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Nucleotide depletion reveals the impaired ribosome
biogenesis checkpoint as a barrier against
DNA damage
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Abstract

Many oncogenes enhance nucleotide usage to increase ribosome
content, DNA replication, and cell proliferation, but in parallel trig-
ger p53 activation. Both the impaired ribosome biogenesis check-
point (IRBC) and the DNA damage response (DDR) have been
implicated in p53 activation following nucleotide depletion.
However, it is difficult to reconcile the two checkpoints operating
together, as the IRBC induces p21-mediated G1 arrest, whereas the
DDR requires that cells enter S phase. Gradual inhibition of inosine
monophosphate dehydrogenase (IMPDH), an enzyme required for
de novo GMP synthesis, reveals a hierarchical organization of these
two checkpoints. We find that the IRBC is the primary nucleotide
sensor, but increased IMPDH inhibition leads to p21 degradation,
compromising IRBC-mediated G1 arrest and allowing S phase entry
and DDR activation. Disruption of the IRBC alone is sufficient to
elicit the DDR, which is strongly enhanced by IMPDH inhibition,
suggesting that the IRBC acts as a barrier against genomic
instability.
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Introduction

The reprogramming of metabolic networks is a hallmark of cancer,

which is initiated by the activation of oncogenes or the loss of tumor

suppressors, acting to drive and sustain tumor cell proliferation

(Hanahan & Weinberg, 2011). One of the most studied oncogenes is

c-Myc, whose dysregulation or amplification has been implicated in

> 70% of all cancers (Murphy et al, 2008). c-Myc is a master regula-

tor of both cancer initiation and progression (Stine et al, 2015),

through its ability to control the transcription of a wide range of

genes (Kress et al, 2015). A critical set of these genes promote

anabolic metabolism, including the synthesis of lipids, amino acids,

and nucleotides, required for tumor cell proliferation (Kress et al,

2015; Stine et al, 2015). However, c-Myc appears to be distinct from

other oncogenes, many of which fail to upregulate anabolic genes

involved in nucleotide metabolism (Bester et al, 2011; Aird et al,

2013), including Rb-E2F (Bester et al, 2011) and RAS-RAF (Aird

et al, 2013). In those cases, oncogene activation can lead to a

decrease in nucleotide pools, replicative stress, and genomic insta-

bility, argued to be an initial step in tumorigenesis (Bester et al,

2011; Aird et al, 2013). Indeed, ectopic expression of c-Myc in Rb-

E2F tumorigenic model re-establishes the nucleotide pools (Bester

et al, 2011), an effect partially recapitulated by the ectopic expres-

sion of its target gene IMPDH2 (Mannava et al, 2008). Both IMPDH1

and 2 catalyze the rate limiting step in GMP synthesis, the oxidation

of inosine monophosphate (IMP) to xanthosine monophosphate

(XMP) (Huang et al, 2018). The identification of the IMPDHs as key

targets of c-Myc has opened a potential therapeutic window for
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synthetic lethality (Stine et al, 2015), a concept supported by recent

studies showing that a subset of small-cell lung carcinomas (SCLCs),

characterized by c-Myc and IMPDH upregulation, are highly vulner-

able to IMPDH inhibitors (Huang et al, 2018).

Although nucleotides are essential for DNA replication and repair

(Tong et al, 2009; Aird et al, 2013), they are largely consumed in

the production of ribosomes, with ribosomal RNA (rRNA) represent-

ing ~80% of the nucleic acids of the cell and ~ 15% of its biomass

(Pelletier et al, 2018). The demand for nucleotides is further exacer-

bated in tumors driven by c-Myc, which coordinates the enhanced

transcription of genes required for the hyperactivation of ribosome

biogenesis, needed to increase protein synthetic capacity, cell prolif-

eration, and ultimately malignancy (Santagata et al, 2013). Given

the dependency of such tumors on ribosome biogenesis (Barna et al,

2008; van Riggelen et al, 2010), a search for novel agents that

specifically target this process has been initiated (Bywater et al,

2012; Pelletier et al, 2018). Importantly, insults to ribosome biogen-

esis, including c-Myc-induced oncogenic stress (Macias et al, 2010;

Morcelle et al, 2019), also trigger a p53-mediated cell-cycle check-

point, recently termed the impaired ribosome biogenesis checkpoint

(IRBC) (Gentilella et al, 2017; Pelletier et al, 2018). The IRBC is

mediated by a nascent pre-ribosomal complex containing RPL5 (or

uL18), RPL11 (or uL5), and 5S rRNA, which upon insults to ribo-

some biogenesis, is redirected from its assembly into 60S ribosomes

to the binding and inhibition of the p53-E3-ubiquitin ligase HDM2

(or MDM2) (Donati et al, 2013), leading to p53 stabilization

(Kubbutat et al, 1997; Pelletier et al, 2018). In most cases, p53 stabi-

lization by the IRBC leads to G1 cell-cycle arrest, largely mediated

by the cyclin-dependent kinase inhibitor 1 (CDKN1A) or p21. This

mechanism is distinct from that involving replicative stress and the

DNA Damage Response (DDR), where phosphorylation of either

HDM2 or p53 prevents their interaction, stabilizing p53 (Bode &

Dong, 2004), independent of the IRBC (Macias et al, 2010).

