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a b s t r a c t 

This paper presents a novel method to delineate metropolitan areas – or functional urban areas (FUAs) – in the 

entire world and assesses their population trends. According to the definition developed by the OECD and the 

European Union, FUAs are composed of high-density urban centres with at least 50 thousand people plus their 

surrounding commuting zones. The latter represent the urban centres’ areas of influence in terms of labour market 

flows. The proposed method combines a functional and a morphological approach to overcome the dependency 

on travel-to-work data to define commuting zones and allow a global delineation. It relies on a probabilistic 

approach and the use of population and travel impedance gridded data across the globe. Results show that 

around 3.9 billion people, making up 53% of the world population, live in 8,790 FUAs, out of which 17% live 

in their commuting zones. Between 2000 and 2015, population growth was higher in larger FUAs, highlighting 

a general trend toward higher concentration of the metropolitan population. Commuting zones grew faster than 

urban centres, though with heterogeneous patterns across world regions, income levels and metropolitan size. 
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. Introduction 

Understanding socio-economic and demographic dynamics of
etropolitan areas requires a careful delineation of metropolitan

oundaries. Metropolitan areas are composed of densely inhabited
rban centres plus their surrounding and interconnected lower-density
reas. A major reason behind the need to delineate metropolitan areas
s that official data and information at that scale generally refer to ad-
inistrative or legally-defined regions. The latter tend to adapt slowly

o rapid changes in population and economic activities in space, yield-
ng a persistent or even increasing misalignment between ‘legal’ and
economic’ boundaries. Moreover, large differences across countries in
he size and structure of local administrative units seriously affect cross-
ountry comparisons and represent an obstacle to robust worldwide
vidence on the features of urbanisation and its consequences. 

Metropolitan areas’ delineation generally adopts functional
pproaches, relying on commuting ties between local units
 Duranton, 2015 ; Bosker et al., 2019 ). Such methods are likely to
e the most accurate to delineate metropolitan areas, but the lack
f commuting data in many countries limit a global and consistent
elineation. Many countries have also delineated their own metropoli-
an areas for planning or statistical purposes (e.g. the Metropolitan
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tatistical Areas in the United States or the Census Metropolitan Areas
n Canada). In the same vein, the Functional Urban Areas (FUAs)
eveloped by the OECD and the European Union provide a consistent
efinition of metropolitan areas already applied to OECD and European
ountries ( OECD, 2012 ; Dijkstra et al., 2019 ) based on an aggrega-
ion of local units (i.e. municipalities, small local jurisdictions, etc.).
ccording to the EU-OECD definition, FUAs consist of high-density
rban centres (‘cities’) and their surrounding areas of influence in terms
f travel-to-work flows (‘commuting zones’). In the remainder of the
aper, the terms FUAs and metropolitan areas are used as synonyms. 

While the scarcity of comparable data sources can limit global de-
ineations of urban centres and metropolitan areas, recent studies rely
n geo-spatial data generated from satellite imagery. This is the case for
tudies based on nighttime lights ( Zhang and Seto, 2011 ; Ch et al., 2019 ;
ingel et al., 2019 ; Harari, 2019 ; Ellis and Roberts, 2016 ), built-up land
over classifications ( Baragwanath et al., 2019 ), and a combination of
uilt-up area and population estimates ( Freire et al., 2018 ). 

Our work contributes to this literature by proposing a method to
niquely identify commuting zones around urban centres. We start from
onsidering urban centres as clusters of contiguous grid cells of high-
ensity population, based on the definition developed by Dijkstra and
oelman (2014) . We approximate commuting zones around each urban
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entre by relying on the estimated probability that one-km 

2 grid-cells
utside urban centres belongs to a metropolitan area. 

The estimation is performed through a logistic regression model,
hich is trained using information on actual EU-OECD FUA (baseline)
oundaries in 31 countries with available data. The estimation uses
bout 0.5 million one-km 

2 cells with at least 300 inhabitants in baseline
ountries. The dependant variable takes the value of one if the cell falls
ithin a baseline boundary and zero otherwise. Following previous
ork on the area of influence of cities ( Uchida and Nelson, 2011 ), the
redictors include the distance of the cell to the closest urban centre,
he size of the urban centre, the cell population and country-level
haracteristics. We then use the model parameters to obtain estimated
robabilities for around 2.5 million cells in and outside baseline
ountries. In order to define which cells belong to FUAs and which
o not, we compare the estimated probabilities to optimal thresholds
alculated by world region. In the same way as other satellite data-base
efinitions ( Ch et al., 2019 ; Baragwanath et al., 2019 ), the resulting
stimated FUAs are fully independent from country-defined local
urisdictions boundaries, thus maximising cross-country comparability. 

Conceptually, our method comes close to studies estimating market
otential areas around urban centres, including the agglomeration index
ethod proposed by Uchida and Nelson (2011) . However, our method
iffers in two important aspects. First, instead of imposing a prede-
ermined distance threshold (i.e. 60-min travel time by car), we use a
ata-driven approach to determine the appropriate distance threshold
or each urban centre in every direction by relying on estimated prob-
bilities at the cell level. Second, in Uchida and Nelson (2011) , market
otential areas can overlap with other urban centres or the market
otential areas of other urban centres. In contrast, our approach defines
ommuting zones that are unique to each urban centre, mainly because
e want to obtain an estimate of population in commuting zones. 

One important feature of our approach is that it delineates agglom-
rations of people rather than agglomerations of human activities, such
s built-up areas or nightlights. Daytime satellite data captures a larger
rray and variety of human settlements than nighttime lights-based
ethods ( Baragwanath et al., 2019 ), and may be more suited to capture
ifferences in development levels and physical structures because
uilt-up areas per capita likely increase with the level of economic de-
elopment. Besides, nighttime lights-based methods involve a trade-off
etween under-identification of smaller urban settlements at the cost
f “exploding ” large urban areas to unrealistically large sizes because
hey rely on exogenous radiance thresholds ( Baragwanath et al., 2019 ).

Our method relies instead on data from existing metropolitan areas
cross world regions, which allows us to conduct extensive sensitivity
nalyses to understand the consequences of necessary assumptions
hen attempting a global definition. While we train our model using

nformation on mostly developed countries to make global estimations,
ur results come close to those of recent studies applied to both devel-
ped and developing countries (e.g. Brazil, China, India and the United
tates) relying on nighttime light and built-up land ( Ch et al., 2019 ;
aragwanath et al., 2019 ). Moreover, our metropolitan area boundaries
or large cities in Indonesia come close to boundaries obtained by
osker et al. (2019) using the commuting flows method proposed by
uranton (2015) . 

By distinguishing urban centres from their respective commuting
ones, our method allows us assessing world patterns of metropolitan
opulation growth as well as of intra-metropolitan dynamics, including
uburbanisation. We define suburban population as the population in
ommuting zones, and suburbanisation as the growth of population in
hose areas. 

The method allows the delineation of 8,790 metropolitan areas
FUAs) 1 based on 10,082 urban centres in 168 UN-recognised countries.
1 A geopackage with the full set of metropolitan area boundaries and 

heir corresponding area and population in urban centres and commuting 

b

z

s

ccording to such results, 53% of the world population – about 3.69
illion people – lived in FUAs in 2015, out of which 17% lived in
ommuting zones. North America hosts the largest percentage (72%) of
eople in FUAs, followed by Latin America (63%). The concentration of
etropolitan population in a few large FUAs is highest at intermediate

evels of development and show an inverse U-shaped relationship
ith income per capita. On the other hand, the proportion of FUA
opulation in commuting zones increases with income levels and is
argest in high-income countries (31%). 

Between 2000 and 2015, population growth was relatively faster
n FUAs than in other areas, with relatively faster growth in larger
etropolitan areas. Yet, one fifth of FUAs worldwide declined or

tagnated. In terms of intra-metropolitan dynamics, the proportion of
uburban population increased practically everywhere, although in ab-
olute terms population in commuting zones remains significantly lower
han in urban centres. Growth in the commuting zones coexisted with
rban centres declines in 17% of FUAs, although in most cases urban
entres and commuting zones showed a consistent change in population.
verall, 70% of FUA population growth occurred through densification
f existing urban centres, although that proportion drops to only 56%
n high-income countries, where suburbanisation and urban centres’ ex-
ansion characterised more prominently metropolitan growth patterns.

The remainder of the paper is organized as follows. Section 2 outlines
he delineation question and describes data sources and pre-processing.
ection 3 outlines the empirical method to select, estimate and vali-
ate the econometric model, the procedure to delineate boundaries,
nd external validity checks using the cases of Brazil and Indonesia.
ection 4 presents the results of the metropolitan area delineation by
ocumenting and discussing key facts on population dynamics across
nd within FUAs. The last section concludes. 

. Problem definition and data preparation 

.1. Data sources 

Our aim is to classify the earth’s surface area into areas that belong
o a FUA and those that do not. For this, we rely on three main
ources of data: 1) global measures of urban centres and density; 2)
lobal measures of travel time; and 3) existing FUA boundaries (see
nnex A for a detailed description of the data). 

The satellite-derived Global Human Settlements Layer (GHSL,
esaresi et al., 2016 ) provides built-up and population distribution
rids, and a settlements classification according to their density. This
opulation layer is the basis for the settlement layer (GHS-SMOD,
lorczyk et al., 2019 ; Pesaresi et al., 2019 ) that implements the global
efinition of cities proposed by Dijkstra and Poelman (2014) . This
armonized definition allows the comparison of different cities extents
r populations across the globe. 

To obtain comparable measures of travel time between any two grid
ells, we rely on the global travel impedance grid ( Weiss et al., 2018 ).
his grid represents time associated with moving through grid cells,
uantified as a movement speed within a friction grid. Information on
oads (fastest type takes precedence, with speeds obtained from Open
treet Maps tables), railroads, water bodies and movement over land is
sed to characterize each grid cell. The unit of measurement is minutes
equired to travel one kilometre. See Weiss et al. (2018) for more details.

Finally, baseline metropolitan area boundaries – the EU-OECD
UAs boundaries available in 31 countries – define commuting zones
ased on the intensity of commuting to urban centres from areas
utside them, following the method outlined in OECD (2012) and
ijkstra et al. (2019) . The boundaries consolidate administrative
orders of local units in each country. 
ones (2015) is freely available for download at: https://ghsl.jrc.ec.europa.eu/ 

tg19/a2019/datasets.php . See Schiavina et al. (2019) . 

https://ghsl.jrc.ec.europa.eu/stg19/a2019/datasets.php
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Cell (1-km2)

FUA (=1)
Urban centre

Area containing 50 000 people
or more made up of contiguos
cells each with at least 1 500
people

Commuting zone
Exclusively defined area 

outside each urban 
centre

Not FUA (=0)

Fig. 1. Classification of cells and hierarchy of spatial aggregations. 

