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Abstract 

The reduction in energy demand for heating and cooling with insulation materials increases the material 
related environmental impact. Thus, implementing low embodied energy materials may equilibrate this trade-
off. Actual trends in passive house postulate bio-based materials as an alternative to conventional ones. 
Despite that, the implementation of those insulators should be carried out with a deeper analysis due to their 
hygroscopic properties. The moisture transfer, the associated condensation risk and the energy consumption 
for seven bio-based materials and polyurethane for a building-like cubicle are analysed. The performance is 
evaluated combining a software application to model the cubicle (EnergyPlus) and a tool to optimize its 
performance (jEPlus). The novelty of this optimization approach is to include and evaluate the effects of 
moisture in these insulation materials, taking into account the mass transfer through the different layers and 
the evaporation of the different materials. This methodology helps  optimise the insulation type and thickness 
verifying the condensation risk, preventing the deterioration of the materials. The total cost of the different 
solutions is quantified, and the environmental impact is determined using the life cycle assessment 
methodology. The effect of climate conditions and the envelope configuration, as well as the risk of 
condensation, are quantified. The results show that cost and environmental impact can be reduced if bio-based 
materials are used instead of conventional ones, especially in semiarid climates. Condensation risk occurs for 
large thicknesses and in humid climates. In our case studies, hemp offered the most balanced solution.  
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GHG  Greenhouse gases 

DEA  Data Envelopment Analysis 

TOPSIS Technique for Order of Preference by Similarity to Ideal Solution 

µ  Permeability resistance factor 

CFT  Conduction Transfer Function 

 HAMT  Heat and moisture transfer 

SOO  Single-objective optimisation 

MOO  Multi-objective optimisation 

CTE  Spanish building code 

ITEC  Institute of technology of the construction 

RH  Relative humidity 

BSk  Cold semiarid climate 

Af  Tropical rainforest climate 

Bsh  Hot semiarid climate 

COP  Coefficient of performance 

PPD  Predictive percentage dissatisfied 

C1  Insulation inside the air gap -core insulation 

C2  Insulation interior surface of the wall -indoor insulation, C2 

GLO   Average global impact 

   Thermal diffusivity (m2/s) 

  Thermal conductivity (W/mK) 

  Density (kg/m3) 

C  Specific heat (J/kgꞏK) 

Costcub  Cost derived from the construction of the cubicle (€) 

Costelect  Cost of the electricity needed for heating and cooling the cubicle (€) 

Pricemat  Cost of the materials used to build the cubicle (€/kg) 

Priceelect  cost of the electricity (€/kWh) 
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Priceins  market prices of the different insulators (€/kg) 

m(mat,n)  materials mass (kg) 

mins  insulation mass (kg) 

m  years 

i  annual increment (%) 

Costtotal  Total cost (€) 

Impcub  Impact of the materials used in the construction of the cubicle (points) 

Impelec  Impact of the electricity consumed during the operation time horizon (points/kWh) 

Impmat   Impact of the construction materials of the cubicle (points/kg)  

Impins   Environmental impact per mass corresponding to the insulation material (points/kg) 

Conselect  Consumption for heating and cooling (kWh) 

f ,   Minimum acceptable interior surface temperature 

f   Interior surface temperature 

θ    Internal interstitial temperature 

θ    Outside temperature 

θ    Inside temperature and 

θ ,    Minimum interstitial temperature 

Psat  Saturation pressure 

Pi  Vapour presure 

θ   Temperature 

ϕ   Internal relative humidity 

EMPD   Effective Moisture Penetration Depth 

DB-HE  Basic document of Energy Efficiency 

1. Introduction  

Intervention in existing building stocks is a key strategy for tackling the objectives posed by the European 
Commission, which urge member countries to reduce the internal greenhouse gases (GHG) emissions by 80% 
in 2050 with respect to their 1990 emissions levels. This means that many buildings are and will be potentially 
renovated throughout Europe. It is estimated that about 10 million dwellings should be refurbished between 
now and 2050 only in Spain if the above mentioned EU challenges are to be achieved [1]. Among the multiple 
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strategies that can be applied to reduce the energy consumption of buildings, the improvement of envelope 
thermal performance by the implementation of thermal insulation materials is one of the most extended. If 
properly implemented, higher insulation has been proved to reduce building energy demand and thus, the 
environmental impact and costs associated with energy production and consumption [2]. However, such 
intervention also requires an investment and involves an environmental impact derived from the manufacture, 
installation, dismantling and disposal of the materials [3,4]. If the so-called conventional insulation materials 
are used (organic foams and mineral wools), increasing the thermal performance of the envelope implies 
increasing the thickness of the insulation layer, which, in turn, translates into more materials and higher 
environmental impact [5]. Neglecting such environmental impact may lead to solutions that, even when 
effectively improving the operational energy efficiency, they result in a higher global impact on the 
environment [6–8]. 