Because of the critical role of IMPDHs in proliferating tumor cells

(Liu et al, 2008; Mannava et al, 2008), a number of studies have

focused on the development of antimetabolites, which inhibit their

function (Stine et al, 2015), including mycophenolic acid (MPA),

mizoribine, and AVN-944. These agents are catalytic non-competi-

tive inhibitors of IMPDH, which unlike nucleoside analogs that

produce chromosome breaks or inhibit DNA repair enzymes, do not

incorporate into the DNA (Allison & Eugui, 2000). However, the

underlying mechanisms by which they lead to p53 stabilization are

not clearly understood. Initial studies suggested that IMPDH inhibi-

tors activate a reversible p53-dependent cell-cycle checkpoint

(Linke et al, 1996), which was later attributed to the IRBC (Sun

et al, 2008). However, others have reported that IMPDH inhibition

leads to replicative stress and the DDR (Liu et al, 2008). This seem-

ing contradiction was recently highlighted in studies of two human

tumor types, in SCLCs characterized by the low expression of the

Achaete-scute homolog-1 (ASCL1) and the upregulation of c-Myc

(Huang et al, 2018) and in tuberous sclerosis complex 2 (TSC2)-

deficient kidney tumors, where increased rRNA synthesis is driven

by constitutive mTOR signaling (Valvezan et al, 2017). Both are

sensitive to IMPDH inhibitors, but apparently through different

mechanisms: the first through the inhibition of ribosome biogenesis

(Huang et al, 2018) and the second through DDR (Valvezan et al,

2017). The differences in these findings are not clearly understood,

as is the apparent incompatibility between the induction of the

IRBC, leading to G1 arrest in a p53 wild-type setting (Sun et al,

2008), and replicative stress.

Given the wide use of nucleotide synthesis inhibitors in cancer

therapy, it is important to understand the cellular checkpoints

induced by these anticancer agents. Here, we set out to address the

contribution of the IRBC and replicative stress in driving p53 stabi-

lization upon guanine nucleotide imbalance in sporadic colorectal

cancer (sCRC) cell lines, as almost all CRCs are initiated by c-Myc

dysregulation (TCGA, 2012) and are addicted to hyperactive ribo-

some biogenesis (Pelletier et al, 2018). We find that a reduction of

guanine nucleotide pools first impairs ribosome biogenesis, leading

to the induction of the IRBC, p53 stabilization, and G1 arrest.

However, if nucleotide depletion becomes more severe, cells enter S

phase and encounter replicative stress, which is paralleled by the

decreased expression of p21. Although the levels of nascent 5S

rRNA, an essential component of the IRBC complex decrease under

these conditions, we find that this is not sufficient to impinge on

complex formation nor the transcriptional induction of p21. Instead

reduced p21 protein levels appear to be attributed to enhanced

proteasome degradation. Moreover, S phase entry is further

enhanced in MPA-treated p21�/� cells, with ectopic expression of

p21 reversing this response. Consistent with this observation, the

downregulation of the IRBC complex, reducing p21 transcription,

facilitates MPA-induced S phase entry despite low guanine nucleo-

tides levels, leading to further DNA damage. Unexpectedly, loss of

the IRBC alone triggered DNA damage. These findings demonstrate

that guanine nucleotide levels differentially control two distinct p53-

checkpoints in a hierarchical manner and that the IRBC acts as a

barrier against DNA damage.

Results

Distinct mechanisms mediate p53 activation in response to
decreasing guanine nucleotides

To identify the molecular mechanisms by which guanine nucleotide

depletion regulates p53, we carried out a dose-response analysis

with the IMPDH non-competitive catalytic inhibitor, MPA. As

reported earlier in U2OS osteosarcoma cells (Sun et al, 2008), 24 h

treatment of HCT116 cells with MPA leads to a dose-dependent

increase in p53 protein levels (Fig 1A). Similar maximal levels of

p53 were observed following treatment with 5 nM Actinomycin D

(ActD) (Fig 1A), which selectively inhibits Pol I-dependent rRNA

transcription (Perry, 1963), leading to activation of the IRBC (Donati

et al, 2013). However, as the concentration of MPA increased, the

amount of p21 protein was reduced (Fig 1A and Appendix Fig S1A).

