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ABSTRACT: A mixed-ligand effect was observed for mixtures of tris(2-dimethylaminoethyl)amine (Me6-TREN) 

with tris(2-aminoethyl)amine (TREN) ligands during Cu(0) wire-catalyzed single electron transfer-living radical 

polymerization (SET-LRP) of methyl acrylate (MA) initiated with bis(2-bromopropionyl)ethane (BPE) in DMSO. 

The external order of reaction of SET-LRP both in the presence of Me6-TREN, TREN and of the mixed-ligand Me6-

TREN/TREN, in DMSO, demonstrated a catalytic activity for DMSO similar to that reported in the presence of 

Cu(0) powder. The catalytic activity of DMSO, with close to 100% chain end functionality, facilitates the much 

less expensive TREN to act as a very efficient ligand that is competitive with Me6-TREN and with the mixed-ligand 

and revitalizes TREN into an excellent ligand The highest activity of the mixed-ligand at 1/1 ratio between ligands 

suggests that in addition to a fast exchange between the two ligands, a new single dynamic ligand generated by 

hydrogen-bonding may be responsible for the result observed. 

Keywords: mixed-ligand, SET-LRP, catalytically active DMSO, living polymerization

INTRODUCTION

The mixed-ligand effect emerged as an efficient and simple methodology to design superior catalytic 

activity without synthetic efforts in transition-metal-catalyzed enantioselective reactions.1 Almost at the 
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same time, Feringa’s laboratory reported that hetero-combinations of chiral monodentate ligands were 

more effective than homo-combinations for Rh-catalyzed C–C cross-coupling reactions.2 This concept 

was expanded to Pd-catalyzed C-N3,4 and C-S5 cross-coupling reactions as well as to Ni-catalyzed Suzuki- 

cross-coupling and borylation reactions.6 However, the benefits of using mixed-ligand systems have only 

been noted in very few metal-catalyzed polymerization experiments.7-9 

The use of an appropriate solvent/N-ligand combination is important in Cu(0)-mediated single electron 

transfer-living radical polymerization (SET-LRP),10-17 since it can either promote or disfavor the 

mechanistically fundamental disproportionation reaction of Cu(I)X into Cu(0) atomic species and 

Cu(II)X2.18,19 Tris(2-dimethylaminoethyl)amine (Me6-TREN) is frequently employed as ligand in SET-

LRP,10,11,14 because it favors the disproportionation process by preferentially binding Cu(II)X2 rather than 

Cu(I)X.20 However, the use of its precursor, tris(2-aminoethyl)amine (TREN),11,21-23 which is about 80 

times less expensive, and poly(ethylene imine) (PEI)10 also proved very successful for SET-LRP of vinyl 

chloride (VC) and of acrylates during the first days of SET-LRP. Likewise, TREN24-26 and N,N,N',N'',N'-

pentamethyldiethylenetriamine (PMDETA)10,27,28 are also alternative ligands to Me6-TREN for the Cu(0) 

wire-catalyzed SET-LRP of acrylates and methacrylates in homogeneous SET-LRP. 

Unfortunately, the replacement of Me6-TREN with TREN was not so successful in aqueous-organic 

“programmed” biphasic systems using Cu(0) wire catalyst,29,30-33 although TREN is very efficient in single 

phase SET-LRP experiments. In biphasic organic solvent-water systems, the external addition of Cu(II)Br2 

was necessary to complement the performance of TREN and retain the living character. In this complex 

system, SET-LRP is an interfacial process in which disproportionation and activation events take place 

independently in the aqueous and organic compartments, respectively, whereas the “self-controlled” 

reversible deactivation occurs at the interface.34 The Cu(0)-mediated polymerization in “programmed” 

bi(multi)phasic  mixtures of organic solvents with water has been proven to be valuable in various organic 
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solvents regardless of their ability to mediate or not disproportionation of Cu(I)X/N-ligand.35-39 Thus, 

these designed biphasic organic solvent-H2O “programmed” biphasic systems resolved the 

incompatibility of SET-LRP with polar non-disproportionating solvents and non-polar non-

disproportionating solvents, thus expanding the library of accessible solvents. The first mixed-ligand 

effect in a SET-LRP system was observed in the water-organic solvent “programmed” biphasic systems 

when Me6-TREN was employed to replace Cu(II)X2 with Me6-TREN.10b

In this publication, we first report experiments that demonstrate the catalytic activity of DMSO solvent in 

both Me6-TREN, TREN and in the mixed-ligand Me6-TREN/TREN mediated SET-LRP of MA initiated 

with BPE at 25oC and catalyzed with non-activated Cu(0) wire. The catalytic activity of DMSO was 

discovered previously when Cu(0) powder was employed as catalyst11a but was not used to improve the 

synthetic capabilities of SET-LRP. Subsequently, the mixed-ligand effect of Me6-TREN/TREN was 

investigated at two different concentrations of the DMSO solvent. Statistical analysis of the kinetics and 

of the control experiments together with the determination of the chain-end functionality of the resulting 

polymers by a combination of NMR and MALDI-TOF before and after thio-bromo “click” reaction 

demonstrated that the catalytic activity of DMSO can be employed to improve the efficiency of the 

inexpensive TREN ligand.  Therefore, we can conclude that the catalytic activity of DMSO was employed 

to revitalize the long time neglected TREN and transform it into an excellent ligand. Since TREN is 80 

times less expensive than Me6-TREN numerous new applications including in the field of 

biomacromolecules will evolve from the series of experiments reported here.