Source: Elaboration based on Dijkstra and Poelman (2014) . 
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.2. Problem definition 

Based on the GHS-SMOD layer and consistently with the settlement
ayer definition ( Dijkstra and Poelman, 2014 ; Florczyk et al., 2019 ),
he world land surface can be divided into two types of cells. The first
ype are high-density cells that make up urban centres. Urban centres
re clusters of contiguous high-density cells (with at least 1,500 people
er km 

2 or at least 0.5 km 

2 of built-up area) which altogether contain
t least 50,000 inhabitants ( Fig. 1 ). 2 Cells within urban centres are by
onstruction part of a FUA and therefore do not need to be classified.
he second type are inhabited cells with moderate (at least 300 people
er km 

2 ) or low density (less than 300 people per km 

2 ). 3 Any cell
utside urban centres may or may not be part of a commuting zone. 

With a comprehensive global definition of urban centres, what is
issing to obtain FUAs at a global level is defining the boundaries

f commuting zones for each urban centre. It is not possible to extend
he baseline FUAs delimitation method globally because we lack the
ecessary commuting flows data. However, we can use baseline FUAs
o estimate the probability that each cell within each country is part of
 commuting zone of an existing urban centre. 

Our empirical strategy is to train a classification model using
aseline FUAs boundaries to decide which cells are part of commuting
ones and which ones are not. We can then evaluate the cell-level
robabilities against an optimal probability threshold to determine
hich cells belong to FUAs (i.e. those = 1) or not (those = 0) ( Fig. 1 ). 

.3. Data preparation 

Before proceeding with the model estimation, we need to undertake
wo data preparation steps: 1) subset the group of cells that need to be
lassified; and 2) assign them to urban centres. 

Regarding the first step, we use a subset of cells with population
bove a single predetermined threshold to determine the boundaries
f commuting zones, instead of using all populated cells. This strategy
reatly reduces the number of cells that need to be classified globally.
hile the choice of threshold could be made based on model perfor-
ance metrics for different options, this strategy is computationally

ntensive 4 since the number of cells increases greatly at low-density
alues (and will ultimately approximate the earth’s area at the extreme
2 Urban centres that cross country borders are split by country, and only those 

ith at least 50 thousand people are kept. This is done because the estima- 

ion uses country-level data and relies on baseline FUAs defined within country 

oundaries. 
3 Including uninhabited cells (e.g. water bodies, parks, etc.) which are not 

onsidered for the classification problem but may be part of FUAs (e.g. a park 

ithin an FUA). 
4 The implemetation for a given specification using cells with more than 300 

eople takes several days running in high-capacity servers, making unfeasible 
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ase when all cells are included). As an alternative, we use a threshold
f 300 people which corresponds to the threshold officially applied by
urostat to define medium-density cells in the Degree of Urbanisation
efinition ( Dijkstra and Poelman, 2014 ). From here onwards, when the
erm “cell ” is used, it will refer to a cell with a population of at least
00 people, unless otherwise stated. 

Regarding the second step, assigning every cell to a unique urban
entre allows us to get non-overlapping commuting zones. We assign
nequivocally each cell to an urban centre following a simple rule. In
aseline FUAs, local areas are assigned as part of the commuting zone
f the urban centre with the largest commuting intensity amongst all ur-
an centres in the country, provided the percentage of people commut-
ng from the local area is above a certain threshold. Without commuting
ows data, a reasonable assumption is to assign each cell to the closest
rban centre (i.e., assume that the closest centre has the highest prob-
bility amongst all other urban centres). In baseline FUAs, cells inside
UAs ( = 1) are already assigned unequivocally to an urban centre and a
ountry, while all other cells outside FUAs ( = 0) are only assigned to a
ountry. This means that for the baseline case, we apply the procedure of
ssigning cells to the closest urban centre only to cells outside baseline
UAs. In all other cases, we assign all cells outside urban centres to their
losest urban centre (i.e., the urban centre with the smallest travel time).

. Empirical strategy, implementation and validation 

After assigning and selecting the subset of cells that will be the basis
o construct commuting zone boundaries for all urban centres, there is
t least a couple of major choices to make regarding which cells will
e ultimately categorised as part of a FUA. The first concerns the spec-
fication of the classification model trained for 31 countries and whose
arameters are used to estimate FUAs’ boundaries globally ( Fig. 2 , step
). The second concerns the probability threshold that defines which
ells are considered part of a FUA or not ( Fig. 2 , steps 2 and 3). 

.1. Model specification and selection 

Our model selection problem consists of verifying the relevance of
he predictors suggested by theory and previous studies, and finding a
robability distribution that balances realism with parsimony. In other
ords, we want to come as close as possible to the true data generating
rocess without overfitting the data. 

Previous literature on the extent of cities emphasises the role of ag-
lomeration economies generated by thick local labour market and en-
anced learning and matching mechanisms ( Duranton and Puga, 2004 ).
uilding on Uchida and Nelson (2011) and their agglomeration index
he task of running global versions of the model for multiple specifications for 

ll cells. 
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1. Estimate parameters through cell-level logistic regression model for baseline FUAs (31 countries). Choose model 
specification using a step-wise procedure

2. Use estimated parameters to estimate probability 
values for each cell in global sample (168 countries)

3. Define optimal probability threshold by world region 
(9/21 regions based on baseline FUA data) and cross-

validate

4. Assign each cell in global sample as part of FUA (=1) 
if estimated probability is above relevant threshold

Fig. 2. Classification steps. 
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Fig. 3. Variable importance score. 

Note: VIS = Variable Importance Score, dist = travel time, area = urban centre 

area, pop = cell population. 
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dentification, three key indicators can capture the sources of agglomer-
tion economies and can be framed under a gravitational approach: the
opulation size and the density of the urban centre on the one hand, and
he travel time to the urban centre on the other. While size and density
re linked with agglomeration benefits in urban centres, low distances
nsure surrounding lower density areas can access these benefits. 

Translating these arguments into an econometric specification leads
o the following general model to delineate FUA boundaries at the cell
evel based on cell, urban centre and country characteristics: 

 𝑈 𝐴 𝑖𝑗𝐶 = 𝛽0 + 

𝑝 ∑

𝑘 =1 
𝛽𝑘 𝑑𝑖𝑠𝑡 

𝑘 
𝑖𝑗𝐶 

+ 

𝑝 ∑

𝑘 =1 
𝛾𝑘 𝑠𝑖𝑧𝑒 

𝑘 
𝑖𝑗𝐶 

+ 

𝑝 ∑

𝑘 =1 
𝜑 𝑘 𝑠𝑖𝑧𝑒 

𝑘 
𝑗𝐶 

+ 

𝑝 ∑

𝑘 =1 
𝜔 𝑘 𝐺𝐷𝑃 𝑘 

𝐶 
+ 

𝑝 ∑

𝑘 =1 
𝜋𝑘 𝑐𝑎𝑟𝑠 

𝑘 
𝐶 

+ ∈𝑖𝑗𝐶 (1)

here FUA ijC is a dummy variable that takes the value of one if cell
 located in country C and linked to urban centre j falls within FUA
oundaries and zero otherwise; dist ijC is the travel time between cell i
nd urban centre j; size ijC is the size of the cell (measured by popula-
ion) ; size jC is the size of urban centre j (measured by population, area
r nightlight); GDP C is GDP per capita; cars C is the number of vehicles
er 1,000 inhabitants; and ∈ ijC is an error term; k is the degree of each
redictor in the summation (from 1 to p ) with its own coefficient. Annex
 describes the data and its sources, and Table B.1 in Annex B shows
ummary statistics for the variables considered. To capture meaningful
ifferences in car usage across countries, we would need to consider
oad capacities and/or a measure of transit (congestion) in addition
o road provision already captured in the global impedance matrix.
nfortunately, this information is not currently available at a global

cale in a comparable form. 
The estimation method is a logistic regression with binomial distri-

ution via nonparametric bootstrap with 100 repetitions and clustered
tandard errors at the FUA level. 5 The estimation relies on 466,361
bservations across 1,287 urban centres in 31 countries: Colombia plus
ECD countries, except those with no available FUAs (New Zealand,

srael, Turkey and Lithuania) and those with only one FUA (Luxemburg
nd Iceland). The proportion of cells within FUAs is 46.8%, while the
eminding 53.2% are outside FUAs. All variables on the right-hand side
re log-transformed as in other applications based on the gravity model
e.g. Ahlfeldt and Wendland, 2016 ; Goh et al., 2012 ). 

The model selection relies on a stepwise model formulation that
dds one predictor at the time. The procedure starts with the model
ith the smallest Bayesian Information Criteria (BIC) among those with
 single predictor out of dist ijC , size jC , size ijC , GDP C and cars C . At this
tep, we compare three different proxies for urban centre size: area,
5 Galdo et al. (2019) in their application for India also use bootstrapping 

cross known urban areas. 

i

v

opulation and nightlight. The next step involves testing two predictors
t the time, adding the square term of the already selected variable, and
hoosing the model with the lowest BIC value. Each time a specification
s kept if all parameter estimates (including the intercept) have a
ignificant p-value ( < 0.05). 6 Once this model is obtained, all possible
nteractions among the remaining predictors are tested and kept if
hey are statistically significant and improve the model performance.
nnex B illustrates the procedure at step 1 and from step 5 onwards

results for other steps are available upon request). Tables B.2 and
.3 in Annex B shows the regression results. 

The stepwise procedure supports the following specification: 

 𝑈 𝐴 𝑖𝑗𝐶 = 𝛽0 + 

2 ∑

𝑘 =1 
𝛽𝑘 𝑑𝑖𝑠𝑡 

𝑘 
𝑖𝑗𝐶 

+ 𝛾1 𝑠𝑖𝑧 𝑒 𝑖𝑗𝐶 + 

2 ∑

𝑘 =1 
𝜑 𝑘 𝑝𝑜𝑝 

𝑘 
𝑗𝐶 

+ ω 𝐺𝐷 𝑃 𝐶 + ∈𝑖𝑗𝐶 

(2) 

sing population as proxy for urban centre size ( size jC ). Extensive
ensitivity analysis shows that the final delineation of FUAs’ boundaries
s robust to changes in the model specification (results available upon
equest). Annex C shows a comparison with a specification including
andom intercepts at the level of urban centres and countries. Fig. 3
ummarizes the variable importance score (absolute value of the z-stats)
f the estimated model. Travel time from each cell to the urban centre
s the most powerful predictor of the probability of belonging to a FUA,
ollowed by the size of the urban centre. 
6 A caveat of stepwise procedure for model selection is that it is myopic, i.e., 

t only looks one step forward at any point, without any indication on the next 

ariable to include. 
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Table 1 

Performance results. 