Moreover, concomitant with the decrease in p21 protein levels, the

phosphorylation of p53 S15, Chk1 S345, and BRCA1 S1524 was

increased, markers of replicative stress and ATR activation, absent

in cells treated with 1 lM MPA or ActD (Fig 1A). However, at these

time points, MPA does not lead to the phosphorylation of the ATM

targets Chk2 T68 or H2AX S139 (c-H2AX), nor increases the number

of c-H2AX or 53BP1 foci, indicating that DNA double-strand breaks

(DSBs) are not a primary consequence of GMP depletion (Fig 1A

and Appendix Fig S1B–D, respectively). Similar findings were

obtained with the non-competitive inhibitor of IMPDH, AVN944

(Appendix Fig S1E). In contrast, inhibition of topoisomerase II by
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etoposide, which generates DNA-double strand breaks, led to an

increase in Chk2 T68 phosphorylation and c-H2AX (Appendix Fig

S1F). These results suggest that at lower concentrations of IMPDH

inhibitors the IRBC is activated and p53 stabilized, whereas at

higher concentrations ATR and p53 phosphorylation are induced.

Given the differential effects of IMPDH inhibitors on p53 stabi-

lization and phosphorylation, we asked whether these differences

were associated with changes in guanine nucleotides pools, as

measured by liquid chromatography-mass spectrometry (LC-MS).

Following 24 h treatment with 1 or 10 lM MPA, we observed a

dose-dependent drop in all guanine ribonucleotides, whereas dGTP

levels only decreased significantly in 10 lM MPA-treated cells

(Fig 1B). Moreover, IMPDH inhibition leads to the accumulation of

the substrate IMP (Appendix Fig S1G) but has no effect on adenine

nucleotide levels (Appendix Fig S1H), pyrimidine nucleotide UTP

levels (Appendix Fig S1I), or on the NAD+/NADH redox state,

despite NAD+ being an IMPDH coenzyme (Appendix Fig S1J). The

differential effects of increasing concentrations of MPA on guanine

nucleotide levels appear to be compatible with IMPDH inhibition

eliciting distinct effects on ribosome biogenesis and replicative

stress.

The induction of p53 by MPA is selectively mediated by
IMPDH inhibition

To ensure that the effects of MPA on p53 were mediated by IMPDH

inhibition, we depleted cells of IMPDH1 and/or IMPDH2, the domi-

nant isoform in most mammalian tissues (Carr et al, 1993; Senda &

Natsumeda, 1994), and measured the responses above. We first

generated a stable HCT116 cell line expressing a tetracycline (Tet)-

inducible miR30 based shRNA (Zuber et al, 2011) against IMPDH2

(IM2iKD). The IM2iKD parental cell line was then transfected with

either a non-targeting (NT) or IMPDH1 shRNA, to generate the

IM2iKD-shNT and IM2iKD–shIM1 stable cell lines. In IM2iKD-shNT

cells, tetracycline treatment did not affect IMPDH1 mRNA levels

(Fig 1C, left panel), whereas IMPDH2 mRNA levels were reduced

(Fig 1C, right panel). In IM2iKD–shIM1 cells, IMPDH1 mRNA levels

were decreased (Fig 1C, left panel), with tetracycline treatment

inducing a reduction in IMPDH2 mRNA levels (Fig 1C, right panel).

The shRNA targeting of IMPDH1 had no effect on total IMPDH (see

Materials and Methods), p53 or p21 protein levels, nor on Chk1

S345 phosphorylation (Fig 1D). Despite IMPDH2 depletion decreas-

ing the levels of IMPDH2 and total IMPDH protein, while inducing

p53 and p21 protein, it had no effect on Chk1 S345 phosphorylation

(Fig 1D). Similar results were obtained with an independent shRNA

sequence against IMPDH2 (Appendix Fig S1K and L). These findings

argue that IMPDH2 is the predominant isoenzyme in HCT116 cells

and that its depletion induces p53, but apparently independent of

replicative stress.

The failure of IMPDH depletion to induce Chk1 phosphorylation

(Fig 1D) suggested that the decrease in IMPDH levels was not

severe enough to lower nucleotide levels to the level achieved with

MPA (Fig 1B). In agreement with this observation, addition of

10 lM MPA in cells depleted of IMPDH2 led to an increase in Chk1

S345 phosphorylation (Appendix Fig S1M) and a further decrease in

guanine nucleotide levels (Appendix Fig S1N). We also assessed

potential off-target effects of MPA by supplementing cells with

exogenous guanosine, through which the purine salvage pathway

can regenerate nucleotides from degradative intermediates. The

addition of exogenous guanosine bypassed the effects of MPA on

guanine nucleotide levels (Fig 1B), completely preventing the induc-

tion of p53, p21, and Chk1 S345 phosphorylation by 10 lM MPA

(Fig 1E), with none of the other three nucleosides showing a similar

effect on p53 (Appendix Fig S1O). These results support the notion

that as guanine nucleotide levels decrease distinct responses are

activated, which converge on p53.

