cancer 

[28]. So, the potentially implication of these upstream regulators in aorta and heart 
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tissues in response to olive phenolic compounds provides insight into the molecular 

mechanisms underlying their protective action on cardiovascular alterations.  

4.3. Global network analysis after HT or SEC and its relation with Cardiovascular 

System 

 The network analysis based on the whole expressed proteins after HT and SEC 

diets demonstrated that the top-scored networks were related to Cardiovascular System 

Development in both tissues (Figures 3 and 4), and specifically, some of the modulated 

proteins appeared to be involved in particular cardiac functions and lipid metabolism 

(Table 4). In the case of aorta (Figure 3), the proteins involved in the top-scored 

network were mainly related to several cardiac functions. One of the down-regulated 

proteins was T-kininogen 2 (-1,2-fold and -2,7-fold for HT and SEC respectively), 

involved in the occlusion of blood vessel and proliferation of endothelial cells. 

Kininogens are multifunctional proteins that act as precursor of kinins, small vasoactive 

peptides that promote endothelial cell proliferation through kinin receptors and its 

plasma levels have been related to inflammatory and aging processes in rats and humans 

[29]. In accordance with our results, T-kininogen precursor was significantly decreased 

after the intake of VOO compared with sunflower oil in rats [22]. Therefore, the 

decrease of T-kininogen 2 after intake of HT and SEC suggests that HT could 

contribute to the decline of inflammatory processes. Together with T-kininogen 2, Gap 

junction alpha-1 protein (Gja1), was also related to proliferation of endothelial cells, as 

well as with cardiogenesis and vasoconstriction of blood vessel and, in the same line, it 

was down-regulated after HT (-1,0-fold) and SEC (-1.7-fold) treatments.  

 Another relevant protein involved in the top-scored Cardiovascular System 

network in aorta was Rac1 (ras-related C3 botulinum toxin substrate 1), which was 
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significantly down-regulated after HT (-1,0-fold) and SEC (-1,4-fold) diets and 

appeared to be implicated in the migration of endothelial cells and heart rate functions 

(Table 4). Rac1 is a small GTPase essential for the assembly and activation of NADPH 

oxidase. Several molecular and cellular studies have reported the involvement of Rac1 

in different cardiovascular pathologies, such as vascular smooth muscle proliferation, 

atherosclerosis and endothelial dysfunction [30]. Also an increased activation of 

NADPH oxidase by Rac1 has also been reported in animals and humans after 

myocardial infarction and heart failure [30]. Due to all these findings, Rac1 has 

emerged as a new pharmacological target for the treatment of CVD [31]. Thus, our 

results suggest that its down-regulation after HT and SEC consumption could imply a 

cardio-protection effect. 

Hexokinase-2 (HK2) also appeared to be one of the differentially expressed 

proteins (1,3-fold for HT and 2,7-fold for SEC) related to the cardiovascular network in 

aorta and playing an important role in cell viability of cardiomyocytes and survival of 

ventricular myocytes (Table 4). HKs are multifunctional proteins that orchestrate 

metabolic, antioxidant and direct anti-cell death effects [32]. HK2 specifically has a role 

in shuttling glucose-6-phosphate to glycolysis and oxidative phosphorylation when 

bound to mitochondria [33]. Genetic reduction of HK2 levels in heterozygous HK2 

knock-out mice increased susceptibility to ischemia/reperfusion injury [34] indicating 

its cardioprotective role. In this sense, HK2 also increased the cell viability of cultured 

ventricular myocytes [35]. Therefore, the overexpression of HK2 after HT and SEC 

administration suggests that HK2 could be an important protein target for HT. Hspe1 

(up-regulated by HT 1,1-fold and SEC 2,5-fold) was also related to cardiac necrosis/cell 

death observed by previous studies in which its up-regulation decreased apoptosis of 

cardiac myocytes from newborn rat [36]. 
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In the same line of cardio-protection, heat shock 70 kDa protein (Hspa1a) was 

down-regulated after both treatments (-1.0-fold for HT and -2.3-fold for SEC). Hspa1a 

plays a multiple role in cellular homeostasis and its level increases rapidly in response 

to various types of severe stress. In fact, it has been related to the development of 

atherosclerosis [37], and also seems to be a clinically useful biomarker for prediction of 

mortality in heart failure patients [38]. Apart from the implication of Hsp1a1 in the 

cardiovascular system, its overexpression has been linked to the development of some 

cancers, such as hepatocellular carcinoma, gastric cancers, colon cancers, breast cancers, 

and lung cancers, which led to its use as a prognostic marker for these cancers [39]. 