Performance metric Value 

Sensitivity 0.8396 

Specificity 0.8584 

Balanced Accuracy 0.8490 

False Positive Error 0.1416 

False Negative Error 0.1604 
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.2. Optimal threshold determination 

After obtaining the model parameters, we can proceed to allocate
ells with estimated probability higher than a given threshold to a FUA.
owever, we must first define a criteria to determine which threshold
e will use. Because our aim is to maximize prediction performance,

nstead of establishing theoretically meaningful relationships between
he explanatory variables and the outcome, 7 we determine an optimal
robability threshold by maximising model accuracy ( A ) of predicted
ositives and negatives, as follows: 

ax 𝑡 𝐴 ( 𝑡 ) = ( 𝑇 𝑃 ( 𝑡 ) + 𝑇 𝑁 ( 𝑡 ) ) ∕ ( 𝑇 𝑃 ( 𝑡 ) + 𝑇 𝑁 ( 𝑡 ) + 𝐹 𝑃 ( 𝑡 ) + 𝐹 𝑁 ( 𝑡 ) ) (3)

here A is accuracy, t is the optimal threshold value; TP are the truly
redicted positives; TN the truly predicted negatives; FP the falsely
redicted positives; and FN the falsely predicted negatives. A larger
hare of falsely predicted positives leads to higher false positive error,
r acting when action was not warranted (Type I error). Similarly, a
arger share of falsely predicted negatives lead to larger false negative
rror, or to not acting when action was warranted (Type II error). The
esults of this maximization problem will be influenced by how much
e weight false positive versus negative error. In our case, larger false
ositive error may lead to FUAs that are too large (cells which should
ot have been included are included), and larger negative error may
ead to FUAs that are too small (cells which should have been included
re not included). As neither of these options is clearly desirable a

riori , we make our decision on the appropriate weight based on model
erformance metrics described below. 

Besides the positive versus negative error weights, another choice
e need to make is whether we use a single optimal threshold for the
orld or calibrate optimal thresholds for each world region. The latter

trategy would allow for more prediction flexibility in regions with
ifferent urbanisation patterns, geographies and levels of development,
ut we still need to determine empirically if it performs at least as well
s a single world threshold. 

To determine thresholds for each world region, we use baseline
nformation when available (i.e., in 9 out of 21 United Nations, UN,
orld regions) and full model information otherwise. For regions with
o baseline country information in the training set, a conservative
lternative is to use the highest estimated threshold (0.75). 8 For each
N region, the optimal threshold is determined by maximising the
ccuracy ( A ) as specified in Eq. (3) for each region, assuming that false
ositive error has an equal weight than false negative error. 

We select the final optimal thresholds based on performance across
ve criteria: 1) sensitivity, or the percentage of cells inside FUAs rightly
redicted as such; 2) Specificity, or the percentage of cells outside
UAs rightly predicted as such; 3) Balanced Accuracy, or the number of
orrectly predicted positives/negatives over the total number in each
lass; 4) False negative error; and 5) False positive error. These statistics
re calculated over the actual number of cells inside and outside drawn
UA boundaries, which differ slightly from the corresponding estimated
robability values because additional cells may enter the FUAs as part
f the boundary drawing process (see the next subsection and Table
1 in Appendix G ). 

The best performing model is the one with optimal thresholds by
orld region and equal weights for positive versus negative error.
nnex D describes the optimal threshold method in detail, including
obustness checks in comparison with different false positive/false
7 The balanced proportion of FUA versus non-FUA cells in the sample ensures 

etter prediction performance is not mechanically related to a higher or lower 

roportion of cells in the sample. See Chapter 3 of Géron (2017) for more details 

n our approach on training a binary classifier, selecting performance measures 

nd cross-validation using machine learning techniques. 
8 The value of 0.75 comes close to to the one obtained by weighting false 

ositive error 3 times higher than false negative error (0.74). 

t  

o  

b  

f  

h

egative error weights. Table 1 shows the performance of the selected
odel. In absolute terms, the model performs above what generally

ccepted to be a good to excellent performance. 

.3. Functional urban areas delineation 

We delineate FUAs by combining cells selected through the steps
escribed in Fig. 2 into polygons. This delineation procedure implies
mall changes in the cells that are finally included in the boundaries,
s described in detail for each country in Table O1 in Appendix G . The
ext subsection shows robustness results for larger distance thresholds. 

In order to avoid unrealistically large urban centres in terms of
urface and population (an issue in some highly dense countries
uch as Bangladesh and Egypt), we impose two simple rules: first,
 FUA can only have one urban centre of half a million inhabitants
r more (see Annex E for robustness analysis for different options of
hese thresholds). Second, we split urban centres with more than 20
illion inhabitants and more than 2,500 km 

2 if they have at least two
ypercores. Hypercores are areas within large urban centres containing
 million people or more made up of contiguous cells, each with more
han 3,000 people. 9 This splitting applies only to the six largest urban
entres 10 and allows very high-density areas within their FUAs to be
onsidered as independent commuting destinations. 

In the baseline case, two or more FUAs with urban centres located
t 5 km from each other are merged into a single polycentric FUA.
his merging procedure is not applied if the population of either urban
entre is at least 500 thousand people. The final delineation results in
,790 FUAs, based on 10,082 urban centres in 168 countries. 

.4. Comparison of alternatives with different merging distance thresholds 

Conceptually, increasing the merging distance threshold should
ead to more fragmentation, i.e., a larger number of FUAs located at
lose proximity from each other and a more even size distribution.
lternatively, decreasing the merging distance threshold should lead to

ess fragmentation but also to a more uneven size distribution, as it can
esult in larger FUA sizes at the top of the size distribution. 

In order to understand the effect of increasing or decreasing the
erging distance threshold, the results for two alternative cases are

onsidered: 1) not merging FUAs unless the urban centres touch (i.e.
etting the merging distance to 0 km); and 2) increasing the merging
istance threshold to 10 km. In this comparison, we keep the population
hreshold at which urban centres are not merged constant (and equal
o 500 thousand people). Annex E shows the sensitivity results for this
hreshold. 

The rank-size rule states that there is an ordering in city sizes such
hat the second largest city is half of the size of the first, the third half
f the size of the second and so on. Empirically, we test the relationship
y regressing the log of city rank against the log of the city population
or the baseline case (5 km), and the two comparison cases (0 km and
9 Urban centre area is divided according to the Euclidean distance from each 

ypercore. 
10 These are: Guanghzhou, Jakarta, Tokyo, Shanghai, Dhaka and Kolkata. 
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Fig. 4. Rank-size regression by selected countries, 2015. 

Note: “Slope ” corresponds to slope regression estimates of a regression on log(rank – 0.5) on log(FUA population) for 2015. All slope coefficients significant at the 

1% level of confidence. 
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0 km). 11 The direction and magnitude of the shifts in the estimated
ank-size relationship signals in which cases changes in the merging
istance threshold significantly impact the urban-size distribution. For
nstance, more merging at the top of the city-size distribution leads to
ore primacy – or in terms of the rank-size rule estimation, to a smaller

lope coefficient ( Ch et al., 2019 ). As expected, a merging distance of
 km results in smaller estimated slopes compared to the baseline case
5 km), indicating a faster decay at higher population values and a
igher number of (smaller) FUAs. This is the direct result of less FUAs
eing merged. The differences in slope coefficients are nevertheless
mall. 12 On the other hand, the slope coefficients for the case of 10 km
ersus 5 km are larger, indicating a slower decay at higher population
alues and a smaller number of larger FUAs, because more FUAs have
een merged into polycentric ones. 

We can also use these rank-size results for United States,
razil, China and India to compare our results with those of
hauvin et al. (2017) , Dingel et al. (2019) and Ch et al. (2019) . 13 

ig. 4 displays the rank-size regressions for United States, Brazil, China
nd India for the three merging distance options. 
11 We run rank-size regressions for countries with at least 20 FUAs (67 cases). 

ll slope coefficients are within the expected range (~ − 1.4 to ~− 0.7), excect 

or Ethiopia (~ − 1.74). Empirical applications in the literature subtract 0.5 from 

he rank, following Gabaix and Ibragimov (2011) ’s suggestion for improved es- 

imates ( Ch et al., 2019 ; Chauvin et al., 2017 ). For comparability this paper 

ollows the same approach. 
12 In the comparison between 0 km versus 5 km the difference in slope coef- 

cient is larger than 0.1 (in absolute value) for United Kingdom, South Africa, 

anada and Egypt. In the comparison between 5 km and 10 km it is larger than 

.1 only for the United Kingdom. 
13 Chauvin et al. (2017) uses administrative areas to define metropolitan areas 

hereas Ch et al. (2019) and Dingel et al. (2019) use nigh-time lights. Their 
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The shape of the rank-size fit and the regression coefficients we ob-
ain are in line those reported in Ch et al. (2019) and Dingel et al. (2019) .
hey confirm the relevance of the rank-size rule in describing the urban
ystem of all four countries, as the estimated coefficients are all close to
 1. Consistently with those studies, the smaller estimated coefficients

in absolute value) we obtain do not lend support to the hypothesis
f non-linearities (possibly driven by primacy) in the rank-size fit for
hina and India initially proposed by Chauvin et al. (2017) using
dministrative areas. 

Our slope coefficients for the rank-size regressions for the baseline
ase are within the range of results in the literature. 14 The shape of the
ank-size plot and slope coefficients are remarkably similar in all cases
xcept for India, especially when using the 5 km merging distance (i.e.
he baseline case). This is the case even though we identify many more
etropolitan areas compared to Ch et al. (2019) , even when using a
0 km merging distance threshold. 15 
esults are for 2010, whereas this paper’s are for 2015. For comparability, FUAs 

ith less than 100 thousand people are dropped in the four cases. 
14 Ch et al. (2019) report − 0.81 (n = 201) for United States; (compare to − 0.89 

n = 251) in baseline), − 0.91 (n = 115) for Brazil ( − 0.97 (n = 182) in baseline 

esults, and − 0.96 reported by Soo (2014) ), − 0.96 (n = 534) in China; ( − 1.01 

n = 1,177) in baseline), and − 0.92 (n = 344) in India; ( − 1.08 (n = 1207) in 

aseline). Dingel et al. report − 1.178 (n = 1,264) in China (2010) and − 1.044 

n = 465) in India (2011). Our results for the United States are also in line with 

eneri (2016) , who uses the EU-OECD FUA definition for OECD countries and 

nds a coefficient between − 0.86 and − 0.89 (n = 262). 
15 On the other hand, we identify a similar number of metropolitan areas com- 

ared to Dingel et al. for China (they obtain 1,264 cities in 2010 while we obtain 

,078 in 2015). 
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Fig. 5. Jaccard index results, Brazil. 

Note: Out_FUA = Percentage of population in alternative boundaries not accounted for in administrative FUA boundaries; excess area = Percentage difference in area 

of administrative FUAs versus alternative boundaries. See Annex F for more details. 
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.5. External validity 

This section describes an out-of-sample comparison of estimated
etropolitan boundaries for Brazil and Indonesia. The comparison

elies on the Jaccard index ( Bellefon et al., 2019 ; Bosker et al., 2019 ),
hich gives a measure of the overlap between two sets of boundaries
y comparing the size of their intersection to the size of their union.
he Jaccard index is complemented with other measures used to
ompare the likeness of the two sets of boundaries in each country.
nnex F describes the Jaccard Index in more detail, as well as the
rocedure to translate FUA boundaries into administrative boundaries. 

razil 

The comparison boundaries for Brazil are drawn from the arranjos

opulacionais dataset. In a similar fashion as the EU-OECD definition
f FUAs, this territorial definition relies on functional criteria based on
ommuting flows. Other metropolitan definitions for Brazil are limited
o larger urban areas (e.g. 69 metropolitan areas), or are meant to
e comprehensive of the whole territory without the adoption of any
unctional criteria (e.g. microregions, used in Chauvin et al., 2017 ).
ee Dingel et al. (2019) for a detailed discussion on the limitations of
on-functional urban definitions for Brazil. See Annex F for details on
he data preparation for the comparison. 