The IRBC and ATR contribute distinctly to the regulation of p53

The high demand of ribonucleotides for ribosome biogenesis

(Pelletier et al, 2018) supports the concept that the p53 stabilization,

by low concentrations of IMPDH inhibitors, is mediated by the

IRBC. To test this hypothesis, we pretreated cells with a siRNA NT

or a siRNA against RPL11 (siRPL11), an essential component of the

IRBC (Pelletier et al, 2018). The results show that the upregulation

of p53 by 1 or 10 lM MPA is reduced by depletion of RPL11;

however, the levels of p53 are significantly higher in cells treated

with 10 lM MPA (Fig 2A), despite an equivalent decrease in RPL11

mRNA levels (Appendix Fig S2A). To ensure that the second input

to p53 is independent of the IRBC, we depleted cells of RPL7a (or

eL8), an essential RP of the 60S ribosomal subunit whose depletion

leads to the activation of the IRBC (Fumagalli et al, 2012), or co-

depleted RPL7a and RPL11 (Fig 2B and Appendix Fig S2B), followed

by treatment with 10 lM MPA for 6 h. The results show that deple-

tion of RPL11 alone has no effect on p53 or p21 levels, whereas the

strong induction of both responses following depletion of RPL7a is

completely reversed by co-depletion of RPL11 (Fig 2B). However,

p53 upregulation by MPA in control or RPL7a-depleted cells is only

partially reversed by RPL11 co-depletion (Fig 2B). These findings

support the role of the IRBC in the primary response to nucleotide

depletion, and that there is a distinct secondary input to p53 when

the inhibition of GMP synthesis is more severe.

As ATR-mediated p53 S15 phosphorylation (Fig 1A) impairs its

interaction with HDM2 (Bode & Dong, 2004), the ATR pathway is

the likely candidate for the induction of the second p53 checkpoint

by MPA. Although selective ATR inhibitors block kinase activity,

ATR protects the stability of replicative forks, such that its inhibi-

tion leads to the collapse of replicative forks and to ATM-mediated

p53 S15 phosphorylation, which is amplified by nucleotide short-

age (Chanoux et al, 2009; Toledo et al, 2013). Consistent with this

observation, the ATR inhibitor (VE-821, ApexBio) strongly inhib-

ited Chk1 S345 phosphorylation, but induced the phosphorylation

of p53 S15, Chk2 T68, and c-H2AX (Appendix Fig S2C), markers

of ATM activation. The increase in p53 S15 and Chk2 T68 phos-

phorylation was suppressed by the ATM inhibitor (KU-55933,

Sigma-Aldrich), whereas that of c-H2AX was unaffected, most

likely attributed to the activation of DNA-dependent protein kinase

(Stiff et al, 2004). Analysis of the combination of ATR and ATM

inhibitors on p53 activation by 10 lM MPA showed only a partial

inhibition of p53 stabilization (Fig 2C and Appendix Fig S2C),

which was also the case for RPL11 depletion (Fig 2C and

Appendix Fig S2D). However, ATR/ATM inhibition in cells

depleted of RPL11 rescued p53 to almost basal levels (Fig 2C),

consistent with a milder lesion in guanine nucleotide synthesis

inducing the IRBC, whereas a more severe lesion causes induction

of ATR and p53 phosphorylation.
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Severe nucleotide imbalance leads to increased p21
protein degradation

The levels of p21, an important marker of IRBC activation, fall at

higher concentrations of IMPDH inhibitors (Fig 1A, and

Appendix Fig S1A and E). We hypothesized that decreased

guanine nucleotide synthesis would inhibit transcription of

nascent 5S rRNA, IRBC complex formation, and p21 transcription.

Unexpectedly, the results show that p21 mRNA levels are simi-

larly increased after treatment with 1 lM or 10 lM MPA, though

to a lower extent than induced by ActD treatment (Fig 3A),

suggesting that the transcriptional activity of p53 toward p21 is

not differently affected by increasing concentrations of MPA. Like-

wise, Pol II transcription did not appear to be largely affected, by

analyzing a number of mRNA transcripts (Appendix Fig S3A) nor

in using a Renilla luciferase reporter (Appendix Fig S3B).

However, increasing concentrations of MPA led to a strong dose-

dependent decrease in Pol I transcribed 47S rRNA, as measured

by the analysis of the Internal Transcribed Spacers (ITS) 1 and

ITS2 (Appendix Fig S3A), and to a reduction in mature 18S and

28S rRNA, measured by 3H-uridine pulse-chase labeling of nascent

rRNA (Fig 3B). These findings are consistent with the induced

nucleolar disruption by MPA, evidenced by the redistribution of

upstream binding factor (UBF) and fibrillarin to adjacent nucleolar

cap structures (Appendix Fig S3C), similar to our earlier findings

(Fumagalli et al, 2012) and those of others (Shav-Tal et al, 2005).

The inhibition of ribosome biogenesis also agreed with a 30%

decrease in 3H-leucine incorporation into nascent proteins, which

is further reduced at 48 h (Appendix Fig S3D). In parallel to inhi-

bition of Pol I transcription, 10 lM MPA treatment led to a strong

inhibition of 5S rRNA, and 5.8S rRNA synthesis, as compared to

1 lM MPA and ActD (Fig 3C). However, there was no change in

the amount of RPL5 and RPL11 co-immunoprecipitating with

HDM2, in cell extracts cleared of mature ribosomes, after treat-

ment with 1 versus 10 lM MPA (Fig 3D), though there was a

small reduction in the amount of associated 5S rRNA (Fig 3E).

