IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 13, 2020, accepted April 24, 2020, date of publication May 4, 2020, date of current version May 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2992033

Enhanced Wireless Channel Estimation Through
Parametric Optimization of Hybrid Ray
Launching-Collaborative Filtering Technique

FRAN CASINO"“?, (Member, IEEE), PEIO LOPEZ-ITURRI“23, (Member, IEEE),
ERIK AGUIRRE23, LEYRE AZPILICUETA 4, (Senior Member, IEEE),
FRANCISCO FALCONE“23, (Senior Member, IEEE),

AND AGUSTI SOLANAS 5, (Senior Member, IEEE)

lDepartment of Informatics, University of Piraeus, 18534 Piraeus, Greece

2Electric, Electronic and Communication Engineering Department, Public University of Navarre, 31006 Pamplona, Spain
3nstitute of Smart Cities, Public University of Navarre, 31006 Pamplona, Spain

4School of Engineering and Sciences, Tecnolégico de Monterrey, Monterrey 64849, Mexico

SDepartment of Computer Engineering and Mathematics, Rovira i Virgili University, 43007 Tarragona, Spain

Corresponding author: Francisco Falcone (francisco.falcone @unavarra.es)

This work was supported in part by the European Commission LOCARD Project under Grant 832735 and under Project
RTI2018-095499-B-C32 and Project RT12018-095499-B-C31, and in part by the Ministerio de Ciencia, Innovacién y Universidades,
Gobierno de Espafia (MCIU/AEI/FEDER, UE). The work of Agusti Solanas was supported in part by the Government of Catalonia (GC)
under Grant 2017-DI-002 and Grant 2017-SGR-896, and in part by the Fundacié PuntCAT with the Vinton Cerf Distinction.

ABSTRACT In this paper, an enhancement of a hybrid simulation technique based on combining collabo-
rative filtering with deterministic 3D ray launching algorithm is proposed. Our approach implements a new
methodology of data depuration from low definition simulations to reduce noisy simulation cells. This is
achieved by processing the maximum number of permitted reflections, applying memory based collaborative
filtering, using a nearest neighbors’ approach. The depuration of the low definition ray launching simulation
results consists on discarding the estimated values of the cells reached by a number of rays lower than a set
value. Discarded cell values are considered noise due to the high error that they provide comparing them to
high definition ray launching simulation results. Thus, applying the collaborative filtering technique both to
empty and noisy cells, the overall accuracy of the proposed methodology is improved. Specifically, the size
of the data collected from the scenarios was reduced by more than 40% after identifying and extracting
noisy/erroneous values. In addition, despite the reduced amount of training samples, the new methodology
provides an accuracy gain above 8% when applied to the real-world scenario under test, compared with the
original approach. Therefore, the proposed methodology provides more precise results from a low definition
dataset, increasing accuracy while exhibiting lower complexity in terms of computation and data storage.
The enhanced hybrid method enables the analysis of larger complex scenarios with high transceiver density,

providing coverage/capacity estimations in the design of heterogeneous IoT network applications.

INDEX TERMS Collaborative filtering, 3-D ray launching, pattern recognition, wireless channel.

I. INTRODUCTION

Wireless communication systems are one of the main
enablers of highly interactive scenarios in future Heteroge-
neous Network architectures. In this context, multiple wire-
less systems cooperate, using physical layer mechanisms and
network supported services, to optimize systems’ operation
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in terms of overall interference minimization and energy
consumption reduction. In this sense, foreseen applications
within Internet of Things (IoT) and within 5G communica-
tions, such as Device to Device (D2D) or machine type com-
munications (MTC), will substantially increase transceiver
density [1], [2]. This increase in the number of wireless
sources and inherent limitation owing to size and form factors
(wearables, embedded transceivers) requires radio channel as
well as system planning tasks to optimize coverage/capacity
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relations and hence overall quality of service metrics, mainly
constrained by interference. Deterministic wireless channel
modelling techniques, such as ray launching or ray tracing,
provide accurate results both in terms of received power
estimation and time-dependent variables (e.g., power delay
profiles or delay spread distributions). The main drawback of
those techniques is the potentially large computational cost,
which is dependent on scenario size, consideration of detailed
scenario topology and the inclusion of additional effects, such
as diffraction or diffuse scattering [3], [4].