Fig. 5 shows the comparison for the 128 arranjos against the 140 es-
imated FUAs subsequently adapted to local administrative boundaries.
he median Jaccard index across 128 metropolitan areas is 0.96, indicat-

ng a very high level of concordance between the two sets of boundaries.
he Jaccard index is equal to 1 (i.e. a perfect match) for 38 arranjos, and
ery high ( > 0.9) for 94 (in 128) cases, including the metropolitan areas
f Rio de Janeiro (0.96), São Paulo (0.96) and Belo Horizonte (0.97).
ll metropolitan areas with more than 1 million people have Jaccard

ndices higher than 0.75. Mid-range values (0.5–0.7) occur in medium-
ized arranjos, and low ( < 0.5) values occur in six cases. Administrative
UAs account for 6% less population compared to all 177 arranjos. 

The lowest values of the Jaccard index occur in two cases: 1) when
he comparison boundary is almost entirely covered by the large admin-
strative FUA (e.g. Petropolis, Jaccard index = 0.02, covered by Rio de
aneiro); and 2) when FUA boundaries are intersected by a much larger
rranjo (e.g. Jundai, Jaccard index = 0.03, intersected by São Paulo). 

ndonesia 

Unlike Brazil, there are no official metropolitan or functional
rban boundaries with national coverage for Indonesia. A recent
aper by Bosker et al. (2019) obtains metropolitan boundaries using
ifferent approaches, including the method based on commuting flows
roposed by Duranton (2015) . We compare boundaries obtained by
osker et al. (2019) following this method using a 7% commuting pop-
lation threshold. Such threshold is favoured by Bosker et al. (2019) be-
ause, among other reasons, it “generates a much larger number of
eparate areas, each consisting of only a few districts ” while all the
ther “satellite data-based ” approaches tend to agglomerate a larger
umber of districts in fewer of metro areas ( Bosker et al., 2019 ). 

Fig. 6 shows the results of the comparison. Out of 39 comparison
reas, 2 are not covered by a FUA adapted to administrative boundaries.
he median of the Jaccard index for 37 cases is 0.56, and the index takes
he value of 1 for 10 cases. As Fig. 5 shows, for lower population values
below 1 million inhabitants), low Jaccard values arise because the com-
arison boundaries are larger than FUAs (thus FUAs do not account for
 relatively large percentage of population in the comparison areas). In
id-range, low Jaccard values are due to smaller boundaries compared

o FUAs (so population in the comparison boundaries is accounted for,
ut FUAs appear over-agglomerated). At high population ranges, both
pproaches give similar boundaries. The similarity is very high for the
etropolitan areas of Jakarta (and they are also similar to official Ja-

odetabek boundary, population ~ 32 million), with a Jaccard value of
.94, and for Bandung metro (second largest metro, 8.4 million), with a
accard value of 0.88 (see Fig. 7 for a visual of the boundaries in Java).

. A global picture of metropolitan areas 

By applying the method outlined in Section 3 we identify 8,790
UAs across 168 countries, covering a surface of nearly 2.5 mil-
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Fig. 6. Jaccard index results, Indonesia. 

Note: Out_FUA = percentage of population in alternative boundaries not accounted for in administrative FUA boundaries; excess area = percentage difference in area 

of administrative FUAs versus alternative boundaries. See Annex F for more details. 

Fig. 7. Java comparison of metro politan 

(metro) areas obtained by Bosker et al. 

(2019) using a 7% commuting threshold and 

FUAs adapted to administrative borders (admin. 

FUAs). 

Source: Open Street Maps, Bosker et al. 

(2019) and own calculations. 
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Table 2 

Functional urban areas by income level and world region, 2015. 

# FUAs FUA population 

(thousands of persons) 

FUA share (as% of total 

population) 

Urban centres share (as% 

of total population) 

Commuting share (as% 

of FUA population) 

Income level 

Low income 842 205,113 33.2 32.0 3.6 

Lower-middle income 3,696 1,455,400 49.6 44.4 10.4 

Upper-middle 3,148 1401,400 55.2 45.5 17.7 

High income 1,104 802,318 70.1 48.7 30.6 

World region 

Africa 1,757 517,445 44.5 41.5 6.8 

Asia 4,939 2,264,670 52.1 44.4 14.9 

Europe 893 426,795 58.0 38.8 33.0 

Latin America & Caribbean 868 375,176 62.5 54.7 12.5 

North America 295 258,179 72.2 48.1 33.4 

Oceania 38 22,054 58.7 42.5 27.5 

World 8,790 3,864,319 53.4 44.4 16.9 
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Table 3 

Population shares in FUAs, by FUA size and countries’ income. 

< 250K 250K-1M 1M-5M > 5M Total 

Low income 13% 7% 11% 2% 33% 

Lower-middle 11% 12% 14% 13% 5% 

Upper-middle 11% 14% 15% 15% 55% 

High income 7% 17% 24% 22% 7% 

Fig. 8. Development level and the concentration of FUA population. 

Note: 89 countries with more than 10 FUAs included. “High-income ” according 

to the World Bank income classification. 

m  

a
 

i  

r  

p  

5  

i  

t  
ion km 

2 . 16 The United States has the largest FUA area coverage
570,477 km 

2 ), followed by China (386,993 km 

2 ) and India (141,244
m 

2 ). The remainder of this section provides a set of key facts on
he basic characteristics of metropolitan areas, as well as on their
opulation dynamics across world regions and income groups. 17 We
nalyse population dynamics by keeping FUA boundaries constant at
he time of delineation (2015) and use population levels in 2000 and
n 2015, two available years in our global population data. 

.1. The importance and characteristics of metropolitan areas 

Fact 1: More than half of the world population live in functional urban

reas, with the largest share in North America (72%) and the lowest in

frica (44%). 

With about 3.9 billion people in 2015, FUAs account for 53% of
he world population. As expected, such a proportion changes with
ncome levels, ranging from over 70% in high-income countries to 33%
n low income countries ( Table 2 ). The Americas have the largest share
f people living in FUAs, followed by Europe and Asia, while Africa
as the smallest share. With 36.4 million people, Tokyo, Japan is the
orld’s largest metropolitan area, followed by Delhi, India. 

Population in FUAs approximates the amount of dwellers whose
onnections, lifestyle and mobility is likely to be urban, including both
eople living in high-density settlements (urban centres) and in close
ower density areas. In this context, our results are in line with the
rbanisation rate reported by the UN World Urbanisation Prospect
 UN DESA, 2019 ), according to which the total urban population is
5% at the global level. 

Fact 2: Both the proportion of metropolitan population and the average

ize of metropolitan areas tend to increase with income levels. 

The share of people living in metropolitan areas increases with
conomic development. The average proportion of countries’ popu-
ation living in FUAs rises from 33% in low-income countries up to
0% in high-income countries. Such proportions are 50% and 55% for
ower-middle and upper-middle countries, respectively ( Table 3 ). This
act is clearly consistent with what we know from both theoretical and
mpirical literature, suggesting that urbanisation is a prominent feature
f the spatial transformations generated from economic development
 Desmet and Henderson, 2015 ). As countries develop, productivity
ains in agriculture and the transformation of the economy with the
hift towards manufacturing and service industries are important
16 Countries that are not recognised by the United Nations or whose recogni- 

ion is controversial have been excluded, as well as countries with no GDP data 

vailable. 
17 We used the country groups as defined by the World Bank. On the method 

sed to group countries by income, see: https://datahelpdesk.worldbank. 

rg/knowledgebase/articles/378833-how-are-the-income-group-thresholds- 

etermined (last access December 2019). 
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m  
echanisms driving rural–urban migration and the rise of metropolitan
reas ( Michaels et al., 2012 ). 

Overall, the average size of metropolitan areas is larger in high-
ncome countries. If we break down all FUAs in four size classes, each
epresenting similar shares of population, we can clearly see that the
roportions of population in the two largest classes – between 1 and
 million and beyond 5 million inhabitants, respectively – tend to
ncrease with income levels ( Table 3 ). This evidence is coherent with
he idea that city size increases in local productivity, human capital
nd travel speed ( Duranton and Puga, 2019 ), all features which tend to
ncrease with economic development. 

Fact 3: At intermediate levels of development, a higher share of

etropolitan population is concentrated in few large FUAs. 

We observe a non-linear relationship between countries’ average
ncome per capita and the concentration of the FUA population across
pace. Fig. 8 plots such relationship, where the coefficient of variation
easures the spatial concentration of the FUA population. For a

https://datahelpdesk.worldbank.org/knowledgebase/articles/378833-how-are-the-income-group-thresholds-determined
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Fig. 9. Development level and importance of commuting zone, 2015. 

Table 4 

Proportion of FUA population by settlement density and income level. 

Urban centers 

(density > 1,500 

inh./km 

2 ) (%) 

Towns & semi-dense 

areas (density > 300 

inh./km 

2 ) (%) 

Rural (density 

< 300 inh./km 

2 ) 

(%) 

High income 69.4 21.8 8.8 

Upper middle income 82.3 15.1 2.5 

Lower middle income 89.6 9.3 1.1 

Low income 96.4 3.1 0.5 
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eaningful interpretation of the coefficient of variation, only countries
ith at least 10 FUAs entered the analysis. A simple linear regression

onfirms the inverse U-shaped relationship, even after controlling for
otal country population and using different measures of concentration
f the metropolitan population. 18 According to such regression, the
aximum metropolitan concentration occurs with levels of GDP per

apita of about 10,000 USD. 
This finding suggests that the dominance of a few large metropolitan

reas over the remaining ones tends to increase from low to inter-
ediate stages of development and then decreasing at higher income

evels. The inverse U-shaped association between income per capita and
etropolitan concentration seems to be driven by the existence of a few

arge FUAs dominating the metropolitan system rather than by a higher
rimacy – i.e. the proportion of total FUA population in the largest FUA.
ur findings nuance previous evidence on the relationship between
rimacy and development. More specifically, our results confirm that
rimacy first increases and then decreases as income grows, coherently
ith the Shaks–Mera hypothesis ( El-Shakhs, 1972 ). 19 However, the ra-

io between the population of the largest and that of the second-largest
etropolitan areas does not show a bell-shaped relationship, more

onsistently with Lamelin and Polèse (1995) . 
Overall, our findings are coherent with the long-standing evidence

hat spatial transformations from economic development first increase
olarisation and regional inequalities, followed by spread effects and
 process of re-balancing spatial distribution of population and eco-
omic activities at more mature stages of development ( Alonso, 1980 ;
l-Shakhs, 1972 ). 