Consistent with p21 mRNA levels (Fig 3A), we found higher levels

of IRBC complex components bound to HDM2 in the presence of

ActD (Fig 3D and E). Similar results were obtained with the

immunoprecipitation of endogenous RPL5 (Appendix Fig S3E and

F). Thus, the reduction in 5S rRNA synthesis by GMP depletion

did not appear to limit formation of the IRBC complex, supporting

the finding that p21 transcription is not differentially regulated as

a function of the dose of MPA.

The results suggested that the effects on p21 were regulated at

the translational or post-transcriptional level. The half-life of p21

is known to be very short (Abbas & Dutta, 2009), raising the

possibility that the decrease in p21 protein levels is attributed to a

decrease in its half-life. To test this possibility, cells were pre-incu-

bated with 1 lM or 10 lM MPA for 24 h, then treated with cyclo-

heximide for increasing times. The results show that the half-life

of p21 is dramatically reduced at 10 lM MPA versus 1 lM MPA,

whereas that of p53 is enhanced, showing differential regulation

of p21 versus p53 following guanine nucleotide shortage (Fig 3F).

Moreover, p21 degradation appears to be due to enhanced protea-

somal degradation, as MG132 had little effect in cells pretreated

with 1 lM MPA, but dramatically enhanced p21 levels in cells

treated with 10 lM MPA (Fig 3G), whereas the opposite effect

was observed for p53 protein levels (Appendix Fig S3G). Taken

together, the results argue that the decrease in p21 levels by

severe IMPDH inhibition is due to its enhanced proteasomal

degradation.

◀ Figure 1. Inhibition of guanosine nucleotide synthesis elicits distinct p53 responses.

A Western blots in HCT116 cells treated for 24 h with increasing concentrations of MPA or 5 nM Actinomycin D (ActD). GAPDH served as a loading control.
B HCT116 cells were treated for 24 h with vehicle alone (�), 1 lM MPA, 10 lM MPA, or the combination of 10 lM MPA with 400 lM guanosine. Guanylate

nucleotide levels were measured by LC-MS and normalized to protein content. Mean � SEM is representative of 3 independent experiments carried out in
triplicate.

C, D Parental HCT116 cells expressing a stable tetracycline-inducible shRNA against IMPDH2 (IM2iKD) and either a stable non-targeting (NT) shRNA
(IM2iKD-shNT) or an shRNA targeting IMPDH1 (IM2iKD—shIM1) were grown for 7 days in the absence or presence of doxycycline (2 lg/ml) (� dox or + dox,
respectively). mRNAs of IMPDH1 and IMPDH2 were quantified by real-time qPCR in 2 independent experiments carried out in triplicate and normalized to b-actin
mRNA (C). Whole cell extracts were analyzed on Western blots with the indicated antibodies. GAPDH was used as a loading control. Quantification of band
intensity of p53 and p21 is shown. Mean � SD is representative of four independent experiments. (right panel) (D).

E Western blots in HCT116 cells treated for 24 h with the indicated concentration of MPA, in the presence of dimethyl sulfoxide (DMSO) or 400 lM guanosine.
GAPDH was used as a loading control.

Data information: In panels (B–D), data are presented as relative to control. *P < 0.05, **P < 0.01, ***P < 0.001 by two-tailed Student’s t-test.

▸Figure 2. The IRBC and ATR distinctly regulate p53 stabilization upon nucleotide depletion.

A HCT116 cells were transfected with either a NT or a siRNA against RPL11 for 24 h and treated with the vehicle alone (�) or the indicated concentration of MPA for
24 h. The levels of p53 and p21 were analyzed on Western blots. GAPDH was used as a loading control. Quantification of band intensity of p53 and p21 of four
independent experiments is shown (right panel).

B HCT116 cells were transfected with the indicated siRNA and 24 h later treated with the vehicle alone or 10 lM MPA for 6 h, and the levels of p53 and p21 were
analyzed on Western blots. GAPDH was used as a loading control. Quantification of band intensity of p53 of at least four independent experiments is shown
(right panel).

C HCT116 cells were transfected with either a NT siRNA or a siRNA against RPL11 for 24 h and were preincubated for 30 min in the absence (�) or the presence (+) of
the combination of 10 lM of the ATR inhibitor VE-821 (ATRi) and 10 lM the ATM inhibitor KU-55933 (ATMi), followed by addition of the vehicle alone (�) or MPA
10 lM for additional 24 h. The levels of p53 were analyzed on Western blots. GAPDH was used as a loading control. Quantification of band intensity of p53 of at least
two independent experiments is shown (right panel).