Recently, approaches based on artificial intelligence have
been explored in the field of electromagnetic analysis, in mul-
tiple fields such as EM scattering, inverse Scattering, direc-
tion of arrival estimation, radar and remote sensing [5],
as well as in other network oriented aspects, such as dynamic
resource allocation algorithms [6]. In the case of wireless
channel modelling, some works on channel estimation have
been presented in relation with: massive MIMO systems [7],
node distribution in wireless sensor networks [8], machine
learning assisted path loss prediction [9], empirical connec-
tivity model for an extended monitoring network of envi-
ronmental parameters optimized by machine learning on an
extensive data set [10], low altitude propagation model based
on a machine learning approach [11], or an enhanced empiri-
cal propagation model combined with machine learning tech-
niques from extensive measurement sets in the UHF focused
on coverage analysis of DTV systems [12], among others.
Future trends are foreseen for upcoming beyond 5G systems,
in which multi state, multi-dimensional networks can be ana-
lyzed and optimized by the aid of quantum machine learn-
ing techniques [13]. Different applications within wireless
channel characterization, resource allocation optimization or
system level enhancement [14]-[20], are presented in Table 1.

Deterministic based methods can provide accurate wireless
channel estimations for complex scenarios with high density
of constitutive elements, particularly for the case of indoor
scenarios. However, as previously stated, accuracy comes
with the tradeoff of high computational cost. This is given
mainly by a precise definition of the elements within the
scenario under consideration and the discretization level of
the physical propagating wave front and the equivalent set of
rays within the defined solid angle in the case of volumetric
approaches. In order to reduce computational complexity,
several approaches have been proposed, based on the combi-
nation of deterministic Ray Launching techniques with other
approaches, such as neural networks and the electromagnetic
diffusion equation [21], [22]. This has given rise to the use of
hybrid simulation, an approach that has provided improved
results in elements such as tracking in nonlinear systems,
supported by fuzzy systems [23]. In [24], we proposed the
combination of in-house 3D Ray Launching (3D RL) code
with collaborative filtering (CF) recommender systems [25].
The main idea was to use the ability of CF methods to predict
rates and infer the values of empty cells in matrices obtained
in low definition (LD) simulations, reducing the computa-
tional complexity of high definition (HD) simulations. The

VOLUME 8, 2020

TABLE 1. Overview of wireless channel analysis supported with artificial
intelligence techniques.

Description of Solution

Ref Overview Implemented

[9] Path loss prediction | Improvement as compared with
based on machine | conventional empirical based RF
learning path loss estimation techniques, by

using different machine learning
approaches.

[10] Enhanced A radio propagation model based on
connectivity model in | 2.4GHz ISM band is presented for
large scale low power | distributed wireless sensor network
wireless sensor | connectivity, scalable and adaptive
networks to other network conditions with the

aid of machine learning techniques

[12] Optimized UHF | Based on an extensive set of
propagation  model | measurements and the application of
based on machine | hybrid KNN-KBT techniques, a
learning techniques radio propagation model for DTV

system modeling is presented.

[14] Deep neural networks | Transmit power allocation for
to support multi- | secondary users minimizing
channel cognitive | interference for primary users in
radio operation cognitive radio schemes

[15] Optimal resource | General purpose approach in the use
allocation in wireless | of deep neural networks, with
systems supported by | examples provided in AWGN
deep neural networks channel capacity and Interference

channel conditions

[16] Optimized MAC | Implementation of MAC
framework based on | functionalities to handle coexistence
deep neural networks | between IoT-Wi-Fi devices in ISM
user detection for Het- | band, with enhanced channel usage
IoT operation information

[17] Robust  modulation | A novel classifier scheme is
employing a deep | proposed, which is robust in the case
neural network - | of considering a non-ideal noisy
recursive neural | SISO channel, reducing training
network-based process time.
classifier

[18] Pedestrian dead | Indoor location system implemented
reckoning indoor | over Wi-Fi signals fused with
positioning  systems | Smartphone opportunistic sensor
implemented with | data, with the aid of deep neural
deep neural networks network-factor graph model

[19] Joint Optimization in By using multiple deep neural
IoT Fog Enabled networks, multiple variables such as
systems of multiple memory caching, edge computing
characteristics based and radio resource management can
on the use of deep be jointly enhanced, with the main
neural networks goal of reducing end to end delay

[20] Improvement of radio | By using different machine learning
resource management | based strategies (i.e., deep neural
in vehicular 5G network -recursive neural network),
networks supported radio resource management is
by machine learning enhanced in a 5G SDN/NFV
techniques network implementation.

proposed methodology was applied to RF power distribution
in complete volumes of several scenarios, and it could be
extended to other parameters as well.