Circulating Hspa1a has been also recently stablished as a clinical marker of rheumatoid 

arthritis, used for its diagnosis and monitoring the disease activity [40]. Moreover, the 

over-expression of Annexin 2 (Anxa2), which was down-regulated after both diets (-

1,0-fold for HT and -1,4-fold for SEC), has been defined as a prognostic marker in 

certain cancers such as cholangiocarcinoma [41]. These results together with all the 

presented evidence, suggest that olive phenols not only might be able to modulate 

proteins related to the prevention of CVD, but could also exert a protector effect against 

cancer modulating some cancer-relevant proteins. 

The network analysis in heart tissue revealed that the significantly expressed 

proteins were implicated in cardiac functions but also in the lipid metabolism. Fkbp1a 

(peptidyl-prolyl cis-trans isomerase), which appeared to be related to heart failure, 

hypertrophy of left ventricle, congestive heart failure and systolic dysfunction, was up-

regulated 1.2-fold and 1,7-fold by HT and SEC, respectively. Previous studies show that 

mutant mice deficient in Fkbp1a develop multiple abnormalities in cardiac structure, 

including lack of compaction and thin ventricular walls [42], suggesting that its up-

regulation could imply a positive effect preventing all these anomalies. In the same line, 
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Calcium/calmodulin-dependent protein kinase type II subunit delta (Camk2d) was also 

modulated and it has been defined as a determinant of clinically important heart disease 

phenotypes, and it has been suggested that its inhibition can be a highly selective 

approach for targeting adverse myocardial hypertrophy, dilation and dysfunction, in 

individuals with myocardial infarction [43]. 

Other down-regulated proteins in heart tissue (Por, Dlat and Dld) appeared to be 

related to lipid metabolism functions such as synthesis of acetyl-CoA, fatty acid 

metabolism and synthesis of lipids. In particular, NADPH-cytrochome p450 reductase 

(Por) is an enzyme that is required for electron transfer to cytochrome P450 enzymes 

and plays a major role in regulating lipid homeostasis. On the other hand, Dlat and Dld 

play a role in energy metabolism, specifically in the pyruvate metabolism.  

Another related protein that appeared to be down-regulated was Cythocrome c 

(Cycs), a component of the electron transport chain in mitochondria involved in 

initiation of apoptosis. Cycs release in cardiomyocytes has been attributed to many 

mechanisms including ROS generation, cardiolipin peroxidation, and Ca2+ overload in 

the mitochondria and therefore, if the release of Cytc could be inhibited, apoptosis could 

be prevented, slowing the disease progression or limiting neurologic damage after 

trauma [44]. 

Interpreting the findings of the present proteomic study is mitigated by a limited 

understanding of the individual role of implicated proteins within the tissue. The 

differentially expressed proteins have been localized to specific signaling pathways or 

networks but the interplay between pathways is complex and incompletely understood. 

Nevertheless, the findings of the present study clearly revealed that HT and SEC may 
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play a pivotal role in the Cardiovascular System through the modulation of several 

proteins. 

In conclusion, proteomic analysis revealed that the heart and aorta proteome 

significantly changed after the diet supplementation with HT and SEC compared to the 

control group. As expected, most of the proteins were similarly modulated after HT and 

SEC, and FC values did not exceed in most cases 2.5 fold, which was attributed to the 

healthy status of the animals. The network analysis involving the differentially 

expressed proteins revealed that the top-scored networks were related to cardiovascular 

system in both aorta and heart tissues. Specifically, our results demonstrated that HT 

and SEC are able to positively regulate the expression of relevant proteins (Rac1, T-

kininogen 2, Gja1 and Hsp1a1) in aorta tissue related to atherosclerotic processes such 

as proliferation and migration of endothelial cells and occlusion of blood vessels. In 

heart, the more relevant modulated proteins (Camk2d and Fkbp1a) were related to 

cardiac functions such as heart failure. 

Moreover, other prognostic markers for some cancers, Hsp1a1 and Anxa2, were 

modulated after HT and SEC treatments, suggesting that olive phenols could also exert 

a protector effect against cancer. 