Data information: All data are presented as Mean � SD, relative to control. *P < 0.05, **P < 0.01, ***P < 0.001, by two-tailed Student’s t-test.
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Severe nucleotide imbalance overcomes the IRBC-induced G1/S
checkpoint leading to replicative stress

The downregulation of p21 and the induction of replicative stress by

higher doses of MPA (Fig 1A) indicate that cells bypass the G1/S

checkpoint upon severe nucleotide depletion. To test this possibility,

we first analyzed cell-cycle profiles of cells treated with either MPA or

ActD for 24 h. Unlike cells treated with 1 lM MPA, largely arrested in

G0/G1 and G2/M, recapitulating the IRBC-dependent effects of ActD-

mediated Pol I inhibition, a large proportion of cells treated with

10 lM MPA were found in early S phase (Fig 4A and Appendix Fig

S4A; Fumagalli et al, 2012). Importantly, this event appears to be a

direct consequence of a compromised G1/S checkpoint, as cells first

synchronized in G1 by serum deprivation and re-stimulated with

serum in the presence of 10 lM MPA, also initially accumulate in

early S phase (Appendix Fig S4B) and appear to slowly progress

A

B

C

Figure 2.
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through the cell cycle (Appendix Fig S4C). The effects of MPA on cell-

cycle progression were not ascribed to cellular context as similar

results were observed in a number of CRC cell lines, including RKO,

LoVo, and LS174, harboring oncogenic alterations in K-Ras, and/or

B-Raf, and mutations in the APC-Wnt-ß-catenin pathway leading to

c-Myc upregulation (TCGA, 2012), but all having a functional p53

(Fig 4B and Appendix Fig S4D). As importantly, the analysis of p53,

p21, and Chk1 S345 phosphorylation levels suggests that the differen-

tial activation of the IRBC and the induction of replicative stress as a

function of MPA concentrations is a conserved molecular response in

CRC cell lines (Appendix Fig S4E).

Consistent with cell-cycle profiles (Fig 4A), the analyses of a

number of proteins involved in regulating cell-cycle progression

show that treatment with 1 lM MPA or ActD decreases the levels of

cyclin A and the phosphorylation of retinoblastoma (RB) S780,

whereas levels of p21 and cyclin D1 increase (Appendix Fig S4F). In

contrast, 10 lM MPA-treated cells display reduced levels of p21,

and cyclin D1 similar to untreated cells, while the levels of RB S780

phosphorylation and cyclin A, required for S phase progression, are

increased, compatible with a compromised G1/S checkpoint

(Appendix Fig S4F). Moreover, these cells are delayed in completing

S phase (Appendix Fig S4C), indicating a hindrance in DNA replica-

tion, potentially ascribed to the reduced levels of dGTP (Fig 1B), a

common cause of replication fork stalling (Awasthi et al, 2015). To

test this hypothesis, we monitored the speed of DNA replication by

single-molecule DNA fiber analysis, employing two nucleotide

analogues (Ercilla et al, 2016; Appendix Fig S4G), showing that

MPA-treated cells display a greatly reduced rate of DNA fiber elon-

gation as compared to non-treated cells (Fig 4C and D). Importantly,

reduced rate of DNA fiber elongation was associated with asymmet-

ric replication of the two DNA strands indicative of replicative stress

(Fig 4C, right insert). We also detected an increase in ssDNA gener-

ation, by BrdU incorporation under non-denaturing conditions and

accumulation of chromatin-loaded RPA, in cells treated with MPA,

compared with hydroxyurea (HU) which causes rapid depletion of

dNTPs (Fig 4E and Appendix Fig S4H). This result suggests that

MPA leads to replicative fork arrest, and to the uncoupling between

replicative helicase and DNA polymerases. Moreover, after

prolonged nucleotide imbalance, Chk1 is downregulated and the

levels of ATM-dependent phosphorylation of H2AX S139 and Chk2

T68 increase (Fig 4F). This finding, combined with H2AX phospho-

rylation occurring exclusively in DNA replicating cells

(Appendix Fig S4I and J), and the enhancement of cH2AX by ATR

inhibition in MPA-treated cells (Appendix Fig S2C) indicate that

prolonged nucleotide imbalance leads to persistent fork stalling and

the generation of DSBs, likely due to the collapse of the replicative

forks (Saintigny et al, 2001; Zhang et al, 2005; Hanada et al, 2006;

Toledo et al, 2013). Moreover, the results further suggest that severe

nucleotide depletion impedes G1-arrest, allowing cells to enter S

phase where they encounter replicative stress, which with time

leads to DNA damage.