In this article, we present an optimization methodology to
decrease computational cost, based on the analysis on the per-
mitted maximum number of rebounds (NR) of the launched
rays, initially described in [26]. The study of multiple simula-
tion databases (created with different NR values) enables the
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analysis of the minimum number of rays per simulation cell,
which in turn reduces estimation errors in the LD to HD result
association phase. The proposed approach provides increased
accuracy, while reducing computational costs regarding HD
simulations. The new proposed method increases efficiency
by discarding results of those cells in which the total number
of rays detected is lower than a set value (NR), acting as an
effective threshold. The corresponding threshold is obtained,
by means of 3D ray launching simulation analysis. These
values exhibit high error as compared to high definition
ray launching simulations, being equivalent to noise. The
application of collaborative filtering techniques significantly
improves the overall accuracy.

The rest of article is organized as follows: Section II pro-
vides background on recommender systems and collabora-
tive filtering. Section III describes validation with 3D RL
simulation tools and wireless channel measurement results.
Section IV describes the hybrid CF-3D RL methodology
with optimized NR parameter analysis. Section V presents
the experimental validations, ending with the concluding
remarks.

Il. BACKGROUND

A. RECOMMENDER SYSTEMS AND COLLABORATIVE
FILTERING

Nowadays, data management is facing a paradigm shift
due to the widespread adoption of cyber-physical systems,
which will increase both the volume and the way data are
exchanged [27]. As a consequence, real-time services face
several changes due to increased regulations, client demands
and big data challenges [28]. In this context, automatic rec-
ommendation systems [28] are gaining momentum due to
their inherent characteristics, which provide manageable and
personalized information to users [30], [31]. Collaborative
filtering [24] encompasses disparate recommendation meth-
ods and is nowadays the most widely used technique due to
its adaptability according to the input data. CF relies on the
assumption that users that share similar behavior/experience
in specific topics will have similar tastes or interests accord-
ing to some quantifiable metric. Usually, the relationships
between users and items are stored in the form of n x m
matrices (i.e. n users and m items), where each cell (i, j) stores
the evaluation of user i on item j. Fig. 1 shows an example of
such data representation.

The literature classifies CF methods into three main
categories according to the data they manage [24], [32]:
(i) Memory-based, which use all the available data about
users, items and relationships, (ii) model-based, which cre-
ate a model (e.g. by using machine learning, dimension-
ality reduction or statistical models) from the complete
set, and (iii) hybrid-based, which incorporate other data
sources (e.g. social networks, demographic data). Neverthe-
less, despite the benefits provided by CF methods, there are
several challenges that such systems need to face, being the
most acute the cold start, scalability, sparseness and privacy
issues [32]-[36]. For more on CF, we point the interested
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FIGURE 1. Example of data matrix. Each row corresponds to a user
profile, and each column corresponds to an item.

reader to [32], [37] for a review of the state-of-the-art and
the most relevant advances and trends.

In this paper, we adopt the most well-known memory-
based CF variant with the nearest neighbors approach (KNN),
where users compute their similarities according to a metric
(e.g. Euclidean distance, cosine similarity) to find which
are their closest neighbors (i.e. their corresponding most
similar profiles). Therefore, given a pattern with inconsis-
tent/erroneous values, we will select its k£ most similar pat-
terns (according to a ground truth database) to infer/predict
the RF power level [38], [25].

IIl. 3D RAY LAUNCHING TOOL VALIDATION

As stated previously, an in-house 3D Ray Launching algo-
rithm has been used in this work to predict radio wave
propagation in a complex indoor environment. The proposed
algorithm is a geometry-based deterministic approach where
different parameters can be considered as inputs, namely
the number of reflections, operation frequency, transmit-
ted power, bit rate, angular and spatial resolution and the
radiation pattern of the considered antennas. A detailed 3D
scenario is created considering all the obstacles within it,
by means of the conductivity and relative permittivity of all
the materials at the frequency of operation of the system.
The main drawback of these methods is their high computa-
tional complexity due to 3D space analysis. To overcome this
problem, several articles in the literature analyze convergence
analysis of different approaches in terms of the number of
reflections or the launching ray’s density. In [39], a quasi-
analytical ray propagation model to obtain the RF field within
an aircraft cabin is proposed. The convergence analysis of the
algorithm is presented in terms of rays’ propagation time and
number of bounces, showing that the high content of metallic
parts inside the cabin shows a slow rate of convergence.
Another study in [40] presents a hybrid method of GO/PO
and physical theory of diffraction where the dependence of
field convergence on the maximum number of reflections is
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FIGURE 2. Pictures of the SUT: ‘Laboratori 231 of Rovira i Virgili
University, Tarragona, Spain.

investigated. The work in [41] proposes a ray density normal-
ization within a novel stochastic ray launching approach to
accurately predict signal levels in curved geometries. In [42],
a mixed ray launching/tracing method propagation modelling
for large areas is proposed, analyzing the convergence of
the number of reflections and diffractions of such areas.
The study in [43] analyzes the number of rays to achieve
convergence in a ray tracing approach for RCS modeling of
large complex objects.