Fact 4: Large shares of suburban population are a feature of rich

ountries. 

The delineation of FUAs allows us to provide a consistent measure
f the magnitude of suburbanisation at the global level. Overall, com-
uting zones surrounding urban centres represent 17% of the overall

UA population and 9% of the world population. From a geographical
erspective, one third of FUA population lives in commuting zones in
orth America and Europe, while only 7% do so in African countries.
he proportion of FUA population living in commuting zones reaches

ts peak in high-income countries (31%) and decreases to 18% and
0% in upper-middle and lower-middle income countries, respectively
 Table 2 ; Fig. 9 ). In low-income countries, commuting zones represent
ess than 4% of FUA population. This gradient is robust to different
pecifications of the delineation model – as defined in Section 3.1 – and
robability thresholds used to assign cells to FUAs. The same patterns
old even when adopting a constant probability threshold across world
egions, with North America and Europe showing the highest shares of
opulation in commuting zones. 

The observed relationship between income levels and suburban
opulation is consistent with the idea, originally formalised in the
onocentric city model ( Alonso, 1964 ; Muth, 1969 ; Kim, 2007 ), that

icher households have flatter bid rent curves. Transportation might
ave a role in this respect. At higher development levels, a wider set of
ransportation choices becomes available and drives households with
tronger preference for housing towards lower density areas outside
he urban centre ( LeRoy and Sonstelie, 1983 ). 

Fact 5: Commuting zones are denser in poorer countries. 

Functional urban areas in the developed world have a significant
roportion of their population living in low-density (rural) settlements.
o assess the distribution of FUA population in different types of set-
lement, we applied the ‘Degree of Urbanisation’ grid-cell classification
18 The R-squared of the regression for the coefficient of variation that includes 

he log of country GDP per capita and its quadratic value is 0.16. Results are 

onsistent to alternative measures of concentration, such as the Gini coefficient 

f the FUA population, the Herfindahl-Hirschman Index, and the coefficients 

rom the Zipf’s law between rank and population for the largest 10 FUAs in the 

ountry. Results are available upon request. 
19 Regression results available upon request. 

i  

h  

(
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 Dijkstra and Poelman, 2014 ). This classification reveals significantly
igher settlement heterogeneity within FUAs in richer countries than
n the rest of the world. In high-income countries, almost 22% of
UA population is located in towns and semi-dense areas (minimum
ensity of 300 inhabitants per square kilometre), while about 9% is
n rural settlements (density below 300 inhabitants per square kilo-
etre) ( Table 4 ). An almost negligible proportion of rural settlements

haracterises FUAs in lower middle and low-income countries. 
Differences in the density of commuting zones across income levels

re reflected by regional differences. Metropolitan areas in North
merica and Europe have the highest shares of population living in low
ensity settlements (11% and 10%, respectively), followed by Oceania
6%). In all other world regions, the share of metropolitan population
n low densities does not overcome 3%, on average, and is highest
n Latin America. Possible explanations for the observed differences
nclude that, at lower development levels, metropolitan areas require
igher densities to ensure affordable services and transport mobility
 Duranton and Turner, 2012 ). 

.2. Population dynamics and suburbanisation patterns 

Fact 6: Population in FUAs grew faster than in other areas and, yet, one

fth of FUAs in the world shrank or stagnated. 
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Table 5 

Population growth in urban centres vs. commuting zones, 2000–15. 

FUAs’ Population growth pattern 

(2000–15) 

Share of 

FUAs (%) 

Share of total 

FUA population 

(%) 

Median FUA 

yearly growth 

rate (%) 

Both urban centres and 

commuting zone grow 

72 83.9 1.3 

Both urban centres and 

commuting zone decline 

10 6.1 − 0.7 

Urban centres grow while 

commuting zone declines 

1 1.1 0.3 

Urban centres decline while 

commuting zone grows 

17 8.7 − 0.2 

Note: FUAs in which at least one urban centre was not existing in 2000 were not 

included. 

Table 6 

Decomposition of population growth of FUAs, 2000–15. 

Income group Densification Growth in urban centres’ 

expansion area 

Growth in 

commuting zones 

Low Income 83% 13% 4% 

Lower Middle 73% 13% 14% 

Upper Middle 68% 13% 19% 

High Income 56% 9% 35% 

World 70% 13% 17% 
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Between 2000 and 2015, the world FUA population increased by
1%, against 19% of growth in the remaining areas. The fastest growing
UAs are found in Africa, where FUA population increased by 46%
etween 2000 and 2015, against 38% in the whole continent. 

Notwithstanding the general increase in population and the even
tronger increase in the metropolitan population in practically all
ountries, more than one-fifth (22%) of FUAs experienced negative
rowth rates between 2000 and 2015. The patterns of declining
etropolitan population mainly reflect regional demographic trends.
he proportion metropolitan areas with declining population is highest

n Europe (45%), followed by Asia (26%). In all other regions the
hare of declining metropolitan areas does not overcome 10%, with the
owest proportion observed in Oceania (3.6%) and Latin America (5%).

Population decline in metropolitan areas can also reflect a redis-
ribution of population across different metropolitan areas within the
ame country. In China, for example, the migration of people from the
est to the East sheds some light on why population in 42% of Chinese

UAs declined in the considered period. 
Measuring population dynamics using FUAs rather than just high-

ensity urban centres proofs particularly useful to distinguish actual
rban shrinkage from a more common process of suburbanisation and
edistribution of the metropolitan population from the urban centre to
ts commuting shed. If we had measured city decline only looking at
rban centres, we would observe that the proportion of declining cities
s 28% rather than 22% of total FUAs worldwide. 

Fact 7: Globally, larger FUAs have grown faster. 

Between 2000 and 2015, population growth occurred at a faster
ace in larger metropolitan areas. FUAs with over one million inhab-
tants grew 0.16 percentage points faster than national population
rowth and a half of a percentage point faster than FUAs with less than
ne million inhabitants. FUAs with over five million people grew even
aster, one percentage point above smaller FUAs. Taken together, the 94
UAs with more than five million inhabitants added more than 224.4
illion people in the period, more than doubling the 100.5 million in
,092 FUAs with less than 250,000 inhabitants. 

Differences in growth rates explain the observed changes in the
roportion of the world population in metropolitan areas of different
izes. The share of world population in FUAs of over five million
nhabitants increased in the fifteen years considered by almost one
ercentage point ( Fig. 10 ), from 13% to 14%. While FUAs with less than
ne million inhabitants experienced on average a positive change in
opulation, on average, their share over total FUA population slightly
ecreased in the observed period. Overall, this pattern suggests that a
rocess of concentration of population toward the largest metropolitan
reas has occurred worldwide in the last fifteen years. 

Fact 8: Suburban population experienced a widespread increase and

ffset urban centre decline in 17% of FUAs. 

The concentration of population in large metropolitan areas was
oupled with a slow but worldwide-spread increase of suburban popula-
ion. As Table 2 shows, between 2000 and 2015, the share of population
n commuting zones increased in most countries, consistently with
revious evidence for developed countries ( Veneri, 2018 ). The pro-
ortion of population in commuting zones over total FUA population
ncreased by 1.6 percentage points in the period, on average. In relative
erms, that shift towards commuting zone was highest in Asia (1.9
.p.). These figures are most conservative, as we keep boundaries of
oth FUAs and urban centres constant at 2015, thus using larger units
han those that were likely to exist at the beginning of the period.
ossible explanations for the observed decentralisation of metropolitan
opulation can be related to improved intra-metropolitan mobility,
uch as through availability of new roads ( Duranton and Turner, 2012 ).

Distinguishing growth in urban centres and commuting zones makes
t possible to identify different patterns of metropolitan growth at the
lobal scale. Almost three quarters of FUAs experienced growth in
oth urban centres and in their respective commuting zones ( Table 5 ).
ithin this group, population in commuting zones grew at higher

peed than in urban centres in 88% of FUAs, although in absolute terms
ommuting zones represented a smaller population. About 17% of FUAs
orldwide experienced a decline in the urban centre and an increase in

he commuting zone population. For 68% of FUAs in this group, growth
n commuting zones more than compensated population shrinkage in
rban centres. On the other hand, 10% of FUAs had population decline
n both urban centres and commuting zone. Finally, only in a negligible
umber of FUAs (1%) commuting zones declined while urban centres
rew. Such a small group suggests that metropolitan centralisation
as not been a common pattern since the turn of the millennium,
onfirming previous projections ( Cheshire, 1999 ). 

Fact 9: Globally, densification of existing urban centres accounted for

alf of total FUA population growth. 

Zooming into dynamics of population within FUAs, our data allow
dentifying three different components of metropolitan growth, which,
o our knowledge, have not yet been documented in a systematic way.
he first component – ‘densification’ – accounts for growth within the
rban centres’ boundaries, where the latter are defined at the beginning
f the period (2000). The second component accounts for growth in
he area of expansion of urban centres between the two points in time.
n other words, such a component takes into account the areas that
ere previously of lower to medium density and that subsequently
ecame denser and part of a new, larger urban centre. Finally, the third
omponent accounts for the growth within the commuting zone, as
efined at the end of the period (2015). As such, the third component
an be looked at as a conservative measure of suburbanisation. 

Overall, while population has been slowly shifting towards commut-
ng zones, densification alone accounted for 70% of growth of metropoli-
an population. Combined with the previous fact, this suggests that
etropolitan areas are becoming denser on average, both in urban cen-

res and commuting zones. Table 6 shows the decomposition of FUAs’
opulation growth for the entire world and by level of income for 2000–
5. As expected, densification is highest in low-income countries (83%)
nd lowest in high-income countries (56%), while a reverse gradient is
bserved for the contribution of commuting zones. On the other hand,
he growth in urban centres’ expansion was remarkably consistent across
ountries, accounting for 9% in high-income countries, and for 13% in
he rest of the world. From a regional point of view, the contribution of
ommuting zones to metropolitan growth was highest in North America
41%), followed by Europe and Central Asia (36%). On the other hand,
n Sub-Saharian Africa and Middle-East/North Africa, commuting zones
ontributed to 7% and 13% of total metropolitan growth, on average. 
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Fig. 10. Change in the proportion of world population in metropolitan areas (2000–15), by metropolitan size. 
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. Concluding remarks 

Any assessment of global trends in urban development needs to rely
n a consistent definition of what is a city and its economic area of influ-
nce. This paper presented a novel method to define commuting zones
round urban centres at the global scale in the absence of commuting
ows data. The method relies on the concept of FUA as defined by the
ECD and the European Union ( OECD, 2012 ; Dijkstra et al., 2019 ). 