Diet supplementation with SEC demonstrated higher FC values which was 

attributed to the higher concentration of HT detected in heart tissue as consequence of 

the more effective bioavailability and heart tissue disposition. These results suggest that 

SEC, the main phenolics present in VOO, could have a higher cardio-protective effect 

than free HT.  

In this study we present the proteomic technique applied to healthy 

cardiovascular tissues as a novel approach to gain knowledge in the possible root causes 
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for the VOO phenol protective effects in cardiovascular system. Nevertheless further 

studies are needed to asses SEC or HT supplementation in animals with a 

cardiovascular pathology. 
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6. Figure legends 

Figure 1. Experimental workflow chart. 

Figure 2. Venn diagram of aorta and heart tissue. Venn diagram showing 

intersections of proteins differentially expressed in aorta A) or heart B) tissue of healthy 

rats comparing HT versus control and SEC versus control group. Red color indicates 

up-regulated proteins and green color indicates down-regulated proteins. 

Figure 3. Aorta Cardiovascular System Network after HT or SEC treatments. 

Interaction between the proteins differentially expressed in aorta after HT or SEC 

treatments and other important proteins related to the same network. HT or SEC are 

represented in red or green color if the protein is up- or down-regulated respectively 

after HT or SEC treatments. 

Figure 4. Heart Cardiovascular System Network after HT or SEC treatments. 

Interaction between the proteins differentially expressed in heart after HT or SEC 

treatments and other important proteins related to the same network. HT or SEC are 
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represented in red or green color if the protein is up- or down-regulated respectively 

after HT or SEC treatments.  

Supporting information: Figure 1. Principal component analysis (PCA) for 

differentially expressed proteins of A) aorta tissue or B) heart tissue samples of control 

(■), HT (▲) or SEC (●) group. 
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Table 1. Concentration (nmols/g fresh tissue) of free hydroxytyrosol and the 

main metabolite, hydroxytyrosol-3-O-sulfate, detected in heart tissue after 

the diet supplementation (21 days) with 5 mg/kg weight rat/day of 

hydroytyrosol (HT) or secoiridois (SEC).  

 

 

 

 

 

n.d.: non detectable 

a. b. c indicates significant differences among treatments in the same row at the 95.0% level of confidence. 

Results are expressed as mean (standard deviation; SD) 

 

 

 

 

 

 

 
Control  

(n=4) 

SEC  

(n=4) 

HT  

(n=4) 

Free hydroxytyrosol 5.78 (0.02)
a 

19.6 (1.56)
c 

8.75 (0.82)
b 

Hydroxytyrosol-3-O-sulfate n.d. n.d. 0.52 (0.18)a 
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Table 2. 115 significant proteins differentially expressed in aortic tissue of healthy rats after HT or SEC treatments. 

Swiss-Prot 

code 

Gene 

symbol 
Protein Name 

MW 

(kDa) 
p  

FC  

(HT versus 

Control group) 

FC  

(SEC versus 

Control group) 

FC  

(SEC versus HT 

group) 

Q9QZA2 Pdcd6ip Programmed cell death 6-interacting protein 96.6 1.4E-05 -1.1 -2.0 -1.7 

P62850 Rps24 40S ribosomal protein S24  15.4 2.4E-05 -1.1 -2.2 -2.1 

E9PT87 Mylk3 Myosin light chain kinase 3  85.5 3.1E-05 -1.0 1.9 1.9 

P62074 Timm10 
Mitochondrial import inner membrane 

translocase subunit Tim10  
10.3 3.3E-05 1.0 3.1 3.0 

P60868 Rps20 40S ribosomal protein S20 13.4 3.3E-05 -1.1 3.3 3.5 

P62282 Rps11 40S ribosomal protein S11  18.4 3.4E-05 -1.1 -1.6 -1.5 

P10860 Glud1 Glutamate dehydrogenase 1. mitochondrial  61.4 3.9E-05 -1.1 -1.5 -1.4 