EXPERIMENTAL SECTION 

Materials. Methyl acrylate (MA) (99%, Acros) was passed over a short column of basic Al2O3 before use 

in order to remove the radical inhibitor. Tris(2-aminoethyl)amine (TREN) (99%, Acros), Cu(0) wire (20 

Page 3 of 38

ACS Paragon Plus Environment

Biomacromolecules

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4

gauge wire, 0.812 mm diameter from Fisher) and dimethyl sulfoxide (DMSO) (99.8%, Sigma Aldrich) 

were used as received. Triethylamine (NEt3) (>99.5% Chemimpex) was distilled under N2 over CaH2. 

Bis(2-bromopropionyl)ethane (BPE) was synthesized by esterification of ethylene glycol with 2-

bromopropionyl bromide in the presence pyridine according to our previously reported metho.40 

Hexamethylated tris(2-aminoethyl)amine (Me6-TREN) was synthesized according to a literature 

procedure.41

Techniques. 400 MHz 1H-NMR spectra were recorded on a Bruker AVANCE NEO 400 NMR instrument 

at 27 °C in CDCl3 containing tetramethylsilane (TMS) as internal standard. Gel permeation 

chromatography (GPC) analysis of the polymer samples was performed using a Shimadzu LC-20AD high-

performance liquid chromatograph pump, a PE Nelson Analytical 900 Series integration data station, a 

Shimadzu RID-10A refractive index (RI) detector, and three AM gel columns (a guard column, 500 Å, 10 

μm and 104 Å, 10 μm). THF (Fisher, HPLC grade) was used as eluent at a flow rate of 1 mL min-1. The 

number-average (Mn) and weight-average (Mw) molecular weights of PMA samples were determined with 

poly(methyl methacrylate) (PMMA) standards purchased from American Polymer Standards. MALDI-

TOF spectra were obtained on a Voyager DE (Applied Biosystems) instrument with a 337 nm nitrogen 

laser (3 ns pulse width). For all polymers, the accelerating potential was 25 kV, the grid was 92.5, the 

laser power was 2200-2500, and a positive ionization mode was used. The sample analysis was performed 

with 2-(4-hydroxyphenylazo) benzoic acid as the matrix. Solutions of the matrix (25 mg/mL in THF), 

NaCl (2 mg/mL in deionized H2O), and polymer (10 mg/mL) were prepared separately. The solution for 

MALDI-TOF analysis was obtained by mixing the matrix, polymer, and salt solutions in a 5/1/1 

volumetric ratio. Then 0.5 μL portions of the mixture were deposited onto three wells of sample plate and 

dried in air at room temperature before subjected to MALDI- TOF analysis. 
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5

Typical Procedure for SET-LRP of MA in DMSO using Me6-TREN, TREN and the Mixed-Ligand 

Me6-TREN/TREN Systems. Stock solutions with different ligand ratios (Me6-TREN/TREN as 0.02 M/0 

M, 0.015 M/0.005 M, 0.01 M/0.01 M, 0.005 M/0.015 M, 0 M/0.02 M) in DMSO were prepared. The 

monomer (MA, 22.2 mmol, 2.00 mL), organic solvent (DMSO if necessary), DMSO stock solution (0.02 

mmol Ligand, 1 mL), and initiator (BPE, 0.1 mmol, 33.2 mg) were added to a 25 mL Schlenk tube. The 

reaction mixture was then deoxygenated by six freeze–pump–thaw cycles. After these cycles, the Schlenk 

tube was opened under a positive flow of nitrogen to add the Cu(0) wire wrapped around a Teflon-coated 

stir bar. Two more freeze–pump–thaw cycles were carried out while holding the stir bar above the reaction 

mixture using an external magnet. After that, the Schlenk tube was filled with N2, and the reaction mixture 

was placed in a water bath at 25 °C. Then, the stir bar wrapped with the Cu(0) wire was dropped gently 

into the reaction mixture. The introduction of the Cu(0) wire defines t = 0. Samples were taken at different 

reaction times by purging the side arm of the Schlenk tube with nitrogen for 2 min using a deoxygenated 

syringe and stainless steel needles. The collected samples were dissolved in CDCl3 and quenched by air 

bubbling. After that, the monomer conversion was measured by 1H NMR spectroscopy. In order to 

determine the molecular weight and polydispersity of the samples, the solvent and the residual monomer 

were removed under vacuum. Finally, samples were dissolved in THF and passed through a short and 

small basic Al2O3 chromatographic column to remove any residual copper and subsequently were 

analyzed by GPC. The resulting PMA was precipitated in cold methanol and dried under vacuum until 

constant weight to perform chain end analysis by 1H NMR spectroscopy, before and after the 

thioetherification reaction.

General Procedure for the Chain End Modification of PMA via Thio-Bromo “Click” Reaction. In a 

10 mL test tube sealed with a rubber septum, thiophenol (0.05 equiv.) and distilled triethylamine (NEt3, 

0.05 equiv.) were added into a solution of the corresponding polymer (0.01 equiv.) in acetonitrile (1 mL) 

Page 5 of 38

ACS Paragon Plus Environment

Biomacromolecules

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6

under a nitrogen flow. The reaction mixture was stirred at room temperature for 3 h. Then, the resulting 

modified PMA was precipitated in cold methanol and washed with methanol several times. The resulting 

modified polymer was dried under vacuum until constant weight.