In the same way, the convergence analysis in terms of
launching rays and number of reflections has been performed
for the in-house 3D ray launching algorithm, and it is pre-
sented in [44], showing the optimal parameters to be used
in the algorithm to achieve good accuracy with affordable
computational time. Considering these parameters, in this
section, the 3D RL validation is presented for a scenario under
test (SUT).

The SUT is ‘Laboratori 231°, an indoor scenario of
8.8m x 4.7m x 3.7m, located at the School of Engineering
of the Rovira i Virgili University, in Tarragona, Catalonia,
Spain (cf., Fig. 2). As it can be seen, the scenario is a small
conference hall where mainly tables and chairs are present.
Due to the reduced size of the scenario and the high density of
obstacles, the scenario is a complex one in terms of multipath
propagation components.
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FIGURE 4. Comparison between measurements and 3D Ray Launching
estimations for the measurement points shown in Fig. 3.

TABLE 2. Material properties for Ray Launching simulations (at 2.4 GHz).

Material €r Conductivity (S/m)
Wood 2.88 0.21
Plasterboard 2.02 0
Aluminium 4.5 37.8 x 10°
Whiteboard 245 0.33
Polypropylene 3 0.11
Concrete 8 0.02
Glass 6.06 0.11

In order to perform the validation of the proposed 3D
RL tool, the SUT has been created for its simulation (cf.,
Fig. 3 and Fig. 5). The dimensions of the scenario, the shapes
and sizes of the elements within, and their material proper-
ties have been set as close as possible to the real scenario.
Table 2 shows the dispersive material properties used in the
simulations.

The used 3D RL parameters are summarized in Table 3.
Note that the parameters have been chosen in order to suit
the equipment employed in the measurement campaign: As a
transmitter, an XBee mote (ZigBee) with a whip antenna. As a
receiver, a monopole antenna (Titanis 2.4 GHz Swivel SMA
Antenna from Antenova) coupled to an Agilent FieldFox
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TABLE 3. Ray Launching simulation parameters.

Parameter Value
Operation Frequency 2.4 GHz
Antenna Type Monopole
Antenna Gain 1.2dB
Transmitted Power 0 dBm

Cuboid size (Mesh resolution) | 10 cm x 10 cm x 10 cm

Launched rays angular

resolution 1 degree
Permitted maximum rebounds 6
Diffraction phenomenon Activated

NO9912A spectrum analyzer. The location of the transmitter
(red dot) and the measurement points (green dots) are repre-
sented in Fig. 3.

Fig. 4 shows the comparison between the measured
RF power level and the estimated values obtained by the
3D RL algorithm for 12 different measurement points.
As expected, the results show good agreement, with a mean
error of 0.23 dB with a standard deviation of 2.43 dB. There-
fore, the simulation tool has been considered validated to
be used in this SUT in order to perform the hybrid ray
launching-collaborative filtering technique study proposed in
this paper.

IV. METHODOLOGY

The proposed optimization is applied to LD simulations per-
formed by the presented 3D RL algorithm for both creation
of DBs and simulation of the SUT, which is where the whole
improved methodology to obtain RF power distribution is
applied.

The permitted maximum NR in a 3D RL simulation gives
the maximum number of interactions between launched rays
(from the transmitter) and the obstacles within the scenario.
This parameter is fixed by the user before the simulation. The
NR affects the accuracy of the obtained results, being more
accurate the higher this number is. However, a higher NR
implies more calculation time. Besides, the accuracy of the
results tends to converge at a specific NR, which for the kind
of indoor scenarios evaluated is six rebounds. In other words,
for NR > 6 the accuracy improvement is negligible, but
the required calculation time increases significantly. As an
illustrative example of the effect of the permitted maximum
NR, Fig. 5 shows the RF power distribution estimations
obtained at height 2m of the SUT, for NR = 0 (LD1), NR =
2 (LD3), NR =4 (LD5) and NR = 6 (LD7). In the previous
methodology [23], we built DBs using LD simulations with
NR = 3. However, in this new approach, we use a set of indoor
scenarios, described in Section III.A, to create DBs from NR
= 0 to NR = 6. Each scenario has been simulated in LD for
the seven cases.