P06907 Mpz Myelin protein P0  27.6 3.9E-05 -1.2 15.9 19.8 

P62914 Rpl11 60S ribosomal protein L11  20.2 5.0E-05 -1.0 1.9 1.9 

Q99MC0 Ppp1r14a 
Protein phosphatase 1 regulatory subunit 

14A  
16.7 7.7E-05 1.0 -2.2 -2.2 

Q9EPF2 Mcam Cell surface glycoprotein MUC18 71.3 8.3E-05 1.1 -1.7 -1.9 

P17077 Rpl9 60S ribosomal protein L9  21.9 9.5E-05 -1.1 -1.7 -1.5 

Q5I0E7 Tmed9 
Transmembrane emp24 domain-containing 
protein 9  

27.0 1.1E-04 -1.1 1.8 2.0 

P21531 Rpl3 60S ribosomal protein L3  46.1 1.2E-04 -1.0 -1.7 -1.7 

P62083 Rps7 40S ribosomal protein S7  22.1 1.3E-04 -1.2 -1.8 -1.4 

Q6AY20 M6pr 
Cation-dependent mannose-6-phosphate 

receptor  
31.1 1.4E-04 -1.0 -1.4 -1.3 

P62919 Rpl8 60S ribosomal protein L8  28.0 1.5E-04 1.1 1.7 1.6 

P27274 Cd59 CD59 glycoprotein  13.8 1.5E-04 1.1 1.5 1.4 

Q9Z270 Vapa  
Vesicle-associated membrane protein-

associated protein A  
27.8 1.6E-04 1.0 1.6 1.6 

P04904 Gsta3 Glutathione S-transferase alpha-3 25.3 2.0E-04 -1.1 -1.7 -1.6 

Q4KMA2 Rad23b 
UV excision repair protein RAD23 homolog 

B  
43.5 2.1E-04 -1.1 -1.4 -1.3 

P17074 Rps19 40S ribosomal protein S19  16.1 2.3E-04 -1.1 1.4 1.5 

Q9QWN8 Sptbn2  Spectrin beta chain. brain 2  270.9 2.3E-04 -1.0 1.4 1.5 

F1LMY4 Ryr1 Ryanodine receptor 1  565.1 2.4E-04 -1.4 1.4 2.0 

P05539 Col2a1 Collagen alpha-1(II) chain  134.5 2.8E-04 -1.7 16.3 28.4 

P18445 Rpl27a  60S ribosomal protein L27a  16.6 3.1E-04 -1.0 -1.3 -1.3 

P08010 Gstm2  Glutathione S-transferase Mu 2 25.7 3.4E-04 -1.1 -2.1 -1.9 

P50609 Fmod Fibromodulin  43.2 3.5E-04 1.0 -3.5 -3.6 

B5DFC9 Nid2 Nidogen-2 152.9 3.6E-04 -1.1 1.5 1.7 

Q9EPH8 Pabpc1 Polyadenylate-binding protein 1 70.7 3.8E-04 1.1 -1.2 -1.3 

P05545 Serpina3k Serine protease inhibitor A3K  46.5 4.1E-04 -1.6 1.3 2.1 

Q5XFX0 Tagln2 Transgelin-2 22.4 5.1E-04 -1.2 -1.9 -1.6 

A2RUV9 Aebp1 Adipocyte enhancer-binding protein 1  128.0 5.5E-04 -1.3 -2.3 -1.7 

B2RZ78 Vps29  
Vacuolar protein sorting-associated protein 
29  

20.5 5.6E-04 -1.1 -1.5 -1.4 

P23928 Cryab Alpha-crystallin B chain  20.1 7.0E-04 1.3 -5.6 -7.0 

P04692 Tpm1 Tropomyosin alpha-1 chain  32.7 7.4E-04 1.1 -1.9 -2.2 

P53812 Pitpnb 
Phosphatidylinositol transfer protein beta 

isoform  
31.4 7.5E-04 -1.0 -1.4 -1.4 

A4L9P7 Pds5a 
Sister chromatid cohesion protein PDS5 

homolog A  
150.2 8.2E-04 -1.3 1.7 2.2 

O08619 F13a1 Coagulation factor XIII A chain  82.6 8.4E-04 -1.0 -1.4 -1.4 

P61206 Arf3 ADP-ribosylation factor 3 20.6 8.9E-04 -1.1 -1.5 -1.4 
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Q63357 Myo1d  Unconventional myosin-Id  116.0 8.9E-04 -1.1 -2.1 -1.8 