By using global grids of population and travel impedance at one-
m 

2 , the method uses the information available on the commuting
ones in 31 OECD countries to predict the extent of commuting zones
ll around the world. The estimated extent of FUA boundaries in
ECD countries turned out to be satisfactorily accurate in terms of
opulation with respect to the original FUAs identified by aggregating
ocal administrative units to the high-density urban centres based on
he intensity of commuting flows. 

One major feature of the proposed method is that it is ‘people-based’,
iven that FUAs are defined as agglomerations of people. Such a defini-
ion has the advantage of being more independent with respect to differ-
nces in development levels when performing a global analysis. Other
pproaches relying on aspects related to human activities, such as built-
p areas or lights, can be more sensitive to the context under analysis. 

The method proposed in this paper relies on a training set that
s built on a sample of countries which are mostly developed. This
ight represent a limitation in the capacity to predict with sufficient

ccuracy the extent of FUAs in the least developed countries. However,
he global impedance grid used to compute the travel time of each
ell to its closest high-density urban centre embeds the different costs
f moving from different points in space according to the level of
nfrastructure and the geographical characteristics of the specific area
nder study. In addition, calibrating the model by world region and
sing country-level GDP per capita can help mitigate a possible bias in
he country sample used for the training set. 

The delineation of FUAs across the whole globe made it possible to
ssess some key features of metropolitan areas and to look at population
ynamics in urban centres and commuting zone separately. According to
ur estimations, FUAs represent about 53% of the world population, out
f which 17% are located in the commuting sheds of urban centres. Mea-
uring population growth using FUAs makes it possible to capture the ac-
ual growth of the ‘economic’ city and avoid confusing actual population
ecline with a decentralisation of population towards commuting zones.

Our estimations confirm that population in metropolitan areas have
rown faster than elsewhere in the last fifteen years, on average, and
hat larger metropolitan areas have grown faster than smaller ones.
rowth of population was stronger in the commuting zones than in
ense urban centres, on average, suggesting that metropolitan growth
as occurred in parallel to a process of decentralisation of the urban
entres’ population in most parts of the world. Identifying the factors
ehind the observed global heterogeneous patterns of growth between
nd within metropolitan areas will continue to offer relevant questions
or future research. The global, consistent definition of metropolitan
reas provided with this paper might be helpful to further address some
f those questions. 
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nnex A. Data sources and description 

opulation density and human settlements 

For the definition of population density and human settlements at
he global level we rely on the Global Human Settlement Population
GHS-POP, Schiavina et al., 2019 ) and settlement model (GHS-SMOD,
esaresi et al., 2019 ) containing information on population by one-
m 

2 grid cells and their types in equal area Mollweide projection
EPSG: 54,009). The data are provided by the Joint Research Cen-
re of the European Commission and are available for download at
ttps://ghsl.jrc.ec.europa.eu/datasets.php . Technical details can be
ound in Florczyk et al. (2019) . 

We choose to use GHS-POP layer ( Schiavina et al., 2019 ) for
opulation distribution as it is a global and harmonized layer using
 well-established dasymetric disaggregation procedure ( Freire et al.,
016 ) based on open global datasets: 

– the GPWv4.10 ( CIESIN 2017 ), a global harmonized census dataset
provided by the centre for International Earth Science Information
Network (CIESIN - Columbia University) that is aligned with UN
Population data at country level, as input population values; 

– the latest release of GHS-BUILT ( Corbane et al., 2018 ; 2019 ) a
global harmonized layer of built-up surface, as target for population
distribution. 

As with any global product, such datasets are not exempt from issues
ue to the accuracy of the target built-up surface layer and quality of
ensus data for many countries, but methodologies are continuously
mproved to reduce errors ( Corbane et al., 2019 ) and with procedures
o detect and mitigate major discrepancies and anomalies occurring in
eospatial input population data ( Freire et al., 2018 ). 

ravel time calculations 

The impedance matrix has global extent (30 arc-second resolution,
n WGS84, EPSG: 4326, coordinate system), southward limited up to
he 60 °S parallel (i.e. excluding Antarctica, where there are no relevant
uman settlements). Its coordinate system is in WGS84 (EPSG: 4326)
ith a 30 arc-seconds resolution. Cell values represent the inverse of

he estimated speed to go through each cell. To handle the different
rojections in the distance calculation, the relevant population cells
nd settlement edges cells are converted into points (using the cell
entroids). The points’ Mollweide coordinates are then unprojected to
GS84 geographical coordinates. Every WGS84-cell of the impedance

ayer in which the unprojected centroids fall inside corresponds to a
opulation cell and settlement edge cell. The grid is freely available for
ownload at https://map.ox.ac.uk . 
Distances, expressed as travel time, are computed for all 8-
onnectivity paths (which assumes it is possible to travel from a cell A
o all 8 cells surrounding A from each relevant population WGS84-cell
o all settlement edges WGS84-cells B, selecting the shortest path
ollowing the Dijkstra algorithm ( Cormen et al., 2001 ). Each path from
 to B is described by a sequence of WGS84-cells on the impedance
atrix and the distance is computed as the sum of time requested

y each transition from each WGS84-cell to the adjacent one. Each
ransition time is obtained as the arc-length (i.e. approximating the
arth as a sphere) between the two WGS84-cell centroids divided by
he average speed of the two WGS84-cells. 

To calculate travel times, we start by clipping the global travel
mpedance matrix on the country extent and calculating the travel time
in minutes) between each cell and the edge of all urban centres in
ach country. Calculating the travel time to the edge of urban centres
onsiderably increases the computational weight compared to calculat-
ng distances to a single point in each FUA (e.g. the cell with highest
ensity) but was preferred for two reasons. First, urban centre centroids
ight fall by chance in remote areas (e.g. the top of the Corcovado
ountain in Rio de Janeiro) and could thus artificially inflate travel

imes and inducing the selection of a less optimal destination. Second,
he same population cell could be far away from the centroid, if the
djacent urban centre is very large, and closer to the centroid of another
mall but distant urban centre. 

A note on the reliability of this source: the impedance layer provide
he average speed needed to cross a given cell and this is just an
pproximation of reality as, given a square kilometre the speed it is
ossible to reach crossing it could greatly vary according to the real
ath and the direction. Other possible cases are places characterized by
he presence of barriers (slopes, water, etc.) in parts of a one-km 

2 cell.
n the impedance layer, these barriers will affect the whole km 

2 , thus
educing the speed of crossing, reaching or leaving it even if in reality
here are paths not influenced by the mentioned barriers. 

ther sources 

Baseline FUA boundaries: The baseline FUA boundaries for 31
ountries obtained following the method outlined in OECD (2012) and
ijkstra et al. (2019) can be found at https://www.oecd.org/cfe/

egional-policy/functionalurbanareasbycountry.htm . 
Country boundaries: As country boundaries we use the GADM v2.8

ountry boundaries available at https://gadm.org/ . 
Country-level additional information: Vehicles per capita data from

ttps://en.wikipedia.org/wiki/List_of_countries_by_vehicles_per_capita ; 
DP per capita was downloaded from the World Bank Open Data
ebsite, https://data.worldbank.org/indicator/NY.GDP.PCAP.CD .
aps in GDP data were filled for the following countries (years/source):
ermuda (2013), Channel Islands (2007), Curacao (2011), Cayman
slands (average 2005–2006), Eritrea (2011), New Caledonia (2000),
orea, Dem. People’s Rep. (2016, Wiki), French Polynesia (2000),
yrian Arab Republic (2000), Venezuela, RB (2014), Western Sahara
CIA Factbook 2007). 

Nighttime lights: For the sum of nightlights in urban centres
he source is Version 1 Nighttime VIIRS (Visible Infrared Imaging
adiometer Suite) Day/Night Band Composites suite produced by
he Earth Observations Group (EOG) at NOAA/NCEI, available at
ttps://www.ngdc.noaa.gov/eog/viirs/download_dnb_composites. 
tml#NTL_2015 . These grids span the globe from 75 N latitude to
5S and have a resolution of 15 arc-second in WGS84 geographic
oordinates (EPSG 4326). The yearly "vcm-orm-ntl" (VIIRS Cloud
ask - Outlier Removed - Nighttime Lights) layer was selected, show-

ng the cloud-free average radiance emitted by Earth (expressed as
W cm 

− 2 sr − 1 ) with outlier removal process to filter out fires and other
phemeral lights. This layer has been warped to the GHS-SMOD grid by
versampling at 50 m in Mollweide projection (EPSG 54009), with near-
st neighbor method, then aggregated at one-km 

2 by averaging values. 

https://doi.org/10.1016/j.jue.2020.103242
https://ghsl.jrc.ec.europa.eu/datasets.php
https://map.ox.ac.uk
https://www.oecd.org/cfe/regional-policy/functionalurbanareasbycountry.htm
https://gadm.org/
https://en.wikipedia.org/wiki/List_of_countries_by_vehicles_per_capita
https://data.worldbank.org/indicator/NY.GDP.PCAP.CD
https://www.ngdc.noaa.gov/eog/viirs/download_dnb_composites.html\043NTL_2015
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nnex B. Model selection 
able B.1 

ummary statistics. 

Mean Stan

Travel time (minutes) 34 111 

Area urban centre (km 

2 ) 343 778 

Population urban centre (persons) 1,050,271 3,31

Nighttime lights urban centre (light intensity) 29 14 

Cell population (persons) 877 832 

GDP per capita (USD, PPP) 38,893 16,8

Cars per 1000 inh. 609 158 

able B.2 

tepwise results (extract). 