NR affects the accuracy of LD simulation results because
it plays a role in the number of rays that reach each simulation
cell: the smaller NR, the smaller the number of rays that reach
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FIGURE 5. 3D Ray Launching view of the SUT. The bi-dimensional planes
show the RF power distribution for several permitted NR, from 0 (LD1)
to 6 (LD7). The results correspond to the plane delimited by the red line
at 2m.

each cell, and the higher the number of cells that are not
reached by any launched ray. These empty cells (i.e., cells
without an RF power level) in LD simulations are filled by
our 3D RL-CF method. However, empty cells are not the
only problem. We detected non-empty cells that lessen the
accuracy of the 3D RL—CF results. These cells usually exhibit
avery low RF power level, because they have been reached by
a very low number of rays during the simulation. To address
this problem, we propose a depuration method, explained
in Section III.C, to suppress cells with inaccurate values.
A comparison between the previous and the new methodolo-
gies is shown in Fig. 6. The depuration process is highlighted
in orange.

A. DATA COLLECTION - DATABASES CREATION

Ten scenarios have been defined to build the DBs needed
to apply the proposed methodology. All scenarios are indoor
and similar in terms of morphology and density, like in [3].
In this case, a different PC has been used for the simulations:
Intel (R) Core(TM) i5-4690 CPU @ 3.50GHz, with 32 GB
RAM. The features of the scenarios used to build the DBs
are summarized in Table 4. The Size column shows the 1:
length, w: width and h: height of the scenario, and column
Density shows the percentage of the volume of the scenario
which is occupied by objects (i.e., not air). It is important
to note that the features of the scenarios used to build the
DBs limit the scenarios that can be analyzed. As can be seen
in Table 4, the chosen SUT features are between the limits
of the DB scenarios. Moreover, the presented methodology
can be applied to every scenario as long as the DBs are built
accordingly to the required features.

Each scenario has been simulated in LD using 3D RL with
several values for NR (from O to 6). A total of 70 simulations
have been used to create seven DBs (i.e., {DBLDI, Vi €
[1,7]1}), each containing the results of simulations with a
different NR value. Fig. 7 shows the simulation time for all
cases.
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FIGURE 6. Comparison between the previous methodology [23] and the
improved methodology presented in this paper.

TABLE 4. Test scenarios features.

Scenario Size (Ixwxh) | Surface | Volume | Density

(m) (m?) (m’) (%)

1 13x7x4.2 91 382.2 2.60
2 12.6x18.2x3.8 229.32 871.42 3.72
3 12.32x27.27x3.2 | 337.33 1079.46 3.06
4 5.84%6.24x3.5 36.44 127.55 3.78
5 17.5x8x4 140 540 6.69
6 19.6x13.6%3.8 266.56 1012.93 1.04
7 3.6x6%3.8 21.6 82.08 4.74
8 3.2x6.32x3.12 20.22 63.10 0.52
9 9.05%7.25%2.62 65.61 171.90 6.10
10 12x22x3.2 264.00 844.80 5.37
SUT 8.8x4.7x3.7 41.36 153.03 3.96

B. DATA AGGREGATION FOR Ry, y COMPUTATION

In this section, we detail the cumulative distributions obtained
for all scenarios in terms of number of rays R; per cell, MAE
and sparseness. Note that we represent the aggregate numbers
after applying LD simulations using NR values from 0 to
6. These data are used to determine the value of Ry, in
Section III.C.

Fig. 8 shows the aggregate distribution of number of cells
that had a specific number of rays R;. We can observe that,
as expected, the higher the number of rays the lower the num-
ber of cells. Such outcome is related with the one depicted
in Fig. 9. In this case, we show the cumulative percentage
of sparseness of the scenarios according to all values. For
example, in the case of R; = 0, we have a 0% of sparseness
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FIGURE 9. Cumulative sparseness according to all values for each R;.

and thus, all cells have at least this number of incident rays.
In the case of R; = 1, we observe that only a 69% of all
cells have more than R; > 1. In the case of R; = 30,
we observe a sparseness value above 97%, which means that
less than 3% of cells registered a R; > 30. The outcomes
state that most of the cells of the system have a low number
of R;. Considering that Ry, is set to 4 as later discussed in
Section III.C, this means that in average we discard more
than 60% of values (cf. Fig. 9) due to their bad quality when
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FIGURE 10. MAE distribution of cells according to the values of R;.

performing LD simulations. In this regard, Fig. 10 shows
the maximum absolute error (MAE) of all values according
to each R;. It is obvious that the higher R; the less error in
the values. However, as seen in Fig. 9, selecting only cells
with high R; would lead to a high sparseness, hindering the
prediction process.