RESULTS AND DISCUSSION

Determination of the External Order of Reaction in DMSO During SET-LRP Catalyzed with Non-

Activated Cu(0) Wire in DMSO. A closed to first order external order of reaction in the DMSO used as 

solvent was observed when Cu(0) powder was employed as catalyst in SET-LRP.11a, 42,43,44,45,46,47 This 

external first order of reaction in DMSO demonstrated the catalytic activity of DMSO when SET-LRP 

was performed in DMSO as solvent. Three series of experiments were carried with non-activated Cu(0) 

wire as catalyst, MA as monomer, Me6-TREN, TREN and mixtures of Me6-TREN/TREN, in different 

concentrations of DMSO at 25oC. BPE was used as initiator in both cases. 

Scheme 1. SET-LRP of MA Initiated from BPE and Catalyzed with Nonactivated Cu(0) Wire Using 
Various Molar Combinations of Me6-TREN and TREN in Catalytically Active DMSO at 25 oC
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The structures of both ligands and an illustration for the Cu(0) wire-catalyzed SET-LRP of MA initiated 

from the bifunctional initiator bis(2-bromopropnionyl)ethane (BPE) are outlined in Scheme 1. Duplicate 

and triplicate kinetics were performed under the following reaction conditions: [MA]0/[BPE]0/[L]0 = 

222/1/0.2 using 9.0 cm of nonactivated Cu(0) wire.
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7

Figure 1. Determination of the external order of reaction in [DMSO]0 for the Cu(0) wire/Ligand-catalyzed 
polymerization of methyl acrylate (MA) in DMSO at 25 °C initiated with BPE. a) ln(kp

app) vs ln([DMSO]0) with DMSO 
varied from 0.2 to 1.9 mL with 2 mL of MA for: a) [MA]0/[BPE]0/[Me6-TREN]0/[Cu(0)]0 = 222/1/0.2/ 9cm; b) 
[MA]0/[BPE]0/[TREN]0/[Cu(0)]0 = 222/1/0.2/ 9cm; c) [MA]0/[BPE]0/[Me6-TREN]0/[TREN]0/[Cu(0)]0 = 222/1/0.1/0.1/ 
9cm. 

Figure 1a reports the kinetic data for the experiments performed with Me6-TREN as ligand, Figure 1b 

shows the data obtained with TREN, while Figure 1c with the mixed-ligand system Me6-TREN/TREN. 

Selected kinetic experiments from which these external order of reaction in DMSO were obtained for Me6-

TREN (Figure 2a,c,e) and TREN (Figure 2b,d,f) as ligands are reported in Figures 2 when DMSO 

concentration was varied from 1.0 to 1.5 and to 1.8 mL DMSO  with 2 mL of MA.  Kinetic experiments 

with all other DMSO concentrations employed in Figure 1a,b,c are shown in Supporting Figures S1 to S5.  

First order reaction kinetics in monomer were observed for all DMSO concentrations from Figures 2 and 

Supporting Figures S1–S5. A continuous increase in the rate of polymerization and of the corresponding 

apparent rate constant, kp
app, as the concentration of the DMSO increased or the overall concentration of 

the MA decreased was observed in all cases (Figures 2 and Supporting Figures S1-S5). 
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8

Figure 2. Kinetic plots, molecular weight and dispersity evolutions for the SET-LRP of MA in DMSO initiated with 
BPE and catalyzed with 9.0 cm non-activated Cu(0) wire at 25 °C. Experimental data in different colors were obtained 
from different kinetics experiments, sometimes performed by different researchers. kp

app and Ieff are the average values 
of three experiments. kp

app vs [DMSO]0 with DMSO varied from 1.0 mL (a) to 1.5 mL (c) to 1.8 mL (e) with 2 mL of 
MA for [MA]0/[BPE]0/[Me6-TREN]0/[Cu(0)]0 = 222/1/0.2/ 9cm. Identical experiments in which Me6-TREN was replaced 
with TREN are in (b), (d), (f). 
In any organic or polymerization reaction the decrease in the reactants concentration generated by 

increasing the solvent concentration results in a decrease of the rate of reaction. This unexpected trend 

that consists of the increase in rate of polymerization with the decrease of the monomer concentration 

demonstrates the catalytic activity of DMSO in SET-LRP. This result is in agreement with the experiments 

reported with Cu(0) powder as catalyst.11a The determination of the external order of reaction in DMSO 

was calculated by plotting the ln(kp
app) vs ln([DMSO]o) (Figure 1a,b,c). The slope of these dependencies 

provided the external order of reaction in DMSO for the different ligands used in these SET-LRP 

experiments.  An external order of reaction in DMSO of 0.76 was obtained in the presence of Me6-TREN 
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9

while in the presence of TREN and the mixed-ligand Me6-TREN/TREN (1/1 molar ratio) the external 

orders of reaction in DMSO were 0.99 and 1.04 respectively.

The Potential Mechanism for the Catalytic Activity of DMSO. In order to address the catalytic activity 

of DMSO, first it must be considered that SET-LRP experiments were performed in a mixture of two 

solvents, DMSO and the monomer, MA. Both DMSO and MA are good solvents that mediate the 

disproportionation of Cu(I)Br into Cu(0) and Cu(II)Br2.19a 

Figure 3.  Visual observation of CuBr/Me6-TREN complex dissolved in DMSO/MA. Conditions: 
[CuBr] = 46.5 mM, solvent = 5.0 mL, [CuBr]0/[Me6-TREN]0 = 1/1. Pictures were taken 60 min after 
mixing the reagents.