P16257 Tspo Translocator protein  18.9 9.9E-04 -1.0 1.6 1.6 

P70470 Lypla1  Acyl-protein thioesterase 1 24.7 1.1E-03 -1.1 1.4 1.5 

Q4V8C3 Eml1  
Echinoderm microtubule-associated protein-
like 1  

89.7 1.1E-03 -1.1 -1.7 -1.6 

P24050 Rps5 40S ribosomal protein S5  22.9 1.2E-03 -1.0 -1.2 -1.1 

P0C5E3 Palld Palladin (Fragment)  66.7 1.4E-03 -1.0 -1.5 -1.5 

Q08290 Cnn1 Calponin-1  33.3 1.4E-03 1.1 -3.8 -4.3 

Q07439 Hspa1a Heat shock 70 kDa protein 1A/1B  70.1 1.4E-03 -1.0 -2.3 -2.2 

P40307 Psmb2  Proteasome subunit beta type-2  22.9 1.5E-03 -1.1 -1.4 -1.3 

P05544 Serpina3l  Serine protease inhibitor A3L  46.2 1.5E-03 -1.6 1.2 1.9 

P63039 Hspd1 60 kDa heat shock protein. mitochondrial 60.9 1.6E-03 -1.1 1.5 1.7 

P08932 N/A T-kininogen 2  47.7 1.7E-03 -1.2 -2.7 -2.3 

Q9QXQ0 Actn4 Alpha-actinin-4  104.8 1.8E-03 -1.1 -1.7 -1.6 

P58775 Tpm2 Tropomyosin beta chain  32.8 1.8E-03 -1.1 -2.1 -1.9 

D3Z9R8 Mp6 6.8 kDa mitochondrial proteolipid  6.9 1.8E-03 -1.0 -4.1 -4.0 

P24054 Sparcl1 SPARC-like protein 1 70.6 1.8E-03 -1.4 -2.8 -2.0 

P08082 Cltb Clathrin light chain B  25.1 2.0E-03 -1.1 -1.7 -1.6 

Q9Z1P2 Actn1 Alpha-actinin-1  102.9 2.1E-03 -1.1 -2.5 -2.2 

Q01129 Dcn Decorin  39.8 2.1E-03 -1.1 -1.4 -1.3 

Q9R063 Prdx5  Peroxiredoxin-5. mitochondrial 22.2 2.2E-03 1.1 1.6 1.5 

P51886 Lum Lumican  38.3 2.3E-03 -1.1 -1.6 -1.4 

Q63862 Myh11 Myosin-11 (Fragments) 152.4 2.5E-03 -1.1 -1.6 -1.5 

P61983 Ywhag 14-3-3 protein gamma  28.3 2.6E-03 1.0 1.5 1.5 

P14046 A1i3  Alpha-1-inhibitor 3  163.7 2.7E-03 -1.2 -1.9 -1.6 

P31232 Tagln Transgelin  22.6 2.8E-03 -1.1 -2.0 -1.8 

Q62745 Cd81 CD81 antigen  25.9 2.9E-03 -1.1 -2.0 -1.8 

Q68FT1 Coq9  
Ubiquinone biosynthesis protein COQ9. 

mitochondrial  
35.1 3.0E-03 1.1 2.1 1.9 

P16975 Sparc SPARC  34.3 3.1E-03 -1.1 -3.0 -2.8 

P41123 Rpl13  60S ribosomal protein L13  24.3 3.1E-03 -1.1 -2.0 -1.9 

Q923W4 Hdgfrp3 
Hepatoma-derived growth factor-related 

protein 3 
22.4 3.1E-03 -1.2 -1.5 -1.3 

Q9EST6 Anp32b 
Acidic leucine-rich nuclear phosphoprotein 

32 family member B  
31.0 3.2E-03 1.0 -1.4 -1.4 

P08050 Gja1  Gap junction alpha-1 protein  43.0 3.5E-03 -1.0 -1.7 -1.7 

P62278 Rps13  40S ribosomal protein S13 17.2 3.7E-03 1.1 -1.3 -1.3 

Q4QQT4 Ppp2r1b 
Serine/threonine-protein phosphatase 2A 65 
kDa regulatory subunit A beta isoform  