Accordingly, the development of innovative insulation materials has gained the interest of the scientific 
community in the recent years. Two different approaches have been adopted: (1) the reduction of the amount 
of material used, that is, improving the thermal performance of the materials [9,10]; and (2) the reduction of 
the environmental impact associated to the material, that is, replacing conventional materials with 
“environmental friendly” ones[11,12]. Aerogels and vacuum insulation cells are examples of the former. Bio-
based materials, such as hemp or wood mats, are examples of the latter. In the development of bio-based 
insulation materials, natural fibres and aggregates are used alone or combined to conform highly porous 
thermal insulation products [13–16]. Such products can compete with conventional materials in terms of 
thermal conductivity (which is about 0.040 Wꞏm-1ꞏK-1) but, also, offer additional environmental advantages 
[17].  

Although bio-based insulation materials are increasingly commercially available, their market share 
corresponds only to a marginal fraction of the global thermal insulation market [18]. This is in part due to 
their relatively high economic cost when compared to mineral wools or polystyrene. However, as the 
environmental impact is beginning to be considered, a compromise between these two competing factors (i.e., 
cost and environmental impact) will be increasingly sought. In such a context, the advantages offered by bio-
based materials will probably boost their use. However, such speculation is merely intuitive. In order to 
discern which solutions, among the possible options, can simultaneously optimise these two factors a 
systematic optimisation process is required that uses adequate solution algorithms.  

Optimisation algorithms have been proved to be a powerful tool in the disclosure of optimal solutions for the 
design of efficient building services. A wide range of possible optimisation methodologies are available [19], 
such as Data Envelopment Analysis (DEA) [17], TOPSIS decision-making methods [20,21], genetic 
algorithms [22–24], Particle Swarm Optimization algorithms [25] or Pareto based algorithms [26–28], each 
presenting their strengths and drawbacks [7]. In buildings, optimisation algorithms have been generally used 
focusing the optimisation of a single objective variables, which may either be the cost [29,30], the energy 
needed to operate the building [31], the CO2 emissions or the environmental impact derived from the 
construction, use, and demolition of the building [32]. 

However, some authors also propose the use of such mathematical tools for the optimisation of two or more 
objective variables simultaneously. Fesanghary et al. [33] combined different genetic algorithms to generate 
inputs for the optimisation process which included the CO2 emissions as an optimisation objective. More 
recently, Wu et al. [34] proposed a bottom-up methodology which optimises different characterised buildings 
for optimising a complete residential community, minimising the cost and the generation of GHG. Finally, 
Carreras et al. [6], proposed a multi-objective optimisation model capable of highlighting the optimum 
thermal insulation thicknesses that simultaneously minimised the cost and environmental impact associated 
with both the energy consumption over the operational phase and the manufacture of the construction 
material. The authors found that for the continental climate of Lleida (Spain), the use of different insulation 
thickness in each wall orientation does not represent an important reduction in the global cost of the solutions. 
From all the materials analysed (mineral wool, polystyrene, and polyurethane), the latter offered the best 
performance regarding economic cost, while mineral wool offered lower environmental impact and a more 
balanced compromise between both parameters. The study of Carreras et al. [6] showed that an informed 



5 
 

choice of the insulation material and thickness might result in important cost savings and environmental 
benefits. It also pointed out the importance of the material choice in the total impact of the building.  

In addition within a wall system, the presence of thermal insulation materials can cause problems of 
condensation. Unlike conventional materials, bio-based insulation materials have low water vapour 
permeability resistance factors (µ about 3-6) and are highly vulnerable to mould growth [35]. Thus, they are 
more sensitive to humidity problems. Usually, interstitial condensation can be controlled with water vapour 
barriers. However, one of the advantages of bio-based materials is their hygroscopicity, which has been 
proved to contribute in the passive control of indoor air comfort conditions, both in terms of temperature and 
relative humidity [36–38]. In consequence, condensation risk assessments are even more crucial if bio-based 
insulation materials are to be used.  