While both solvents MA and DMSO mediate the disproportionation in the presence of these two ligands, 

MA and DMSO, only DMSO is a good solvent for Cu(I)Br and Cu(II)Br2 obtained during the activation 

and disproportionation and is also a better solvent that mediates this disproportionation. MA mediates 

disproportionation mostly by a surface effect. Therefore, it is expected that by increasing the ratio between 
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10

DMSO and MA in the reaction mixture the extent of disproportionation will increase. At the same time it 

has been demonstrated that DMSO stabilizes Cu(0) nanoparticles while MA does not. Figure 3 presents 

disproportionation experiments that support this hypothesis. An increase in the amount of Cu(0) obtained 

by disproportionation is observed  at the transition from MA/DMSO = 3/1 to 2/1. This increase continues 

to the transition to MA/DMSO = 1.1. However, in addition to this trend, at 1/1 ratio the stabilization of 

Cu(0) nanoparticles by the higher concentration of DMSO is also visible (see left vial in Figure 3). 

Increasing the stability of nanoparticles decreases the crystallization process and provides smaller but 

more active Cu(0) nanoparticles of catalyst.19b It is well established  that faster SET-LRP is mediated in 

more disproportionating solvents and in their mixtures.19c,d,e In addition, mixtures of solvents can display 

also a cooperative and synergistic effect that was not yet investigated for the case of MA/DMS0.19e Last 

but not least, since DMSO is one of the best solvents for SET processes an increased concentration of 

DMSO also would increase the rate of SET-LRP.19f  Therefore, all these factors, the extent of 

disproportionation that determines the concentration of Cu(0) generated by disproportionation, the Cu(0) 

particle size obtained by disproportionation and reactivity, the solubility of Cu(I)Br and Cu(II)Br2 

compounds in the solvent and the quality of the solvent for SET reactions.  All these factors contribute to 

the catalytic effect of DMSO reported here even if the most reactive Cu(0) species involved in the SET-

LRP process are the atoms.63 

The Mixed-Ligand Effect During the SET-LRP of 2 mL MA in 1 mL DMSO using Me6-TREN, Me6-

TREN/ TREN and TREN as Ligands. The detection of the mixed-ligand effect for Me6-TREN/TREN 

was first observed and reported for SET-LRP performed in water/organic solvents biphasic systems.10b In 

the current series of experiments the molar ratio between Me6-TREN and TREN was varied from 1:0 to 

0:1 while maintaining the total amount of ligand, relative to initiator, constant at 10 mol%. The ratio 

between MA and DMSO was also kept constant (2mL MA to 1 mL DMSO) (Scheme 1, Figure 4)
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Figure 4. Kinetic plots, molecular weight and dispersity evolutions for the SET-LRP of MA in DMSO initiated with 
BPE and catalyzed by the 9.0 cm non-activated Cu(0) wire at 25 °C in the presence of: (a) Me6-TREN; (b,c,d) different 
ratios of Me6-TREN/TREN and (e) TREN. Experimental data in different colors were obtained from different kinetics 
experiments, sometimes performed by different researchers. kp

app and Ieff are the average values of three experiment. 
[MA]0/[BPE]0/[Ligand]0/[Cu(0)]0 = 222/1/0.2/9cm. 
Interestingly, any of the tested mixed ligand compositions provided higher kp

app values than those obtained 

in the control experiments performed in the presence of either Me6-TREN or TREN. These results will be 

discussed later. The partial replacement of Me6-TREN with TREN increased the kp
app while retaining first-

order kinetics (Figure 4). The most superior catalytic activity was observed at 1:1 molar combinations of 

both ligands (compare Figures 4a, b and c) suggesting the H-bonded new ligand from Scheme 1. Under 

these conditions, the SET-LRP of MA proceeded faster than control experiments with Me6-TREN (Figure 

4a) and TREN (Figure 4e), respectively. This mixed-ligand system also enabled the highest monomer 
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conversion and improved control over molecular weight distribution (Figures 5 and 6). The summary of 

all results is in Table 1. 

Table 1. Dependence of kp
app on the Dimension of the Cu(0) Wire in the SET-LRP of MA Initiated with BPE in 

DMSO at 25 °Ca 

entry Wire length
(cm) 20G Reaction condition kp

app

(min-1)
kp

app/ 
kp

app(TREN) Mw/Mn Ieff(%)

1 9.0 [MA]/[BPE]/[Me6-TREN]
222/1/0.2 0.048 1.3 1.14 79

2 9.0 [MA]/[BPE]/[Me6-TREN]/[TREN]
222/1/0.15/0.05 0.051 1.4 1.21 81

3 9.0 [MA]/[BPE]/[Me6-TREN]/[TREN]
222/1/0.1/0.1 0.053 1.4 1.23 82

4 9.0 [MA]/[BPE]/[Me6-TREN]/[TREN]
222/1/0.05/0.15 0.044 1.2 1.20 82

5 9.0 [[MA]/[BPE]/[TREN]
222/1/0.2 0.037 1.0 1.23 79

aReaction conditions: monomer = 2 mL; solvent =1 mL. 

Figure 5. Evolution of kp
app for the SET-LRP of MA (2 mL) initiated with BPE in DMSO (1 mL) mediated with different 

ratios between Me6-TREN and TREN at 25 °C (a). Initiator efficiency (Ieff (%)) and dispersity (Mw/Mn) as a function of 
the ratio between Me6-TREN and TREN. 