66.0 3.7E-03 1.2 1.6 1.3 

Q7M0E3 Dstn  Destrin 18.5 3.8E-03 -1.1 -2.1 -1.8 

P10111 Ppia  Peptidyl-prolyl cis-trans isomerase A 
 

3.8E-03 -1.1 -1.5 -1.3 

P13635 Cp Ceruloplasmin  120.8 3.9E-03 -1.4 -1.6 -1.2 

D3Z8E6 Camsap1 
Calmodulin-regulated spectrin-associated 

protein 1  
178.4 4.1E-03 -1.1 -1.6 -1.4 

P85972 Vcl Vinculin 116.5 4.3E-03 -1.1 -1.6 -1.4 

Q4V9H5 Phf20l1 PHD finger protein 20-like protein 1 114.0 4.5E-03 1.0 2.0 1.9 

Q4V7C7 Actr3 Actin-related protein 3  47.3 4.6E-03 -1.2 -1.5 -1.3 

Q8VIF7 Selenbp1 Selenium-binding protein 1  52.5 4.7E-03 -1.1 -1.4 -1.3 

Q62812 Myh9 Myosin-9 226.2 4.9E-03 -1.1 -1.5 -1.4 

Q0ZHH6 Atl3 Atlastin-3  60.5 5.0E-03 -1.1 -1.4 -1.2 

Q99J82 Ilk Integrin-linked protein kinase  51.3 5.2E-03 -1.1 -1.8 -1.6 

Q62908 Csrp2 Cysteine and glycine-rich protein 2  20.9 5.2E-03 -1.2 -2.2 -1.9 
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P55053 Fabp5  Fatty acid-binding protein. epidermal  15.0 5.3E-03 1.0 2.5 2.4 

Q63610 Tpm3  Tropomyosin alpha-3 chain  29.0 5.3E-03 1.1 -1.7 -1.8 

P11884 Aldh2 Aldehyde dehydrogenase. mitochondrial 56.5 5.3E-03 -1.1 -1.6 -1.4 

Q9QYP2 Celsr2 
Cadherin EGF LAG seven-pass G-type 
receptor 2 (Fragment)  

233.3 5.4E-03 -1.2 -3.0 -2.5 

Q9JHY2 Sfxn3 Sideroflexin-3  35.4 5.6E-03 -1.2 -1.9 -1.6 

B2GUZ5 Capza1 F-actin-capping protein subunit alpha-1 32.9 5.8E-03 -1.1 -1.6 -1.5 

B5DEH2 Erlin2  Erlin-2  37.7 6.1E-03 -1.1 1.4 1.4 

P48037 Anxa6 Annexin A6  75.7 6.4E-03 -1.0 -1.3 -1.2 

Q6RUV5 Rac1 Ras-related C3 botulinum toxin substrate 1 21.4 6.5E-03 -1.0 -1.4 -1.3 

Q9Z1B2 Gstm5 Glutathione S-transferase Mu 5  26.6 6.6E-03 -1.1 -1.5 -1.3 

P54311 Gnb1 
Guanine nucleotide-binding protein 

G(I)/G(S)/G(T) subunit beta-1  
37.4 6.6E-03 -1.1 -1.5 -1.3 

P45592 Cfl1  Cofilin-1  18.5 6.6E-03 -1.1 -1.6 -1.5 

P62271 Rps18  40S ribosomal protein S18  17.7 6.6E-03 -1.0 -1.7 -1.7 

Q6IRK9 Pgcp Plasma glutamate carboxypeptidase  52.0 6.8E-03 -1.0 1.8 1.8 

P04642 Ldha  L-lactate dehydrogenase A chain  36.4 7.0E-03 1.1 1.9 1.7 

P41562 Idh1 
Isocitrate dehydrogenase [NADP] 

cytoplasmic  
46.7 7.0E-03 -1.1 -1.3 -1.2 

P27881 Hk2 Hexokinase-2  102.5 7.1E-03 1.3 2.7 2.0 

P50503 St13 Hsc70-interacting protein  41.3 7.2E-03 1.0 -1.8 -1.8 

P62828 Ran  GTP-binding nuclear protein Ran  24.4 7.3E-03 -1.0 1.3 1.3 

P31000 Vim Vimentin  53.7 7.4E-03 1.0 -1.9 -1.9 

Q62667 Mvp Major vault protein 95.7 7.4E-03 -1.0 1.4 1.4 

P85973 Pnp Purine nucleoside phosphorylase  32.3 7.6E-03 -1.2 -1.5 -1.3 

Q03626 Mug1 Murinoglobulin-1  165.2 7.6E-03 -1.2 -2.0 -1.7 

P26772 Hspe1 10 kDa heat shock protein. mitochondrial  10.9 7.8E-03 1.1 2.5 2.2 

P20850 Col9a1 Collagen alpha-1(IX) chain (Fragment)  31.2 7.9E-03 -1.3 -18.8 -14.2 