C. DATA DEPURATION PROCESS

We state that if the number of rays, R;, passing through a
cell, Cj, during the simulation is small, the value in that
cell will be inaccurate. With the aim to identify those non-
empty cells with small R;, containing inaccurate values,
we set a quality threshold for the minimum number of
rays, Rmin, which should pass through a cell to consider its
value valid. Ry, 1s set once for the whole volume of the
scenarios.

It is worth emphasising the difference between the num-
ber of rebounds, NR, and the number of rays, R;, in a cell.
Although they are closely related concepts, the former deter-
mines how many times rays interact with objects in the sim-
ulation, while the latter counts the number of rays that pass
through each cell.

In order to determine Ry, we analyse the error (i.e., the
difference between obtained values in LD and HD simula-
tions) and the sparseness of LD simulations for several values
of Ryin. First, we compute the error of all scenarios using the
mean absolute error (MAE) as follows:

> | |HD; — LD;|

n

MAE =

ey

where 7 is the number of non-empty cells, LD; is the value
of the LD simulation for cell i, and HD; is the value of cell i
in the HD simulation. We only compare non-empty LD cells
with their HD counterparts (i.e., empty cells are discarded).
The error is classified depending on the number of incident
rays per cell to obtain an aggregated error for all simulations.
Next, in order to compute the sparseness, we classify cells
depending on their number of incident rays and we count
the percentage of cells that have, at least, a given number of
incident rays.

The Rnin value is selected to balance the trade-off between
sparseness and MAE. In a nutshell, we want to eliminate
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LD = LD - Invalid Cells

Invalid |

FIGURE 12. Depuration process example. The upper left image shows a
3D LD bi-dimensional RF power distribution, where the empty cells are
depicted in dark blue. The upper right image shows the results after the
data depuration process. The bottom images represent the valid and
invalid cells for each case. Invalid cells values will be predicted
afterwards using our proposed method.

inaccurate cells, but we have to minimise sparseness to pre-
serve enough patterns/information in the DBs. Note that a
high Rpyn value means better quality simulation results (val-
ues) but a smaller number of patterns in the DBs. A short-
age of patterns affects CF predictions, since it prevents
the recommendation algorithm from finding proper analo-
gies. A simple procedure to determine the value of Rpin
is to find the discrete value of the minimum intersec-
tion point of both functions (i.e., error & sparseness). The
result, depicted in Fig. 11, is that the quality threshold
value Rpin, should be set to 4. Therefore, in the depu-
ration process, cells with Rj < Rpin = 4 are dis-
carded. Fig. 12 shows a graphical example of the refinement
process.
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FIGURE 13. Number of patterns stored by each set of databases. Note
that in the case of LD1, any value reaches the quality threshold and thus,
DBR i remains empty.

TABLE 5. Number of patterns created from original simulation results
(DBpanhattan) and their depurated counterparts (DBgpin)-

DB yanhattan DBg, .. Reduction (%)
2x2 Pattern 8,499,957 5,787,176 31.92
3x3 Pattern 6,584,238 3,986,426 39.46
4x4 Pattern 5,220,039 3,016,904 4221

D. DATABASE SIZE COMPARISON - ORIGINAL VS.
DEPURATED

Following the procedure described in [24], recommender/CF
databases, containing squared 2D patterns of several sizes g x
q have been created from the simulations (cf., Section III.A).
We have created two sets of databases: One set { DBMmanhattan }
obtained using the original simulation results, and another set
{DBgmin} obtained using their depurated versions resulting
from the application of the procedure described in Section
III.B. That is, discarding all the patterns, which have one or
more cells below the R,,;;, incident rays threshold. In each set,
we distinguish 21 different databases depending on the size
of the 2D pattern (i.e.,2 x 2, 3 x 3 and 4 x 4) and the NR of the
LD simulations (i.e., LD1(NR = 0), LD2(NR = 1), LD3(NR
= 2), LD4(NR = 3), LD5(NR = 4), LD6(NR = 5) and
LD7(NR = 6)). Hence,

DBwyanhattan = {DB Vg e [2,4] AVie[l,T]},

Rmanhattanq

and

DB . = {DBLP

mm

Ve €2, 41 AVie 1,71},

Rmm

Fig. 13 shows a comparison between these two sets
regarding the number of generated patterns. Table 5
shows the aggregated results. The proposed depura-
tion procedure reduces the size of databases (i.e., num-
ber of stored patterns) by more than 30% in all
cases.
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TABLE 6. Summary of prediction strategies.