Representative GPC data shown in Figure 6 illustrate the evolution of molecular weight as a function of 

conversion during these experiments. GPC chromatograms revealed monomodal polymer peak 

distributions shifting to higher molecular weight while increasing conversion. Again, the most important 

effect was observed at 1:1 molar ratio between ligands. In this case, the Ieff was determined to be above 

80%. Overall, these results demonstrate that the mixed-ligand catalytic system consisting of nonactivated 

Cu(0) wire and Me6-TREN/TREN is an effective catalyst for the SET-LRP of MA in DMSO.
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Figure 6. Representative GPC traces of the evolution of molecular weight as a function of conversion for the SET-LRP 
of MA in a mixture of 2 mL MA with 1 ml DMSO catalyzed by 9.0 cm nonactivated Cu(0) wire at 25 °C in the presence 
of various ligand compositions as mentioned on top of the GPC curves. Reaction conditions: MA = 2 mL, DMSO = 1 
mL, [MA]0/[BPE]0/[L]0 = 222/1/0.2.

Visualization of the Reaction Mixtures at the End of the Polymerization. The images in Figure 7 

reveal a slight increase in the blue color of the reaction mixture as the concentration of TREN increases. 

This trend may indicate a negligible increase in the extent of bimolecular termination that is too low to be 

detected by NMR and MALDI-TOF analysis experiments. A similar effect was observed during the 

mixed-ligand effect observed in biphasic water-organic solvent reaction mixtures.10b
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Figure 7. Visualization of the reaction mixture of SET-LRP of MA initiated with BPE in DMSO using various ligand 
ratios (X) shown under the Schlenk tube. Reaction conditions are on top of each series of experiments. 

Structural Analysis of PMA Before and After Thio-Bromo “Click” Functionalization. A combination 

400 MHz 1H NMR and MALDI-TOF measurements before and after reacting -Br end-groups of PMA 

with thiophenol via thio-bromo “click” reaction48,49 were used to assess the living character of SET-LRP 

performed at various molar ratios between Me6-TREN and TREN and compare them with Me6-TREN 

and TREN.  Lower molar mass polymers were prepared for these investigations. Figures 8 and 9 show 

representative 1H NMR spectra of PMA samples isolated at high conversion after biphasic SET-LRP in 

DMSO in the presence of Me6-TREN (Figures 8a, 9a), Me6-TREN/TREN (Figures 8b, 9b) and TREN 

(Figures 8c, 9b) before and after thio-bromo ‘click” reaction. Within experimental error the chain end 

functionality (FBr, FSPH %) of all PMA samples is 100%. 
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Figure 8. 1H NMR spectra at 400 MHz of α,ω-di(bromo)PMA at: (a) 94% conversion (Mn= 8,620 and Mw/Mn= 1.22)     
([MA]0/[BPE]0/[Me6-TREN]0 = 60/1/0.2); (b) 90% conversion (Mn = 9,090 and Mw/Mn= 1.41) ( [MA]0/[BPE]0/[Me6-
TREN]0/[TREN]0 = 60/1/0.1/0.1); (c) 96% conversion (Mn= 7,3840 and Mw/Mn =1.23 ) ( [MA]0/[BPE]0/[TREN]0 = 
60/1/0.2); Polymerization conditions: MA = 2 mL, DMSO = 1.0 mL and non-activated 9 cm Cu(0) wire of 20 gauge. The 
signals at 7.26 ppm and 5.30 ppm are due to partially nondeuterated residue of CDCl3 and dichloromethane, respectively.  
FBr values refer to chain end functionality of PMA before thio-bromo “click” reaction (%).
 

This is a remarkable result that demonstrates that the catalytic activity of DMSO increases the ligand 

activity of TREN and transforms it into an excellent ligand. 
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Figure 9.  1H NMR spectra at 400 MHz of α,ω-di(phenylthio)PMA at: (a) 94% conversion (Mn= 8,620 and Mw/Mn= 
1.22)     ([MA]0/[BPE]0/[Me6-TREN]0 = 60/1/0.2); (b) 90% conversion (Mn = 9,090 and Mw/Mn= 1.41) ( 
[MA]0/[BPE]0/[Me6-TREN]0/[TREN]0 = 60/1/0.1/0.1); (c) 96% conversion (Mn= 7,380 and Mw/Mn =1.23 ) ( 
[MA]0/[BPE]0/[TREN]0 = 60/1/0.2); Polymerization conditions: MA = 2 mL, DMSO = 1.0 mL and non-activated 9 cm 
Cu(0) wire of 20 gauge wire. The signals at 7.26 ppm and 5.30 ppm are due to partially nondeuterated residue of CDCl3 
and dichloromethane, respectively. FSPh values refer to chain end functionality of PMA after thio-bromo “click” reaction 
(%).

Structural Analysis by MALDI-TOF Before and After Thio-Bromo “Click” Reaction. 

Representative MALDI-TOF spectra of PMA synthesized using Me6-TREN, TREN and equimolar 

amounts of Me6-TREN and TREN isolated in between 90% and 96% conversion were analyzed before 

and after the thioetherification reaction (Figures 10, 11, 12). The polymers isolated after SET-LRP at very 
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high conversions showed one distribution which can be assigned to the corresponding bromine-terminated 

polyacrylate chains ionized with Na+. 