Q07936 Anxa2 Annexin A2  38.7 8.1E-03 -1.1 -1.4 -1.4 

O70351 Hsd17b10 3-hydroxyacyl-CoA dehydrogenase type-2  27.2 8.2E-03 1.0 1.5 1.5 

Q07009 Capn2  Calpain-2 catalytic subunit  79.9 8.4E-03 -1.1 -1.5 -1.3 

P07943 Akr1b1 Aldose reductase  35.8 8.5E-03 -1.1 -1.4 -1.3 

        
HT, hydroxytyrosol; SEC, secoiridoids; MW, molecular weight; FC, fold change; N/A, not available. 

The fold change is positive if the treatments are up-regulated and negative if they are down-regulated. comparing HT or SEC to control group and SEC to 

HT group. 
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Table 3.  34 significant proteins differentially expressed in heart tissue of healthy rats after HT or SEC treatments. 

Swiss-Prot 

code 

Gene 

symbol 
Protein Name 

MW 

(kDa) 
p  

FC  

(HT versus 

Control 

group) 

FC  

(SEC versus 

Control 

group) 

FC  

(SEC versus 

HT group) 

Q9Z0W7 Clic4 Chloride intracellular channel protein 4  28.60 3.3E-05 -1.1 1.4 1.5 

P15865 Hist1h1e Histone H1.2  22.00 3.9E-05 -1.3 1.2 1.5 

Q9QXQ0 Actn4 Alpha-actinin-4  104.80 4.0E-05 -1.1 1.3 1.5 

O35952 Hagh Hydroxyacylglutathione hydrolase. mitochondrial  34.10 1.6E-04 1.1 3.4 3.3 

P0C0S7 H2afz Histone H2A.Z  13.50 2.7E-04 -1.0 -1.4 -1.4 

P43278 H1f0 Histone H1.0  20.90 3.1E-04 -1.2 1.3 1.5 

Q5XIF6 Tuba4a Tubulin alpha-4A chain  49.90 3.5E-04 1.1 1.2 1.1 

P13084 Npm1 Nucleophosmin  32.50 5.0E-04 1.1 1.1 1.0 

P15791 Camk2d 
Calcium/calmodulin-dependent protein kinase type II 
subunit delta  

60.00 5.6E-04 1.4 -1.4 -2.0 

P62076 Timm13 
Mitochondrial import inner membrane translocase 

subunit Tim13  
10.50 6.6E-04 -1.2 -1.5 -1.3 

Q9JLZ1 Glrx3 Glutaredoxin-3  37.80 6.8E-04 1.1 -1.3 -1.4 

P00388 Por NADPH--cytochrome P450 reductase  76.90 7.3E-04 -1.3 -1.4 -1.1 

Q5XI73 Arhgdia Rho GDP-dissociation inhibitor 1  23.40 7.7E-04 1.1 1.2 1.1 

P83732 Rpl24 60S ribosomal protein L24  17.80 7.8E-04 -1.0 1.3 1.3 

O70196 Prep Prolyl endopeptidase  80.70 9.0E-04 1.0 -1.2 -1.3 

P62919 Rpl8 60S ribosomal protein L8  28.00 1.0E-03 1.2 1.3 1.1 

Q6RJR6 Rtn3 Reticulon-3  101.50 1.1E-03 1.0 1.2 1.2 

P62329 Tmsb4x Thymosin beta-4  5.00 1.2E-03 -1.2 1.9 2.3 

P60901 Psma6 Proteasome subunit alpha type-6  27.40 1.3E-03 -1.2 1.1 1.4 

P11030 Dbi Acyl-CoA-binding protein  10.00 1.4E-03 -1.3 1.1 1.4 

Q562C7 N/A 
Pumilio domain-containing protein KIAA0020 

homolog 
72.70 1.6E-03 -1.2 1.2 1.5 

P63159 Hmgb1 High mobility group protein B1  24.90 1.7E-03 -1.0 1.4 1.4 

Q6AXV4 Samm50 
Sorting and assembly machinery component 50 

homolog  
51.90 1.8E-03 1.1 -1.2 -1.3 

P62898 Cycs Cytochrome c. somatic  11.60 1.8E-03 -1.1 -1.3 -1.2 

O35763 Msn Moesin  67.70 1.9E-03 1.2 1.3 1.1 

O88382 Magi2 
Membrane-associated guanylate kinase. WW and 

PDZ domain-containing protein 2  
141.00 2.1E-03 -1.0 -1.3 -1.3 

Q62658 Fkbp1a Peptidyl-prolyl cis-trans isomerase FKBP1A  11.90 2.2E-03 1.2 1.7 1.4 