In the present work, seven bio-based materials are evaluated using the approach proposed by Carreras et al. 
[6], in order to determine how the optimal solutions achieved with these materials compare with the optimal 
solutions obtained with conventional ones. The novelty of this work is the implementation of the condensation 
risk combined with multi-objective optimisation, analysing the mass transfer through the construction layers 
and the evaporation capacity of the materials. It is carried out for the different solutions, which would generate 
optimal solutions without health problems due to the presence of mould in bio-based materials. The 
investigation is divided into two parts. In the first part, the materials are compared using EnergyPlus models 
based on an experimental cubicle from the University of Lleida [39]. Multi-objective optimisation is used to 
evaluate their cost and environmental impact performance simultaneously. In the second part, the effect of the 
position of the insulation layer in the building envelope and the effect of the climate on the results is also 
analysed. Moreover, the risk of condensation of each of the optimal solution obtained is evaluated with the 
intent to evaluate its feasibility.  

2. Methodology 

In this paper, seven bio-based building insulators (one of which is an experimental corn-pith based material) 
are evaluated and compared to a conventional polyurethane insulator. The materials are compared in terms of 
the total environmental impact and total cost resulting from their implementation in buildings.  

To this aim, a case study was chosen, corresponding to an experimental cubicle built at the testing site at the 
University of Lleida. The building was modelled and calibrated before the analysis. Then, the materials were 
compared for three different climate conditions and two wall configurations by means of a multi-objective 
optimisation process, in which the risk of condensation was considered. A simplified algorithm describing the 
complete process is presented in Fig. 1. As shown in Fig. 1, the methodology proposed can be divided into 
three main optimisation loops: step 1, single-objective optimisation; step 2, multi-objective optimisation; and 
step 3, assessment of the risk of condensation. These optimisation loops are described in more detail in the 
following sections. 
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*Values for a precast reinforced concrete beam. 

Table 2. Hypothesis established for the calculation of the energy performance of the model.  

  Hypothesis  
External 
thermal loads 

The cubicle is situated in a cold semiarid climate (BSk following the Köpen climate 
classification) which corresponds to the climate of Lleida, Spain, where the cubicle is 
physically built. The orientation of the building is the same as the physical cubicle. 

Infiltrations are set at 0.12 air renovations per hour. 

The envelope is homogenous, without any thermal bridge. 

Internal thermal 
loads 

Inexistence of internal gains (considering that the cubicle is not occupied). 

Conditioning 
systems 

The onset temperature is fixed for summer and winter, as described in ISO 7730 [51]. 

The heating and cooling energy are supplied by a reversible heat pump with a COP of 3. 
The air exchange rate is dependent on temperature and fluctuates between 2 and 5 l/s. 

The model was afterwards modified to analyse the performance of diverse bio-based thermal insulation 
materials. The variables analysed were:  

(1) type of thermal insulator (7 bio-based materials and polyurethane). Their properties are presented 
in Table 1. 

(2) thickness of the insulation layer, which was homogeneous all over the envelope, as previous 
studies showed that such assumption does not have a significant impact on the results [6], when 
compared to options in which the thickness of the insulation layer can vary from wall to wall. 

(3) position of the insulation layer within the thermal envelope (either inside the air gap -core 
insulation, C1- or at the interior surface of the wall -indoor insulation, C2).  

The aim was to find out which of the possible combinations resulted in a solution with simultaneously low 
environmental impact, low cost and low risk of condensation (that is, high durability).  This analysis was 
performed for the original climate conditions (cold semiarid; BSk following the Köpen climate classification) 
and two other distinct climate regimes: tropical rainforest (Af), and hot semiarid (BSh). The setpoint 
temperature was fixed following the ISO 7730, Table A.5, limiting discomfort to < 10 PPD (category B) and 
considering a metabolic activity corresponding to an individual office.  For the cold semiarid climate, the set-
point was 20ºC during the heating season and 26ºC during the cooling season. For the two other climates, the 
set-point for the cooling season (26ºC) was used for the entire year. Fig. 4 summarises the different conditions 
analysed. The steps depicted correspond to those shown in Fig. 1. 
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2.3. Single-objective optimisation  