Figure 10. MALDI-TOF of PMA-Br isolated at 94% from SET-LRP of MA in DMSO solution initiated with BPE and 
catalyzed by non-activated Cu(0) wire at 25 °C. (a) Before “thio-bromo click” reaction. (b) After “thio-bromo click” 
reaction. Reaction conditions: MA = 2 mL, DMSO = 1.0 mL, [MA]0/[BPE]0/[Me6-TREN]0 = 60/1/0.2, 9.0 cm of 20 
gauge Cu(0) wire. The dotted line in expansion after thioeterification shows the original peak from before 
thioeterification, while 59 represents the increase in molar mass after thioeterification i.e., 2*[SC6H5 (109, 2)–Br (79, 9)] 
= 58.57 for each chain end. 
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After thioetherification with thiophenol, the original series of peaks vanished and appeared 59 mass units 

above. This is the expected mass difference value considering the replacement of -Br atoms (2 x 79.9) by 

-SPh moieties (2 x 109.2) at both polymer chain-ends. 

Figure 11. MALDI-TOF of PMA-Br isolated at 90% from SET-LRP of MA in DMSO solution initiated with BPE and 
catalyzed by non-activated Cu(0) wire at 25 °C. (a) Before “thio-bromo click” reaction. (b) After “thio-bromo click” 
reaction. Reaction conditions: MA = 2 mL, DMSO = 1.0 mL, [MA]0/[BPE]0/[Me6-TREN]0/[TREN]0= 60/1/0.1/0.1, 9.0 

Page 18 of 38

ACS Paragon Plus Environment

Biomacromolecules

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



19

cm of 20 gauge Cu(0) wire. The dotted line in expansion after thioeterification shows the original peak from before 
thioeterification, while 59 represents the increase in molar mass after thioeterification i.e., 2*[SC6H5 (109, 2)–Br (79, 9)] 
= 58.57 for each chain end.

a) PMA before thioetherification

b) PMA after thioetherification
Conversion = 96%
Mth= 5,290
Mn,GPC= 7,380; Mw/Mn= 1.18
Mn,MALDI= 5,220; Mw/Mn= 1.05

Conversion = 96%
Mth= 5,290
Mn,GPC= 6,830; Mw/Mn= 1.23
Mn,MALDI= 4,790; Mw/Mn= 1.06

Figure 12. MALDI-TOF of PMA-Br isolated at 96% from SET-LRP of MA in DMSO solution initiated with BPE and 
catalyzed by non-activated Cu(0) wire at 25 °C. (a) Before “thio-bromo click” reaction. (b) After “thio-bromo click” 
reaction. Reaction conditions: MA = 2 mL, DMSO = 1.0 mL, [MA]0/[BPE]0/[TREN]0 = 60/1/0.2, 9.0 cm of 20 gauge 
Cu(0) wire. The dotted line in expansion after thioeterification shows the original peak from before thioeterification, 
while 59 represents the increase in molar mass after thioeterification i.e., 2*[SC6H5 (109, 2)–Br (79, 9)] = 58.57 for each 
chain end. 
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MALDI-TOF analysis of PMA prepared using Me6-TREN and TREN showed also high levels of chain 

end functionality (Figures 10, 11, 12, respectively). This demonstrates again the role of the catalytic 

activity of DMSO in transforming the neglected TREN into an excellent ligand for SET-LRP.

The Mixed-Ligand Effect During SET-LRP of 2 mL MA in 1.5 mL DMSO Using Me6-TREN, Me6-

TREN/TREN and TREN as Ligands. Kinetic experiments for the SERT-LRP of 2 mL MA in 1.5 mL 

DMSO performed with the mixed-ligand Me6-TREN/TREN under similar reactions conditions to the 

experiments performed with 2 mL MA in 1 mL DMSO from Figure 4 are reported in Figure 13. 
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Figure 13. Kinetic plots, molecular weight and dispersity evolutions for the SET-LRP of MA in DMSO, initiated with 
BPE and catalyzed by the 9.0 cm non-activated Cu(0) wire at 25 °C. Experimental data in different colors were obtained 
from different kinetics experiments, sometimes performed by different researches. Kp

app and Ieff are the average values of 
three experiments ([MA]0/[BPE]0/[Ligand/]0[Cu(0)]0 = 222/1/0.2/9cm); MA= 2mL DMSO = 1.5 mL.
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The freeze-though process was identical in both series of experiments and therefore, due to the larger scale 

of the experiments reported in Figure 13 a small induction period was observed in few cases. All 

experiments from Figure 13 were performed as triplicates. A comparison of the kp
app values from Figure 

4 with the data from Figure 13 indicates an increase in the kp
app values by increasing the concentration of 

DMSO. An increase in the concentration of DMSO corresponds to a decrease in the concentration of MA 

and is expected to provide under normal kinetic conditions a decrease in the rate of polymerization. 

Therefore, the increased kp
app values correspond to the catalytic effect of DMSO. Representative GPC 

experiments for the kinetics from Figure 13 are reported in Figure 14.  
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Figure 14. Representative GPC traces of the evolution of molecular weight as a function of conversion for the SET-LRP 
of MA in a mixture of 1 ml DMSO and catalyzed by the 9.0 cm nonactivated Cu(0) wire at 25 °C in the presence of 
various ligand compositions. Reaction conditions: MA = 2 mL, DMSO = 1.5 mL, [MA]0/[BPE]0/[L]0 = 222/1/0.2.
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Figure 15. Control experiments. Kinetic plots, molecular weight and dispersity evolutions for the SET-LRP of MA in 
DMSO, initiated with BPE and catalyzed by the 9.0 cm non-activated Cu(0) wire at 25 °C. Experimental data in different 
colors were obtained from different kinetics experiments and sometimes performed by different researches. Kp

app and Ieff 
is the average value of three experiment ([MA]0/[BPE]0/[Ligand/]0[Cu(0)]0 = 222/1/0.15 to 0.05/ 9cm);  MA= 2mL.