The suppression of p21 drives S phase entry upon
nucleotide imbalance

To determine whether the loss of a robust p21 response is involved

in the failure of the IRBC to preserve cells in G1, we first analyzed the

effects of MPA on the cell-cycle progression, as a function of p21

protein levels. We initially set a threshold for p21 analyses based on

antibody detection of the protein in isogenic HCT116 p21�/� cells

and discriminated two cellular populations in the parental cells, p21

low (p21low) and p21 high (p21high). Cell-cycle analyses of total popu-

lation (Fig 5A, top panel) show similar profiles as described above

(Fig 4A and Appendix Fig S4A). In the absence of treatment, p21high

cells represented 11.4% of the total population, but this proportion

reaches 85.6% of total cells in the presence of 1 lM MPA, and only

38.0% when treated with 10 lM MPA (Fig 5A). Critically, p21high

cells are mostly arrested in G0/G1 and the G2/M regardless of MPA

concentration, whereas p21low cells treated with 10 lM MPA are

mostly found in early S phase. A parallel comparative analysis of

HCT116 wild-type and p21�/� isogenic cells showed that 10 lM MPA

strongly reduces the proportion of p21�/� cells present in G1, while

enriching the proportion of cells in early S phase (Appendix Fig S5A),

consistent with a key role of p21 in mediating the effects of MPA on

cell-cycle regulation, downstream of the IRBC and p53.

To confirm that a reduction in p21 levels is a key determinant of

S phase entry upon nucleotide depletion, an empty plasmid (EV) or

a plasmid encoding a p21wt cDNA under the control of an ectopic

◀ Figure 3. Protein stability of p21, but not formation of the IRBC complex, is reduced by higher concentrations of MPA.

A HCT116 cells were treated with either vehicle alone (�), 1 lM MPA, 10 lM MPA, or 5 nM ActD for 24 h and mRNA levels of p21 were quantified by real-time qPCR
in 2 independent experiments carried out in triplicate and normalized to 28S rRNA.

B Autoradiogram (upper panel) and Ethidium Bromide (EtBr)-stained agarose gel (lower panel) of 18S and 28S rRNA from HCT116 cells treated as indicated in the
Materials and Methods section.

C Autoradiogram (upper panel) and EtBr-stained TBE-urea polyacrylamide gel (lower panel) of 5S, 5.8S rRNA and tRNAs in lysates from (B).
D, E HCT116 cells were treated as in (B) for 24 h. Cell lysates were collected, subjected to ultracentrifugation, spiked with firefly luciferase mRNA, and

immunoprecipitated with anti-HDM2 rabbit antibody (IP HDM2) or the IgG control (IgG). (D) Levels of HDM2, RPL5, RPL11, and the IP-negative control mTOR in the
whole cell extract (WCE), the post-ribosomal lysates (INPUT, left panel) and in the HDM2 immunoprecipitated fraction (right panel) were analyzed on Western
blots. The results are representative of two independent experiments. Quantification of band intensity of HDM2, RPL5, and RPL11 of at least two independent
experiments is shown (lower right panel). (E) Levels of immunoprecipitated 5S rRNA were determined by real-time qPCR and normalized to the firefly luciferase
mRNA. Data are normalized and presented as relative to untreated cells immunoprecipitated with anti-HDM2. The results are representative of three independent
experiments carried out in triplicates.

F HCT116 cells were pretreated with vehicle alone (�), 1 lM, or 10 lM MPA for 24 h, and the levels of p53 and p21 were followed on Western blots in presence of
100 lg/ml cycloheximide (CHX) for the indicated time, in the continued presence of the treatment. GAPDH was used as a loading control. Quantification of band
intensities is shown in the lower panels as relative to time 0 of CHX treatment.

G HCT116 cells were pretreated as in (F), and 10 lM of the proteasome inhibitor MG132 was added for 4 h when indicated. The levels of p53 and p21 were analyzed
on Western blots. GAPDH was used as a loading control. Quantification of p21 band intensity of at least four independent experiments is shown in the lower panel.

Data information: In panels (A, E, and G), data are presented as mean � SD, relative to control. *P < 0.05, **P < 0.01, ***P < 0.001, by two-tailed Student’s t-test.
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promoter (p21-OE) was transiently introduced into p21�/� cells

(Appendix Fig S5B) and cells were synchronized in G1 and serum

stimulated as described above (Appendix Fig S4B). Analysis of the

cell-cycle distribution of p21-OE cells was analyzed in p21high versus

p21low populations and showed that the p21high cells were unable to

bypass the G1/S checkpoint, even in the presence of 10 lM MPA

(Fig 5B). These results support that at higher doses of MPA the

induction of p21 is hindered, allowing cells to progress into S phase.

The IRBC protects from replicative stress and DNA damage upon
nucleotide imbalance

As the IRBC complex triggers p21 transcription, and its loss reduces

MPA-induced p21 expression (Fig 2A), we predicted that the inhibi-

tion of IRBC complex formation would further enhance the ability of

MPA to drive cells into S phase. Thus, cells were depleted of either

RPL11 or p53, prior to G1 synchronization and serum stimulation, as

above. In either condition, serum deprivation leads to the same

extent of G1 arrest (Fig 6A and Appendix Fig S6A). In untreated

cells, p53 depletion does not greatly alter the cell cycle, whereas

RPL11 depletion led to an increase in the proportion of cells in S

phase, likely due to the slower progression of RPL11-deficient cells

through the cell cycle, as we previously reported (Teng et al, 2013;

Fig 6A and Appendix Fig S6A). Importantly, the depletion of RPL11

or p53 potentiates MPA-induced accumulation of cells in S phase,

particularly in early S phase (Fig 6A, and Appendix Fig S6A and B).