2.3.1. Cost assessment 

The economic indicator was determined as the sum of the cost derived from the construction of the cubicle 
(Costcub, €), which includes the cost of the construction materials and the thermal insulators, and the cost of 
the electricity needed for heating and cooling the cubicle along a lifespan of 20 years (Costelect):  
 

∑ , , 	  (Eq. 3) 

∑ 1  (Eq. 4) 

	  (Eq. 5) 

 
The cost of the materials used to build the cubicle (Pricemat) was 940 € [6]. The market prices of the 

different insulators (Priceins) are presented in Table 1. The cost of the electricity (Priceelect) was assumed to be 
0.22 €/kWh, with a yearly cost increment of 5%. The electricity mix considered was that of Spain for the year 
2015. 

2.3.2. Environmental impact 

ReCiPe [53] indicator was used to determine the environmental impact of the materials. ReCiPe is a rating 
method in which 17 different impacts are aggregated into three different damage categories (human health, 
ecosystem quality, and resources) and translated into points using normalisation and weighting factors.  

For the calculations, two main sources of impact were considered: the manufacture of the materials used in the 
construction of the cubicle, including the dismantling phase (Impcub), and the amount of electricity consumed 
during the operation time horizon, defined in 20 years (Impelec). The values corresponding to each component 
were obtained from Ecoinvent database (version 3.2.). Values for global market (GLO) were preferred. Where 
the specific material or component was not available, the most similar option was chosen. In order to cover 
the whole life cycle of the materials (cradle to grave) the impact of the waste processing was also included in 
the calculation.  

The first source of environmental impact (Impcub) was determined as follows:  

	 ∑ 	                (Eq. 6) 

Where: Impcub (points) is the total ReCiPe impact of the construction materials of the cubicle; Impmat 
(points/kg) is the coefficient of environmental impact per unit mass of a material n, which is taken from the 
Ecoinvent database [54]; mmat (kg) is the corresponding quantity of raw material n; Impins (points/kg) is the 
coefficient of environmental impact per mass corresponding to the insulation material evaluated; and mins (kg) 
is the total quantity of insulation used, which changes for each thickness analysed. The ReCiPe points 
attributed to each material are depicted in Table 3. 

For the second source, Ecoinvent data on the Spanish electricity production system is used to translate the 
electricity consumed over the operational phase into ReCiPe impact points as follows: 

                  (Eq. 7) 

Where: Impelect (points) is the total ReCiPe impact of the consumed electricity over the operational phase of 
the cubicle; Impelect (points/kWh) is the coefficient of environmental impact per kWh of electricity in Spain 
(0.0482 points/kWh); and Conselect (kWh) is the consumed electricity over the lifetime of the cubicle (20 
years). 
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The global environmental impact is defined as the sum of the two sources (Impcub and Impelect).  

 

Table 3. Main sources of impact associated with the materials during the manufacturing and dismantling 
phases.  

Component Ecoinvent database item 
ReCiPe  

(points/kg) 
Amount  

(kg) 

Total 
ReCiPe  
(points) 

CONSTRUCTION 

Plaster 
Market for base plaster, GLO [kg] 0.0229 518 11.86 

Market for waste mineral plaster, GLO [kg] 0.0019 518  0.97 

Brick 
Market for brick, GLO [kg] 0.0285      5456    155.47 

Market for waste brick, GLO [kg] 0.0018      5456        9.65 

Cement mortar 
Market for cement mortar, GLO [kg] 0.0238 608 14.45 
Market for waste cement in concrete and mortar, 
GLO [kg] 

0.0028 608   1.67 

Reinforced concrete 

Market for section bar rolling, steel, GLO [kg] 0.0200 262   5.24 

Market for concrete, normal, GLO [m3]   28.3000*  0.57* 16.13 

Market for waste reinforced concrete, GLO [kg] 0.0025      1492   3.28 

Concrete tiles 
Market for concrete roof tile, GLO [kg] 0.0244      1770      43.16 