Table 2. Dependence of kpapp on the Dimension of the Cu(0) Wire in the SET-LRP of MA Initiated with BPE in 1.5 
ml DMSO at 25 °Ca 

entry Wire length
(cm) 20G Reaction condition kp

app

(min-1) Mw/Mn Ieff(%)

1 9.0 [MA]/[BPE]/[Me6-TREN]
222/1/0.2 0.0723 1.11 79

2 9.0 [MA]/[BPE]/[Me6-TREN]/[TREN]
222/1/0.15/0.05 0.0740 1.17 88

3 9.0 [MA]/[BPE]/[Me6-TREN]/[TREN]
222/1/0.1/0.1 0.0740 1.26 91

4 9.0 [MA]/[BPE]/[Me6-TREN]/[TREN]
222/1/0.05/0.15 0.0649 1.26 79

5 9.0 [[MA]/[BPE]/[TREN]
222/1/0.2 0.0512 1.28 77

6 9.0 [MA]/[BPE]/[Me6-TREN]
222/1/0.15 0.0679 1.13 78

7 9.0 [MA]/[BPE]/[Me6-TREN]
222/1/0.10 0.0661 1.13 80

8 9.0 [MA]/[BPE]/[Me6-TREN]
222/1/0.05 0.0547 1.10 76

9 9.0 [[MA]/[BPE]/[TREN]
222/1/0.15 0.0475 1.27 78

10 9.0 [[MA]/[BPE]/[TREN]
222/1/0.10 0.0415 1.27 78

11 9.0 [[MA]/[BPE]/[TREN]
222/1/0.05 0.0337 1.24 84

aReaction conditions: monomer = 2 mL; solvent =1.5 mL.
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The GPC traces from Figure 14 provide the same trend with the corresponding data from Figure 6. 

Control experiments for the kinetic data reported in Figure 13 are reported in Figure 15.
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Figure 16. Representative GPC traces of the evolution of molecular weight as a function of conversion for the SET-
LRP of MA in a mixture of 1 ml DMSO and catalyzed by the 9.0 cm nonactivated Cu(0) wire at 25 °C in the presence 
of various ligand compositions. Reaction conditions: MA = 2 mL, DMSO = 1.5 mL, ([MA]0/[BPE]0/[Ligand/]0[Cu(0)]0 
= 222/1/0.15 to 0.05/ 9cm); MA= 2 mL.

Their GPC data are shown in Figure 16 while the summary of all results is reported in Table 2.

Figure 17 illustrates the results of the mixed-ligand effect performed with 2 mL MA and 1.5 mL DMSO.  

The control experiment data are also included in Figure 17 to support the mixed-ligand effect. The most 

remarkable series of results comes from the comparison of the data from the mixed-ligand effect carried 

out with 2.0 mL MA and 1.0 mL DMSO vs 2.0 mL MA and 1.5 mL DMSO (compare Figures 4 with 13 

and Figures 5a with Figure 17a). This comparison is also made in Table 3. The most representative result 

from this comparison is that while kp
app value for Me6-TREN at 1 mL DMSO is 1.30, the value of kp

app for 
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TREN at 1.5 mL DMSO is 1.38. Therefore, TREN becomes at 1.5 mL DMSO more efficient than Me6-

TREN at 1 mL DMSO. This result explains the revitalization of TREN and its transformation into an 

excellent ligand by the catalytic effect of DMSO.

Figure 17. Evolution of kp
app for the SET-LRP of MA (2 mL) initiated with BPE in DMSO (1.5 mL) mediated with 

different ratios between Me6-TREN and TREN at 25 °C (in red). Control experiments performed only with Me6-TREN 
(in blue) and only with TREN (in yellow) are also incorporated.

Table 3. The Dependence of kp
app on the 9cm 20 G of the Cu(0) Wire in the SET-LRP of MA Initiated with BPE in 

DMSO at 25 °Ca 

entry Volume of 
DMSO (ml) Reaction condition kp

app

(min-1)
kp

app/ kp
app(entry 

10) Mw/Mn Ieff(%)

1 1.5 [MA]/[BPE]/[Me6-TREN]
222/1/0.2 0.072 1.95 1.11 79

2 1.0 [MA]/[BPE]/[Me6-TREN]
222/1/0.2 0.048 1.30 1.14 79

3 1.5 [MA]/[BPE]/[Me6-TREN]/[TREN]
222/1/0.15/0.05 0.074 2.00 1.17 88

4 1.0 [MA]/[BPE]/[Me6-TREN]/[TREN]
222/1/0.15/0.05 0.051 1.38 1.21 81

5 1.5 [MA]/[BPE]/[Me6-TREN]/[TREN]
222/1/0.1/0.1 0.074 2.00 1.26 91

6 1.0 [MA]/[BPE]/[Me6-TREN]/[TREN]
222/1/0.1/0.1 0.053 1.43 1.23 82

7 1.5 [MA]/[BPE]/[Me6-TREN]/[TREN]
222/1/0.05/0.15 0.065 1.76 1.26 79

8 1.0 [MA]/[BPE]/[Me6-TREN]/[TREN]
222/1/0.05/0.15 0.044 1.19 1.20 82

9 1.5 [[MA]/[BPE]/[TREN]
222/1/0.2 0.051 1.38 1.28 77

10 1.0 [[MA]/[BPE]/[TREN]
222/1/0.2 0.037 1.00 1.23 79

aReaction conditions: MA = 2 mL
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Structural Analysis of PMA Before and After Thio-Bromo “Click” Reaction by a Combination of 

NMR and MALDI-TOF. Structural analysis was performed by a combination of 1H-NMR and MALDI-

TOF before and after thio-bromo “click” reaction (Figures S6 to S10). The chain-end functionality of the 

PMA is 97% before thio-bromo “click” reaction and 98% respectively after thio-bromo “click” reaction 

regardless of the structure of the ligand employed during SET-LRP (Figures S7 and S8). These excellent 

results are confirmed by the MALDI-TOF analysis performed before and after thio-bromo “click’” 

reactions (Figures S6, S9, S10). 