BIC Maximum c

(among con

Step 1 

dist 366335 0.000 

size_uc_area 605844 0.000 

size_uc_size_cell_pop 614437 0.000 

size_uc_nl 644640 0.908 

size_cell_pop 644551 0.020 

GDP 630546 0.000 

cars 635323 0.000 

…

Step 5 

dist 3 size_uc_area size_cell_pop 339933 0.424 

dist 2 size_uc_area 2 size_cell_pop 339952 0.615 

dist 2 size_uc_area size_cell_pop2 339888 0.000 

dist 2 size_uc_area size_cell_pop 

size_uc_size_cell_pop 

339342 0.416 

dist 2 size_uc_area size_cell_pop size_uc_nl 339258 0.022 

dist 2 size_uc_area size_cell_pop GDP 338956 0.001 

dist 2 size_uc_area size_cell_pop cars 339747 0.094 

Step 6 

dist 3 size_uc_area size_cell_pop GDP 338909 0.461 

dist 2 size_uc_area 2 size_cell_pop GDP 338948 0.746 

dist 2 size_uc_area size_cell_pop2 GDP 338906 0.002 

dist 2 size_uc_area size_cell_pop GDP 

size_uc_size_cell_pop 

338925 0.581 

dist 2 size_uc_area size_cell_pop GDP size_uc_nl 338047 0.087 

dist 2 size_uc_area size_cell_pop GDP 2 332719 0.007 

dist 2 size_uc_area size_cell_pop GDP cars 338746 0.111 

Step 7 

dist 3 size_uc_area size_cell_pop2 GDP 338858 0.453 

dist 2 size_uc_area 2 size_cell_pop2 GDP 338899 0.753 

dist 2 size_uc_area size_cell_pop3 GDP 338919 0.861 

dist 2 size_uc_area size_cell_pop2 GDP 

size_uc_size_cell_pop 

338880 0.604 

dist 2 size_uc_area size_cell_pop2 GDP cars 338687 0.105 

Step 8 

dist 2 size_uc_area size_cell_pop2 GDP 

dist:size_uc_area 

338819 0.174 

dist 2 size_uc_area size_cell_pop2 GDP 

dist:size_cell_pop 

338908 0.271 

dist 2 size_uc_area size_cell_pop2 GDP dist:GDP 338559 0.839 

dist 2 size_uc_area size_cell_pop2 GDP 

size_uc_area:size_cell_pop 

338797 0.790 

dist 2 size_uc_area size_cell_pop2 GDP 

size_uc_area:GDP 

338435 0.593 

dist 2 size_uc_area size_cell_pop2 GDP 

size_cell_pop:GDP 

338894 0.269 

ote: dist = travel time; size_uc_area = area of urban centre; size_cell_pop = cell pop

talics. Steps 2–4 are omitted for presentation purposes but are available upon reques

odel with second-degree polynomial for GDP. Urban-centre-size proxy variables rep

espectively. Exponent of variables show the degree of the polynomial considered. 
dard deviation Median Maximum Minimum 

17 8,755 0 

84 5,633 5 

5,001 197,761 33,028,731 50,070 

29 118 4 

617 41,202 300 

63 41,324 101,447 6,085 

586 797 148 

lustered p-value 

sidered regressors) 

Rank Δ BIC from 

previous step 

∗ ∗ ∗ 1 –
∗ ∗ ∗ 2 –
∗ ∗ ∗ 3 –

7 –
∗ 6 –
∗ ∗ ∗ 4 –
∗ ∗ ∗ 5 –

6 − 59.9 

7 − 41.7 
∗ ∗ ∗ 5 − 105.6 

3 − 651.1 

∗ 2 − 735.6 
∗ ∗ 1 − 1036.8 

4 − 245.8 

5 − 47.3 

7 − 8.6 
∗ ∗ 4 − 50 

6 − 31.6 

2 − 909.3 
∗ ∗ 1 − 6236.7 

3 − 210.2 

2 − 48.9 

4 − 7.5 

5 13 

3 − 26.4 

1 − 219 

4 − 87.6 

6 1.1 

2 − 347.9 

3 − 109.3 

1 − 471.1 

5 − 12.4 

ulation; GDP = GDP per capita. For each step, the selected model is shown in 

t. The final selected model is indicated in bold text. Step 6 shows the discarded 

resenting its area, population and nightlights are size_area; size_pop and size_nl 
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Table B.3 

Regression results. 

Estimate Std. error z value Pr( > |z|) 

Travel time − 0.442 0.120 − 3.673 0.000 

Travel time 2 − 0.301 0.029 − 10.422 0.000 

Area urban centre 0.442 0.048 9.144 0.000 

Cell population 0.714 0.242 2.945 0.003 

Cell population 2 − 0.070 0.018 − 3.829 0.000 

GDP country 0.263 0.085 3.106 0.002 

Note: Estimation based on a Generalized Linear Model with errors clustered by 

urban centre. Intercept included but not shown. All shown variables are log- 

transformed. Estimates corresponding to raw polynomials are shown for ease 

of interpretation, but estimates used in the implementation are obtained using 

polynomials orthogonal to the constant polynomial of degree 0 to decrease mul- 

ticollinearity bias. 
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Table C.2 

Performance comparison between baseline model and nested model. 

Performance 

metric 

Country ( n = 31) Urban centre ( n = 1,287) 

Median 

nested 

Median 

baseline 

p-value Median 

nested 

Median 

baseline 

p-value 

Sensitivity 0.920 0.930 0.316 0.901 0.950 0.000 

Specificity 0.839 0.793 0.053 0.900 0.840 0.000 

Balanced 

Accuracy 

0.847 0.834 0.600 0.832 0.815 0.624 
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nnex C. Comparison with a nested specification 

The data used to estimate Eq. (2) has a nested or block structure,
ince each cell is assigned to an urban centre and urban centres belong
o countries. In this case, the independence assumption across cells
ay not hold. This annex compares the performance of the baseline

egression with respect to an alternative specification that takes into ac-
ount the nested structure of the data is compared with a mixed-effects
ogistic regression model with random intercepts in two levels, so that
ach urban centre has its own random intercept varying within each
ountry. The estimation is done via a Maximum Likelihood estimator
sing the glmer function of the lme4 package in R ( Bates et al., 2015 ).
able C.1 shows the regression results for the fixed effects component
f the model. 
able C.1 

ixed-effects estimation results of mixed effect logistic model with random in- 

ercepts by urban centre and country. 

Estimate Std. error z value Pr( > | z |) 

Distance 1.970 0.146 13.475 < 2e-16 

Distance 2 − 0.288 0.025 − 11.726 < 2e-16 

Area urban centre − 0.591 0.006 − 106.688 < 2e-16 

Cell population 0.359 0.062 5.812 6.18e-09 

ote: Estimation based on a Generalized Linear Model with errors clustered by 

rban centre. Number of obs: 466,361, groups level 1 (urban centre): 1,287; 

evel 2 (country): 31. Estimates corresponding to raw polynomials are shown for 

ase of interpretation, but estimates used in the implementation are estimated 

sing polynomials orthogonal to the constant polynomial of degree 0 to decrease 

ulticollinearity bias. 

t  

S  

i  

o  

t  

t  

n  

w  

i  

s  

r

Table C.2 shows the median results of comparing three performance
tatistics for the baseline and nested specifications across the 31
ountries and 1,287 urban centres in the baseline sample. These metrics
re based on cells inside and outside FUAs as predicted by the model
nd not as actually observed after drawing the boundaries, so they may
iffer slightly from the performance statistics in Table 1 . The p-value
f a two-sided t -test of the difference between the two alternatives is
ncluded for reference. 

According to these results, at the country level both models perform
qually well as the median performance across 31 countries is not
tatistically different. At the urban centre level, the comparison results
how that while the baseline specification performs better in terms
f sensitivity, the nested specification performs better in terms of
pecificity. 

Fig. C.1 shows the results by country and urban centre for the nested
nd baseline specifications. At the country level, specificity is one per-
entage point higher or more in Greece, South Korea, Italy, Hungary,
ortugal, Colombia and Slovenia when using the nested model instead of
he baseline one, whereas sensitivity is one p.p. higher or more in Chile,
outh Korea, Netherlands and Japan. These results show that not taking
nto account random intercepts negatively affects performance in terms
f specificity (the correct identification of actual negatives), but taking
hem into account negatively affects sensitivity (the correct identifica-
ion of actual positives). The countries for which specificity is lower do
ot share a salient characteristic (e.g. size, geographical position) that
ould give clues on which variables could be added to the baseline spec-

fication. In fact, performance tests based on urban centre characteristics
uch as size do not reveal any salient pattern (results available upon
equest). 



A.I. Moreno-Monroy, M. Schiavina and P. Veneri Journal of Urban Economics xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: YJUEC [m5GeSdc; March 27, 2020;15:4 ] 

Fig. C.1. Baseline versus nested specification specificity results by country and FUA. 
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Fig. D.1. Percentage of people in commuting zones versus GDP per capita by version. 
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Table D.1 

Calibrated thresholds by world region. 27 

Regional 

optimal 

threshold 

Population 

used in 

calibration 

Total 2015 

population (source: 

UN WPP 2017) 

Northern America 0.45 272,431,892 357,700,770 

Eastern Asia 0.74 151,957,225 1,612,287,066 

Eastern Africa 0.74 – 394,477,342 

Middle Africa 0.74 – 151,951,734 

Northern Africa 0.74 – 223,891,511 

Southern Africa 0.74 – 62,633,712 

Western Africa 0.74 – 353,223,876 

Caribbean 0.74 – 43,017,234 

Central America 0.42 104,580,109 172,908,048 

South-Eastern Asia 0.74 – 633,497,753 

South-Central Asia 0.74 – 1,890,288,217 

Western Asia 0.74 – 257,230,985 

Eastern Europe 0.42 49,493,239 292,942,786 

Northern Europe 0.41 75,813,442 102,357,768 

Southern Europe 0.64 110,016,518 152,349,077 

Western Europe 0.53 152,080,370 190,792,170 

Australia/New Zealand 0.41 20,716,438 28,497,494 

Melanesia 0.74 – 9622,827 

South America 0.60 58,103,162 418,447,713 

Micronesia 0.74 – 526,344 

Polynesia 0.74 – 684,616 

Table D.2 

Performance results across threshold choices. 

Performance metric Version 1:1 Version 2:1 Version 3:1 Version multi 

Sensitivity 0.834939 0.750085 0.673099 0.83964 

Specificity 0.853254 0.906833 0.935251 0.85842 
nnex D. Optimal threshold determination 

This annex compares global boundaries obtained using different
ptimal probability thresholds and positive versus negative error
eights using the same data and econometric specification. 

The following three options for positive versus negative weight
ere explored: including weighting false negative and false positive

rrors equally (1:1) or twice/three times as much as false negative
rror (2:1 or 3:1). Using the full sample information leads to an optimal
alibrated threshold of 0.53 when false negative and false positive
rrors are weighted equally (version 1:1). Weighting false positive error
wice as much as false negative error (version 2:1) leads to a calibrated
hreshold of 0.66. Weighting false positive error three times as much as
alse negative error leads to a calibrated threshold of 0.75 (version 3:1).

To obtain thresholds by world region, we calibrated optimal prob-
bility thresholds by clustering countries with baseline FUAs across UN
orld regions (version “multi ”). Table D.1 summarizes the UN world

egions with their corresponding thresholds and the population values
sed in each case. 

Table D.2 summarizes the performance results for the four versions.
onsider versions 1:1, 2:1 and 3:1 for the moment. Version 1:1 would
e chosen based on sensitivity and false negative error, and version
:1 would be chosen based on specificity and false positive error. 20 

hese results make sense given that a lower probability value will
llow a higher likelihood of identifying cells inside FUAs correctly at
he expense of more false negative that yield boundaries that are “too
arge ”. On the contrary, version 3:1 is less likely to correctly identify
ells outside FUAs but more likely to yield boundaries that are “too
mall ” because a higher probability threshold on cells inside FUAs. 

These performance results can be compared with version “multi ”. As
an be expected from the combination of lower and higher probability
20 As the performance of version 2:1 lies in between versions 1:1 and 3:1, we 

ill omit it henceforth. 