Q6P6R2 Dld Dihydrolipoyl dehydrogenase. mitochondrial  54.00 2.2E-03 -1.1 -1.1 -1.0 

Q6PCU8 Ndufv3 
NADH dehydrogenase [ubiquinone] flavoprotein 3. 

mitochondrial  
11.90 2.3E-03 -1.4 1.1 1.6 

O35077 Gpd1 
Glycerol-3-phosphate dehydrogenase [NAD(+)], 
cytoplasmic  

37.40 2.5E-03 -1.2 -1.3 -1.1 

O35303 Dnm1l Dynamin-1-like protein  83.90 2.5E-03 -1.0 1.2 1.2 

P08461 Dlat 

Dihydrolipoyllysine-residue acetyltransferase 

component of pyruvate dehydrogenase complex, 

mitochondrial  

67.10 2.5E-03 -1.1 -1.1 1.0 

P02091 Hbb Hemoglobin subunit beta-1  16.00 2.7E-03 -1.1 2.2 2.5 

Q5M7W5 Map4 Microtubule-associated protein 4  110.20 2.7E-03 -1.2 1.0 1.2 

HT, hydroxytyrosol; SEC, secoiridoids; MW, molecular weight; FC, fold change;  N/A, not available. 

The fold change is positive if the treatments are up-regulated and negative if they are down-regulated. comparing HT or SEC to control group and SEC 

to HT group. 
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Table 4. Functions and related proteins in aorta and heart tissue after HT or SEC treatments involved in the top-scored 

network: Cardiovascular System Development and Cancer 

Cardiovascular System Functions Aorta tissue proteins Heart tissue proteins 

Cardiac functions 

Formation of Thrombus Anxa2 - 

Occlusion of blood vessel Kng1/Kng1l1 - 

Cell viability of cardiomyocytes Hk2, Hspd1, Hk2 - 

Survival of ventricular myocytes Hk2,  - 

Proliferation of endothelial cells  Gja1, Kng1/Kng1l1 - 

Cardiogenesis Gja1, Mylk3 - 

Vasoconstriction of blood vessel Gja1, Hspa1a/Hspa1b - 

Migration of endothelial cell lines Rac1 - 

Heart rate Rac1, Tpm1 - 

Cell death of cardiomyocytes Hspd1, Hspe1 - 

Apoptosis of cardiomyocytes Hspd1, Hspe1 - 

Hypertrophy of cardiomyocytes Cryab Camk2d, H2afz, Glrx3 

Pericarditis - Tuba4a 

Myocardial infarction - Tuba4a, Psma6 

Acute myocardial infarction - Tuba4a 

Hypertrophy of heart - Camk2d, Fkbp1a, H2afz, Glrx3 

Severe heart failure - Camk2d 

Failure of heart - Camk2d, Fkbp1a 

Hypertrophy of left ventricle - Fkbp1a 

Congestive heart failure - Fkbp1a 

Systolic dysfunction - Fkbp1a 

Lipid metabolism 

Synthesis of acetyl-coenzime A - Dlat, Dld,  

Fatty acid metabolism - Dlat, Dld, Dbi, Hbb, Msn, Por 

Acetylation of acetyl-coenzyme A - Dlat 

Acetylation of dihydrolipoic acid - Dlat 

Synthesis of lipid - Dlat, Dld, Dbi, Hbb, Por 

Synthesis of fatty acid - Dlat, Dld, Hbb 

Concentration of cholesterol - Dbi, Por, Arhgdia 

Quantity fo very long chain fatty acid - Dbi 

Quantity of farnesyl pyrophosphate - Por 

Oxidation of testosterone - Por 

Conversion of androstenedione - Por 

Concentration of tretinoin - Por 

Concentration of retinol - Por 

Cytotoxicity of tacrolimus - Fkbp1a 

Oxidation of cardiolipin - Cycs 

Oxidation of linoleic acid - Cycs 

Binding of paclitaxel - Map4 
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