Brief Comments on the Significance of these Results for the Field of Biomacromolecules and 

Concluding Remarks. SET-LRP catalyzed by Cu(0) wire, powder, coins and other objects occurs in 

disproportionating solvents and provides polyacrylates with unexpectedly high chain end functionality for 

a living radical polymerization process.26,50  This includes, within the limits of NMR experimental error, 

100% chain end functionality for PMA.26,50 In non-disproportionating solvents including polar solvents 

like acetonitrile,43 and non-polar solvents like toluene,42 the chain end functionality of the resulting 

polymers is much lower. Best chain end functionality is observed in the absence Cu(II)X2  and could be 

obtained either with TREN or Me6-TREN26 or in the presence of a very small amount of Cu(II)X2.26,50 

Larger amounts of Cu(II)X2 additive decrease the chain end functionality of the resulting polymers 

although SET-LRP provides the highest chain end functionality of any LRP prepared polymers.26,50,51 

Details of chain end functionality as a function of the concentration of externally added Cu(II)X2 were 

discussed previously.26 Under these conditions, the lower chain end functionality values can be explained 

by the Cu(II)Br2 mediated oxidation of propagating radicals to carbocations that subsequently provide 

chain end double bonds by proton transfer to the basic components of the reaction mixture such as Me6-

TREN and TREN in their non-complexed forms.52,53,54 Terminal double bond chain ends have been 

reported in polyacrylates obtained by SET-LRP in the presence of Cu(II)X2.51a In this respect, TREN is a 
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less basic ligand than Me6-TREN, and therefore TREN is a more efficient ligand than Me6-TREN in 

attempts to provide perfectly functional PMA chain ends. The unusually high chain end functionality 

observed under SET-LRP reaction conditions was attributed to the polymer adsorption on the surface of 

Cu(0) that decreases the reactivity of the growing radicals in bimolecular termination events but not during 

the propagation reactions.55,56 This high chain end functionality contrasts with the much lower chain end 

functionality observed in ATRP, where the persistent radical effect (PRE)57 is responsible for the 

production of Cu(II)X2.58,59 Activation of the alkyl halides by Cu(0) objects occurs by the most active site 

of their face centered crystal (FCC) that is 111.60 Both powder61 and wire62 experiments demonstrated that 

objects produced from Cu(0) crystals have a reactivity that is surface dependent. Moreover, this reactivity 

increases when Cu(0) atoms are produced by disproportionation followed by activation, nucleation and 

growth on the original surface of Cu(0).19,63 Nucleation and growth has been demonstrated to occur during 

SET-LRP on the surface of the wire.64 Colloidal Cu(0) particles were also demonstrated during 

SET-LRP.43 However the highest activity of Cu(0) is as atoms. Cu(0) atoms are more reactive that Cu(I)X 

and are classic and well-established SET catalysts.44 This diversity of catalytic Cu(0) species is all 

involved in the SET-LRP process but could not be observed to reduce Cu(II)X2 to Cu(I)X species during 

the SET-LRP process.45 However, this reduction is not excluded to occur in the absence of activation. 

This brief mechanistic discussion demonstrates that the reduction of the amount of Cu(II)X2 during SET-

LRP can contribute to a better control of the chain ends and to a lower amount of contamination of the 

product with Cu species. The use of TREN and Me6-TREN mixed-ligand system to mediate the Cu(0) 

wire-catalyzed SET-LRP MA in the catalytically active solvent DMSO provides a new methodology to 

control the SET-LRP process. Kinetic data and chain end analysis demonstrate that Me6-TREN can 

complement and make TREN a very efficient ligand in the absence of externally added Cu(II)Br2 when 

the catalytically active solvent DMSO is employed. The fact that the most important effect is observed at 
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1/1 molar ratio between ligands suggests that in addition to a fast exchange between the two ligands, a 

new single dynamic ligand generated by hydrogen-bonding should be considered in future mechanistic 

investigations. The rate of polymerization at 1/1 molar ratio between the two ligands is higher than that 

obtained with each of the individual ligand at the same molar concentration. At the same time, SET-LRP 

experiments performed at the proper concentration of DMSO do not require the use of the activated Cu(0) 

wire. The high chain end functionality65 generated in the absence of externally added Cu(II)Br2 makes the 

SET-LRP in the presence of the mixed-ligand and/or TREN the method of choice for the synthesis of 

biomacromolecules as already reported for many examples, including some from our laboratory.66 

Therefore, the catalytic activity DMSO can be exploited, as demonstrated here, to enhance the reactivity 

of TREN and of its 1/1 mixture with Me6-TREN while decreasing the basicity of the ligand and eliminating 

side-reaction mediated by it. The most fundamental question related to this topic that must be addressed 

is the following: do all disproportionating solvents display a catalytic effect in SET-LRP or only DMSO? 

Research to answer this question is in progress.
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