Market for waste concrete, not reinforced, GLO [kg] 0.0019      1770  3.28 

Asphalt 
Market for mastic asphalt, GLO [kg] 0.0378  153  5.78 

Market for waste asphalt, GLO [kg] 0.0021  153 0.32 

INSULATION 

Cotton Market for cotton fibre [GLO] (kg) 3.3089 - - 

Cellulose 
Market for cellulose fibre, inclusive blowing in 
[GLO] (kg) 

0.0298 
- - 

Cork Market for cork slab [GLO] (kg) 0.5442 - - 

Corn Market for maize silage, organic [GLO] (kg) 0.0157 - - 

Hemp Market for kenaf fibre [GLO] (kg) 0.0993 - - 

Wool Market for sheep fleece in the grease [GLO] (kg) 9.2190 - - 

Wood 
Market for slab and siding, hardwood, wet, measured 
as dry mass [GLO] (kg) 

0.0372 
- - 

All bio-based 
insulation 

Market for waste wood, untreated [GLO] (kg) 0.0043 
- - 

Polyurethane 
Market for polyurethane, rigid foam [GLO] (kg) 0.5195 - - 

Market for waste polyurethane foam [GLO] (kg) 0.0581 - - 

*These values are given by volume unit. 

Previous research showed that optimal solutions of low environmental impact materials require thicker 
insulation layers , whereas high embodied materials achieve thinner solutions. Beforehand, this implies that 
cellulose, corn and hemp would have thicker layers than other materials, while cotton and wool would have 
thinner ones. However, when energy consumption is taken into account, such trend may vary.  

2.4. Multi-objective optimisation 

After having identified the extreme solutions, that is, solutions minimising either cost or environmental 
impact, those solutions giving a better trade-off between these two competing objectives were identified by 
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means of multi-objective optimisation (MOO). To this aim, the two objective functions presented in Sections 
2.3.1 and 2.3.2 were considered. Then, the total cost and the total environmental impact of all the solutions 
(that is, all materials and thicknesses analysed) where plot together. When plotted on a chart where x axe 
corresponds to one of the optimisation objectives and y axe to the other, optimal solutions conform a Pareto 
front below which no solution exists which simultaneously improves both objectives.  In other words, each 
point in the Pareto frontier minimises the total cost and the total impact. The rest of the solutions are so-called 
dominated solutions, that is, they have worse performance in one of the different objectives concerning the 
solutions forming the Pareto front, and thus can be dismissed.  

2.5. Risk of condensation 

The optimal solutions were evaluated in terms of the risk of condensation. The aim was to discard those 
options that were unfeasible due to the risk of superficial and interstitial condensations. This evaluation was 
made following the procedure described in the DB-HE of the Spanish Building Code (CTE) [55]. This 
procedure is based on a comparison between indoor and outdoor conditions, which were output data from the 
energy simulations. The interstitial and superficial condensations were calculated for the most unfavourable 
month and the water evaporation for the rest of the year.  

On a first step, the optimal cubicle configurations obtained previously were simulated using the HAMT model 
from EnergyPlus to obtain the temperatures and the humidity at each wall surface. From these results, the 
minimum acceptable interior surface temperature (f , ), and the interior surface temperature (f ), were 
worked out following the method indicated at the DB-HE. Then, the superficial condensation risk was 
evaluated by comparing the f ,  (Eq.8) against the f  (Eq. 9) and the interstitial condensation risk was 
determined by comparing the vapour pressure (Eq. 10) with the saturation pressure (Eq.11 and 12), which was 
calculated according to the DB-HE. 

,
,                  (Eq. 8) 

                  (Eq. 9) 

Where  is the internal interstitial temperature,  is the outside temperature,  is the inside temperature and 
,  is the minimum interstitial temperature. 

2337               (Eq. 10) 

610.5
.
. 																										 0º            (Eq. 11) 

610.5
.
. 																											 0º            (Eq. 12) 

Where  is the temperature and  is the internal relative humidity. 

If the result showed that condensation could probably take place, a further evaluation was performed, which 
considered the evolution of this condensation throughout the year. To this aim, the water content during the 
whole year of the layers that presented a risk of condensation was calculated following the EN ISO 13788, 
starting from the first month in which there was a risk of condensation. Such calculation allowed for the 
evaluation of the balance between the amounts of water condensed in a material surface and the water 
evaporated from that surface. For these solutions where the amount evaporated was higher than the condensed 
amount, it was considered that it would be naturally dried, and the solution was considered valid. 
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rest of the cases. On the contrary, using wool would allow achieving higher energy savings, as its optimal 
thickness is 24 cm.  