Data Source Strategy ID 2D pattern size
Original simulation results 2D.1 q=2
DB 2D.2 q=3
Manhattan D3 g1
Depurated simulation results 2D.4 q=2
2D.5 q=3

DBy .

mn 2D.6 q=4

V. EXPERIMENTAL RESULTS OF THE PROPOSED
ALGORITHM

The proposed depuration algorithm could be applied in two
different phases: (Phase I) During the creation of knowledge
databases to reduce the number of patterns and filter inaccu-
rate values from LD simulations, and (Phase II) Before the
prediction on the SUT simulation to filter inaccurate values
of the SUT LD simulation before applying the prediction
algorithm. Depending on the phase/s in which the depuration
algorithm is applied, we can distinguish four cases:

« Case A: No
approach [23])
o Case B: Depuration is applied only in Phase I
o Case C: Depuration is applied only in Phase II
« Case D: Depuration is applied in both phases

depuration is applied (original

Our depuration algorithm reduces the number of patterns
in the databases, contributing to a better efficiency of the
overall solution (cf., Section III.D). However, beyond effi-
ciency improvements, in this section, we assess the effect of
the depuration algorithm on the prediction accuracy. To do
so, we apply the 2D CF-RL hybrid method proposed in [24]
with several prediction strategies (cf., Table 6) on the original
simulation of the SUT and the depurated simulation of the
SUT.

Prediction strategies differ on the size of the 2D pattern
(i.e., g € [2, 4] and on the database source (i.e., original sim-
ulation results — DBwManhattan, OF their depurated counterparts
— DBRin.

Each strategy is applied to the existing simulations
obtained with different NR (i.e., from LD2 to LD7). LD1 (i.e.,
NR = 0) is discarded because DBLD ! DBLDl is empty for any
q € [2,4], (cf,, Fig. 13). In each strategy, “We set k = 100 as
the maximum number of neighbours used to compute the
prediction. Results accuracy is measured in terms of the MAE
between our predictions and the HD simulation values. All
results are shown in Table 7 highlighted in different colours
depending on the case. The average MAE for each case is
given in Table 8.

It can be observed that using our depuration algorithm
helps to reduce the error. The original approach, Case A, [24]
is the one with the worst performance, whilst Case D is the
best performer. However, the differences are not substantial.
Comparing cases A and B, and cases C and D we observe that
the effect of using the original simulations { DBManhattan} OF
the depurated ones {DBRrmin} is minimal, slightly favoring
the use of the depurated ones (i.e., —0.02 dB). Similarly,
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TABLE 7. Mean absolute error LD + CF vs. HD simulations (in dB - the lower the better). ¢ indicates the standard deviation Case A: Original databases &
Original SUT (Light Red), Case B: Depurated databases & Original SUT (Light Yellow), Case C: Original databases & Depurated SUT (Light Blue), Case D:

Depurated databases & Depurated SUT (Light Green).