Balanced Accuracy 0.844096 0.828459 0.804175 0.84903 

False Positive Error 0.146746 0.093167 0.064749 0.14158 

False Negative Error 0.165061 0.249915 0.326901 0.16036 
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Fig. D.2. Share of FUA population in commuting zones by version, 10 most populated countries. 
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hresholds, the performance metrics of version “multi ” compared to
ersion lower (higher) in specificity and higher (lower) in false positive
rror compared to version 3:1 (1:1). Version “multi ” has similar – and
ven better – performance metrics than version 1:1 in terms of sensitiv-
ty and false negative error, and outperforms all options with respect to
alanced accuracy. Even if the average performance metrics are similar,
ersion 1:1 may be more likely to over-estimate FUAs outside baseline
ountries, especially in radically different contexts to baseline countries
uch as Africa and South-East Asia. On the other hand, version 3:1 may
e likely to predict smaller FUAs outside baseline regions and also may
nder-estimate boundaries in benchmark countries because those have
 smaller optimal threshold in version “multi ”. 

The comparison of summary statistics aggregated by region and
evel of development across all models gives additional insight regard-
ng the effect of optimal thresholds. Version 1:1 predicts more people in
UAs than version 3:1 mainly due to many more people in commuting
ones, with an absolute difference of 346,476,719 people worldwide,
ut of which: 70% are in Asia; 13% in Europe; 7% in Africa; and
he rest in other regions of the world. By levels of development, the
orresponding percentages are 76% in less developed countries, 20%
n developed countries and 3% in least developed countries. 

Compared to version 1:1 and as it could be expected from the
alibrated threshold values, version “multi ” gives similar predictions
or the share of people in commuting zones for Europe ( − 0.04 p.p.
ifference), slightly larger shares for Latin America & Caribbean (0.88),
orth America (1.43) and Oceania (1.67), and smaller shares for
frica ( − 6.02) and Asia ( − 8.02). Compared to version 3:1, which
ets a relatively high probability threshold for all countries, version
multi ” predicts larger percentages for Europe (8.78), Latin America
 Caribbean (3.6), North America (6.52), Oceania (5.77), and similar
ercentages for Africa (0.21) and Asia (0.27). 

Version 1:1 predicts larger percentages of people in commuting
ones with respect to total population than version 3:1 throughout the
DP per capita distribution. This shows the relationship between GDP
er capita and percentage of population in commuting zones. Version
:1 predicts much lower commuting population shares for the richest
ountries than versions 1:1 and “multi ”. This means that version 3:1
equires a higher level of development to reach the same percentage of
ommuting than version 1:1, but relatively less so after relatively high
ercentages of commuting population (~ > 20%). Version “multi ” on
he other hand displays a similar behaviour than version 3:1 at bottom
nd middle levels of income per capita, while still predicting relatively
arge percentages at the top of the distribution as version 1:1. 

Fig. D.1 compares the share of FUA population in commuting zones
n top 10 most populated countries of the world shows that version
:1 has larger commuting percentages compared to version 3:1 and
multi ”. These differences can be quite significant for large countries
ith relatively low levels of income, corroborating that version 1:1

ikely over-estimates the number of people in commuting zones outside
igh-income countries ( Fig. D2 ). 

nnex E. Robustness to merging rules 

hange in population threshold at which two FUAs are not merged 

The merging procedure based on distance between urban centres is
ot applied whenever the population of either urban centre is at least
00 thousand people. To test the effect of changing this population
hreshold two options are considered: 1) not imposing any population
hreshold; 2) increasing the threshold to 1 million people. In both cases
he merging distance is kept constant at 5 km (baseline case). 

As in Section 3.4 , the rank-size rule is used to identify cases in which
he rule significantly affect the results in terms of city size distribution.
ig. E.1 shows the results for cases 1) and 2) against the baseline case
nd highlights cases where the difference in slope coefficients is larger
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Fig. E.1. Rank-size slope coefficients by urban centre population threshold. 

Note: Rank-size coefficient refers to the slope coefficient of a regression of log of FUA rank minus 1 
2 

against log of FUA population in 2015 for each country with at 

least 20 FUAs for all distance thresholds. 

Table E.1 

Top 5 largest FUAs in Egypt by urban centre population threshold. 

Rank 500 K (baseline) 1 million No threshold 

1 23,490,198 32,555,824 36,254,643 

2 6,114,874 5,860,478 5,860,478 

3 5,860,478 4,753,881 4,753,881 

4 2694,394 3698,819 2694,394 

5 2468,478 2694,394 2468,478 
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21 The estimated population of El Cairo (2018) is 20.5 million. Source: 

https://www.citypopulation.de/php/egypt-greatercairo.php . 
han 0.01. Imposing a population threshold has a much smaller effect
n the rank-size rule slopes, as most cases fall on the 45-degree line. 

Nevertheless, the baseline population threshold of 500 thousand
eople plays an important role in specific cases of high-density and
igh fragmentation, such as the case of El Cairo (Egypt) illustrated in
able E.1 and Fig. E.2 . Without any threshold, El Cairo becomes a FUA
f over 36 million people spreading over a large area to the north of
gypt (panel c). The threshold of 1 million partly addresses this but
till places the population at 32.5 million people, far above available
stimates for Greater Cairo. 21 The baseline case (panel b) comes closer
n extent and population to available estimates. 

https://www.citypopulation.de/php/egypt-greatercairo.php
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Fig. E.2. El Cairo FUAs by urban centre population threshold. 
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22 Demonstration: If there is no area of B outside A: 1-(A ∩B/AUB + A 

C /A) = 1- 

(B/A + A 

C /A) = 1-(B + A 

C )/A = 1-(A/A) = 0. 
23 Alternatively, Dingel et al. (2019) construct administrative boundaries based 

from polygons obtained from nighttime data based on intersection between ad- 

ministrative unit and polygons, with no minimum requirements in terms of land 

or population coverage. Given the arbitrarieness of administrative boundaries 

and their differences across countries, it may be more appropriate to considere 

a minimum population overlap. 
24 The official municipality boundaries are free to download at ftp://geoftp. 

ibge.gov.br/organizacao_do_territorio/malhas_territoriais/malhas_municipais/ 
nnex F. Out-of-sample boundary comparison 

omparing FUAs with alternative functional boundaries 

The comparison between alternative (functional) boundaries and
UAs adapted to local administrative boundaries (from here onwards
eferred to as “administrative FUAs ”) uses the Jaccard index, a measure
f the overlap between any two sets of boundaries. The Jaccard index
s the ratio of the population in the area covered by the intersection
f two given boundaries (A and B) over the population in the area
overed by the union of the two boundaries: Jaccard_index = A ∩B/A ∪B.

n the explanation below A refers to alternative boundaries and B to
dministrative FUAs. 

Because it relies on the union of the two boundaries, for a given inter-
ection the Jaccard index can take a low value when A is small compared
o B or when B is small compared to A. These cases are qualitatively dif-
erent if the objective is to assess how well FUAs match alternative func-
ional boundaries. Specifically, a small Jaccard values can arise if a given
lternative boundary is relatively small compared to an intersecting ad-
inistrative FUAs and still only a small percentage of the population in

lternative boundaries is not accounted for in administrative FUAs. 
To complement the Jaccard index, the percentage of population in

lternative boundaries not accounted for in administrative FUAs is de-
ned as Out_FUA = A 

C /A, where A 

C is the complement of A with respect
o the intersection of A and B, i.e., the region of A that is not within B. 

Moreover, a measure of how much larger (in % of population
n the measured area) administrative FUAs are with respect to
 given alternative boundary can be defined as Excess_area = 1-

Jaccard_index + Out_FUA) ∗ 100, where excess_area is equal to zero
henever A (B) is larger than B (A) and B (A) is completely contained
 m
n A (B). 22 In all other cases the measure represent the excess of area B
A) with respect to A ∪B as a proportion of the area of B (A). 

dapting estimated FUAs into administrative-based boundaries 

The criteria to assign a municipality as part of a FUA adapted to
ocal unit boundaries is that 50% of the population of the municipality
measured at the one km 

2 level using the GHS population grid) falls
ithin an estimated FUA boundary. Bosker et al. (2019) use the same

riteria is used by in their application for Indonesia. 23 

ata preparation for Brazil 

First, to adapt FUA to administrative boundaries, boundaries for
,572 municipal boundaries (2015) covering the entire national terri-
ory are used. 24 Applying the aforementioned mapping criteria to 301
stimated FUAs leads to 180 administrative estimated FUAs, out of
hich 117 include only one municipality. 
unicipio_2015/Brasil/BR/ . 

http://ftp://geoftp.ibge.gov.br/organizacao_do_territorio/malhas_territoriais/malhas_municipais/municipio_2015/Brasil/BR/
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Table F.1 

Summary statistics for arranjos populacionais and administrative FUAs in Brazil. 

Number of spatial units Median population 

(persons, 2015) 

Population range 

(persons, 2015) 

Median area (km 

2 ) Area range (km 

2 ) 

Arranjos 128 250,995 61,467–21,079,374 1,604 187–65,650 

Estimated FUAs (administrative-based) 140 208,843 61,467–21,734,127 1,241 117–65,650 

Table F.2 

Summary statistics for metropolitan areas based on commuting flows (7% threshold) and FUAs in Indonesia. 

Number of 

spatial units 

Median population 

(persons, 2015) 

Population range 

(persons, 2015) 

Median area (km 

2 ) Area range (km 

2 ) 

Metropolitan areas (7% commuting threshold) 37 1,200,156 113,493–31,969,150 2,383 1,020–8,573 

Estimated FUAs (administrative-based) 32 1,048,978 64,729–28,432,706 2,254.43 33.7 – 14,952 
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Next, for as the basis for comparison, the boundaries in the arranjos

opulacionais dataset (2015) are used. This dataset is produced by the
razilian Institute of Geography and Statistics (IBGE), includes 294
oundaries based on 2015 municipal boundaries, 177 of which have
opulations of 50 thousand people or more. 25 

Out of 294 FUAs for Brazil, 185 do not cross or overlap any arranjo
nd are therefore excluded, leading to 140 administrative FUAs as basis
or comparison. Meanwhile, 49 arranjos, with a combined population
f 3,963,890 persons (2015) are not overlapped by any administrative
UA. These boundaries are not used in the comparison metrics, but their
opulation is added to the total population in arranjos not accounted
or in administrative FUAs. Table F.1 summarises the main statistics for
he two sets of boundaries. 

ata preparation for Indonesia 

To map estimated FUAs to administrative areas, we use boundaries
or 497 official Indonesian districts (2013). Applying the mapping
riteria to 248 estimated FUAs leads to 134 FUAs adapted to local
dministrative boundaries, out of which 80 include only one district. 

For the comparison, metropolitan boundaries defined using the
ethod proposed by Duranton (2015) using a 7% commuting threshold

re used. 26 This alternative gives the highest number of separate
etropolitan areas (39). In comparison to these metropolitan bound-

ries, FUAs separate one metro from another even more than the
pproach based on origin-destination commuting flows, and at the
ame time do not over-agglomerate into a small number of metros as
atellite data-based approaches. In fact, the maximum FUA size for
ndonesia is estimated at 28.4 million, below the 32 million using the
% commuting threshold. See Bosker et al. (2019) for details. Table F.2 .
ummarises the key statistics for the base and comparison boundaries. 
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