Table 4 presents, for each of the insulation materials and the three climates analysed, the optimal thickness, 
total cost and total environmental impact over 20 years. Only the wall arrangement in which the thermal 
insulation is placed in the air gap (core insulation, C1) is presented as this resulted in being the most optimal 
solution in all cases. The relative cost and environmental impacts of the bio-based cost-optimal solutions 
concerning those of polyurethane are also presented (values in brackets).  

The results show that in the BSk and the Af climates, the use of bio-based materials is advantageous in all 
cases in terms of total costs with respect to the use of PU, with the exception of the wood insulation. The less 
expensive solution was the use of wool (24 and 13 cm at BSk and Af climates respectively), which supposed a 
total saving of 28% with respect to PU. However, when comparing the environmental impact, only cellulose, 
corn and hemp showed an improved behaviour compared to PU. It is noticeable that an informed choice of the 
insulation material can lead to cost savings up to 40% with respect to the most expensive option, which in this 
case was wood. Similarly, environmental impact reductions up to 85% with respect to the less performant 
option, which in this case was wool, can be achieved. In the hot semiarid climate (BSh), the trends differed 
from the other two climates. In this case, only cellulose and hemp resulted in lower cost and environmental 
impact than PU. It is important to note that the wood material chosen for this comparison is remarkably denser 
than the rest of the materials, which is highly affected by the cost per cubic meter of the solution.  

Table 4. Results from the single-objective optimisation of the cost in the three climates. 

 Cold semiarid (BSk) Tropical rainforest (Af) Hot semiarid (BSh) 

 e (cm) Cost (€) EI (points) e (cm) Cost (€) EI (points) e (cm) Cost (€) EI (points) 

Baseline - 4966 772 - 3854 633 - 4674 735 

PU 9 2100 422 6 1501 345 9 1676 368 

Cotton 29 1544 (-26%) 1329 (+215%) 16 1102 (-27%) 833 (+141%) 22 2247 (+34%) 1051 (+186%)

Cellulose 21 1712 (-18%) 337 (-25%) 13 1195 (-20%) 284 (-18%) 17 1481 (-12%) 297 (-19%) 

Cork 14 1971 (-6%) 525 (+24%)  9 1349 (-10%) 403 (+17%) 12 1711 (+2%) 455 (+24%) 

Corn 19 1737 (-17%) 335 (-26%) 12 1209 (-19%) 282 (-18%) 14 1776 (+6%) 298 (-19%) 

Hemp 22 1652 (-21%) 336 (-26%) 13 1158 (-23%) 283 (-18%) 18 1425 (-15%) 294 (-20%) 

Wool 24 1512 (-28%) 2300 (+445%) 13 1085 (-28%) 1349 (+291%) 18 2381 (+42%) 1770 (+381%)

Wood 8 2677 (+27%) 428 (+1%) 6 1820 (+21%) 336 (-3%) 8 2487 (+48%) 374 (+2%) 

 

3.1.2. Environmental impact 

The environmental impacts (cradle to grave) of the insulation materials and the construction materials, 
together with the environmental impact of the electricity needed to maintain the pre-set operative temperature 
for 20 years were also considered for optimisation. The results are given in Fig. 6 and Table 5. For ease of 
understanding, only polyurethane and three of the materials (hemp, cork and wool) are presented in Fig. 6. 
Again, it was expected that a bigger insulation thickness resulted in a higher embodied environmental impact 
and a reduced operational environmental impact. It was also foreseen that the higher the environmental impact 
of a material, the lower the optimal thickness. 

From the results it is noticeable that the optimal solutions for wool and cotton correspond to low thicknesses 
(1 to 3 cm) at the three climate conditions while, in contrast, the optimal solutions for cellulose, corn and 
hemp correspond to thicknesses between 20 and 86 cm, with a high variability depending on the outdoor 
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order to prevent interstitial condensation. Ventilated cavity walls and water vapour barriers will be needed. 
How such elements interfere with the hygrothermal performance of bio-based materials is an aspect to be 
analysed in detail in future studies. 