Original LD Simulation of SUT Depurated LD Simulation of SUT
LD2 LD3 LD4 LD5 LD6 LD7 itv':r‘:g LD2 LD3 LD4 LD5 LD6 LD7 itvrzﬁzgz
Str;teg N]IEA G N][EA c N]IEA c N][EA c N}[EA c N][EA ¢ | MAE NIIEA c NIIEA c NIIEA c N}IEA c N][EA c N][EA c MAE
2D.1 |11.57|8.99]12.35[10.34[12.38]10.98]12.89|10.67|13.68] 10.38] 14.80| 10.56 | 12.95 || 9.07 |7.62 9.15 |7.81]10.84|8.38[12.68[9.11[13.37|10.40]13.87|10.96] 11.50
2D.2 [10.98]8.78]11.24] 9.56 [11.63]10.08]12.55[10.07{13.65]10.08] 14.92|10.31| 12.50 |[9.05|7.62] 9.06 [7.77]10.70]8.30|12.78]8.97[13.91| 9.71 [14.23| 9.95 | 11.62
2D.3 |10.51]8.65]10.52( 9.08 [11.29] 9.57 |12.44] 9.79 [13.66] 9.94 |14.82|10.09| 12.21 |]9.06 |7.63] 9.04 |7.75]10.69[8.29[12.778.89| 14.13| 9.77 |14.91| 9.01 | 11.77
2D.4 |12.39]9.42]13.07[10.56[12.96| 11.47]12.82|10.57[13.18] 10.18] 14.53 10.50| 13.16 | 9.05|7.64] 9.16 |7.87]10.85(8.44[12.799.18[13.45]|10.55|13.88|11.04] 11.53
2D.5 |11.44]9.04]11.61[ 9.69 [12.31]10.70]12.32]10.04[12.80] 10.03] 14.13| 10.14| 12.44 || 9.06 |7.64] 9.03 |7.80]10.68[8.32|12.80|8.96|13.86] 9.69 |14.12| 9.94 | 11.59
2D.6 [10.71]8.80]10.68 9.15 [11.63] 9.97 |12.21 9.65 [12.75] 9.82 | 14.01|10.01| 12.00 |[9.02 |7.62] 9.03 [7.77]10.59]8.25|12.76]8.91|14.11| 9.77 [14.82 9.91 | 11.72

TABLE 8. Average MAE for each Case (in Db - The lower the better).

CASE A CASE B CASE C CASE D

Average

MAFE 12.55

12.53 11.63 11.61

TABLE 9. Sparseness values of sut before/after depuration (in %).

LD2 LD3 LD4 LD5 LD6 LD7

N 24.09 | 11.73 | 548 3.12 1.89 1.25
Depurated

SUT 71.89 | 43.66 | 26.06 | 16.38 | 10.87 6.99

comparing cases A and C, and cases B and D we can see
the effect of using the original simulations of the SUT or its
depurated counterpart. In this case, using the depurated SUT
simulations is clearly better (i.e., —0.98 dB). It is worth noting
that applying our depuration algorithm to the SUT increases
its sparseness significantly (cf,, Table 9). However, despite
this apparent loss of information, the results exhibit a lower
error, which supports the usefulness of our proposal not only
in terms of efficiency but also in terms of error reduction.
Regarding strategies, there is no clear evidence supporting
the use of one or another, although there is a slight trend
towards reducing the error whilst increasing the pattern size.
Surprisingly enough, using simulations with a small NR (e.g.,
LD2, LD3) proves to perform better than those obtained with
larger NR (e.g., LD7). This occurs because the higher the
NR, the more specific and characterised the scenario is, and
finding similar patterns becomes more difficult. Therefore,
the obtained results indicate that the proposed methodology
effectively maintains power level estimation accuracy, with
a reduction in database size. Therefore, computational com-
plexity is reduced, enabling an increase in the computational
volume of the scenario under test.

VI. CONCLUSION

We have proposed an optimization of our previous
2-dimensional RL—CF approach, based on the analysis of the
NR parameter. We presented a methodology to obtain the
Rmin value, which is computed finding a trade-off between
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sparseness and the error between LD and HD values. The
Rnin value enables the depuration of simulations by removing
invalid values, which reduces DBs size and increases effi-
ciency and accuracy. While the previous approach applied
CF to the empty cells of LD of 3D RL simulations, this
new method discards the results of the cells reached by a
number of rays lower than a set value (NR). This discarded
cell values are considered noise due to the high error that
they provide comparing them to high definition ray launching
results. Thus, applying the collaborative filtering technique
both to empty and noisy cells, the overall accuracy of the
proposed methodology is significantly improved. The main
contributions of this article are summarised as follows: (i) we
studied the NR parameter to observe its effect on LD simu-
lations (ii) we computed the Ry, depuration value according
to sparseness and error values obtained for each simulated
scenario considering different NRs (iii) we showed that our
optimized, depuration-based proposal obtains faster and more
accurate results when applied to both databases and the
SUT. Future work will focus on the clustering of scenarios
according to their features and characteristics. Therefore,
scenarios with similar contexts will be grouped, enhancing
the results, especially in simulations with high NR. The pro-
posed methodology enables performing coverage/capacity
analysis whilst reducing the computational cost of wireless
systems in scenarios with high node density, morphological
complexity and size. Note that the methodology can be
applied to every kind of scenario building and feeding the
databases accordingly. The proposed methodology deals with
frequency dependent power level characterization. Great deal
of interest lays within the analysis of time delay character-
istics and their effect in overall system performance [45].
Application of hybrid 3D RL + CF techniques within time
domain parameters will also be explored as a future work
line.
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