The analysis of the risk of condensation resulted in the discard of 78%, 0% and 100% of the optimal solutions 
obtained in the multi-objective optimisation process for cold semiarid, hot semiarid and tropical rainforest 
climates respectively. The disparity in results among the distinct climates proves the importance of analysing 
the condensation risk in early stages of the design process. This implies that when using bio-based insulation 
materials, the risk of condensation should be taken into account in order to avoid structural damages and 
harmful effects on the health of occupants.  

For the cold semiarid climate, despite reducing an important amount of solutions, the suggested solution for 
the MOO, 22cm of hemp (knee point) can be applied without risk, but thicker insulation layers should be 
avoided due to the condensation risk. In the case of hot semiarid, any of the solutions obtained with the 
optimisation could be applied without risk, but despite that, the solution in the knee point is preferable as it 
leads to an important reduction in environmental impact with a low increment in cost. Finally, this 
construction profile with bio-based material insulation should not be implemented in a tropical rainforest 
climate, due to the high risk of condensations. Different wall configurations and the use of water vapour 
barriers would prevent this risk but may play against the hygrothermal performance of bio-based materials.  

4. Conclusions 

Cost, environmental impact and risk of condensation resulting from the incorporation of seven bio-based 
insulation materials into an experimental cubicle were analysed using a multi-objective optimisation approach. 
The results were compared to a conventional polyurethane insulation. To this aim, an energy model of the 
cubicle was built and calibrated.  

The results obtained indicate the use of bio-based materials may offer better solutions (in terms of cost and 
environmental impact minimisation) than the use of other conventional materials, such as polyurethane. 
Indeed, for the case study analysed, the optimal solutions obtained at each optimisation loop of the process 
corresponded to bio-based insulators. In particular hemp, cellulose and an innovative corn-pith based insulator 
were the materials that yield better results.  

It was found that being the thermal properties and environmental impact of most of the materials rather similar 
(except for the sheep wool), the cost of the insulations had an important impact in their performance. This 
implies that finding a supplier offering competitive prices may represent the difference between a viable 
alternative and a no viable one, provided that the environmental impact is not increased. This is bonded with 
the concept of local green economy: the use of locally sourced and produced materials reduces both the cost 
and the environmental impact due to less transportation thus providing more optimal solutions.  

The results showed that for the cold semiarid climate conditions of Lleida (Spain) and the considered building 
type, the best economic options were those including 24 cm of cotton or wool, achieving a cost reduction of 
about 28% when compared to the optimal solution using polyurethane. On the other hand, the best solutions in 
terms of low environmental impact was corn (86 cm) which offered an improvement of about 26% when 
compared to the optimal solution using polyurethane. Despite being optimal solutions, due to practical 
limitations, solutions of large thicknesses will not be applied in real life. The solution including 22 cm of 
hemp seemed to be the best compromise solutions when both objectives were considered. However, similar 
benefits can be achieved using corn and cellulose with less than 5% difference in total cost and less than 1% 
in terms of environmental impact. As expected, the optimal solutions in hot climates require less insulation. 
Again, the solutions including hemp were found to be the best ones when both objectives were minimised 
simultaneously.  

The results were sensitive to the envelope configuration. The solutions in which the insulation layer was 
placed on the interior surface of the wall, instead of the air gap, resulted in higher cost and environmental 
impact. Such trend was less significant in a tropical rainforest climate, where the thermal gap between day and 



22 
 

night is small thus annulling the effect of the thermal inertia of the envelope. Only in a tropical rainforest 
climate, the risk of condensation was found to be a concern. In such a climate, the hygrothermal performance 
of the whole envelope should be carefully evaluated previously to the implementation of bio-based materials. 
If water vapour barriers are needed, the effect of the hygroscopic nature of such materials might be reduced.  

Bio-based materials represent a viable alternative to polyurethane and other conventional insulators, allowing 
for less expensive, more environmentally friendly solutions. However, these solutions usually represent higher 
thicknesses, and due to this fact, their use must be preceded by a deep analysis of their moisture behaviour.  

The results obtained in the present study allow for a fair comparison between the different insulation 
materials. However, the models used have several simplifications which may have an impact on the results. In 
future works, the results will be verified using more complex models. Moreover, the effect of the 
hygrothermal performance of the materials on the multi-objective optimisation needs to be analysed.  
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