As the downregulation of the IRBC allows DNA replication, despite

low nucleotide availability, this could favor the occurrence of

replicative fork stalling and DNA damage. Unexpectedly, after 72 h,

we found by Western blot analysis that not only MPA, but also the

depletion of RPL11 alone induced c-H2AX (Fig 6B and Appendix Fig

S6C). Moreover, RPL11 depletion further increased the effect of MPA

on c-H2AX, while suppressing the induction of p53 (Fig 6B). These

results were confirmed by quantitative microscopy-based single-cell

analyses of c-H2AX or 53BP1, both indicative of DNA-double strand

breaks and the activation of the DDR machinery (Fig 6C–E and

Appendix Fig S6C). Similar results were obtained with the alkaline

comet assay, indicating global DNA damage, predominantly single-

strand nicks and gaps (Fig 6F and Appendix Fig S6C). To assess

whether this response was due to the loss of the IRBC or to the

impairment of ribosome biogenesis, we depleted cells of RPL5 or

RPS6 (or eS6). While the depletion of RPL5 induced c-H2AX and

amplified MPA-induced response, the depletion of RPS6 had no such

effect, but reduced the effect of MPA (Appendix Fig S6C–H).

Likewise if the synthesis of 5S rRNA is first blocked by depleting cells

of TFIIIa, required for Pol III-mediated 5S rRNA transcription

(Appendix Fig S6I and J), we also observed the induction of c-H2AX
and the amplification of the response in cells treated with 10 lM
MPA, as well as a reduction in p53 induction by MPA (Appendix Fig

S6K–M). These results show that unexpectedly the inhibition of the

IRBC alone induces DNA damage. Moreover, it amplifies those

caused by IMPDH inhibition, potentially due to the favored S phase

entry despite nucleotide levels shortage leading to replicative stress

and DNA damage (see Discussion and model Fig 7), suggesting that

the IRBC serves as barrier against genomic instability caused by

limiting pools of GMP.

Discussion

This study demonstrates a hierarchy of p53-dependent checkpoints

activated by the inhibition of de novo guanine nucleotide synthesis.

We have focused on IMPDH inhibitors given their clinical approval

in other disease settings and the recent exciting pre-clinical findings

concerning their application in specific cancer types (Valvezan et al,

2017; Huang et al, 2018); however, it is most likely that other clini-

cally approved non-genotoxic nucleotide inhibitors operate in a

similar manner. We show that the primary response to IMPDH inhi-

bition is the induction of the IRBC and p21-mediated G1 arrest,

consistent with ribosome biogenesis being the most nucleotide

demanding metabolic process in proliferating cells (Pelletier et al,

2018). However, if guanine nucleotide pools continue to fall, the

levels of p21 protein are diminished, allowing cells to enter S phase,

where they encounter replicative stress and DNA damage, an effect

that is strongly enhanced by disruption of the IRBC, and which is

known to be a major cause of genomic instability (Gaillard et al,

2015). Interestingly, a crosstalk between the DDR and ribosome

biogenesis has recently been described, where activation of ATM

leads to Treacle recruiting Nijmegen Breakage Syndrome protein 1

(NBS1) to the nucleolus, where this complex suppresses rDNA tran-

scription (Ciccia et al, 2014; Larsen et al, 2014). This regulatory

mechanism is an important player in the conservation of the stabil-

ity of the highly repetitive and actively transcribed rDNA genomic

regions (Pelletier et al, 2018). The ATM/NBS1/Treacle response is

particularly critical during rDNA replication, where such conflicts

lead to the formation of R-loops, rRNA:DNA hybrids, giving rise to

DNA-double strand breaks (Pelletier et al, 2018). Thus, the impor-

tance of ribosome biogenesis in replicative stress is underscored by

◀ Figure 4. S phase entry and inhibition of DNA replication are induced at high concentrations of MPA.

A HCT116 were treated as indicated for 24 h, subjected to propidium iodide staining, and analyzed by fluorescence-activated cell sorting (FACS). Data are
representative of at least three independent experiments.

B Colon adenocarcinoma cell lines HCT116 (circles), LoVo (squares), LS174 (triangles), or RKO (inversed triangles) were treated with the vehicle alone (�), 1 lM MPA or
10 lM MPA for 24 h and subjected to propidium iodide staining and FACS analysis. Data are shown as the fold induction of the cell number in G0/G1 phases (blue), S
phase (red), and G2/M phases upon treatment with 1 lM MPA (dark) or 10 lM MPA (clear) over vehicle-treated cells.

C IdU track length distribution, and distribution of long fork/short fork IdU track length ratios (insert). IdU track length of at least 300 fibers was measured for each
condition. For fork symmetry analyses, IdU track length was measure in at least 38 bidirectional forks (see Materials and Methods). ***P < 0.001, ****P < 0.0001 by
Kruskal–Wallis test of the means.

D Representative images from (C).
E HCT116 cells, pre-incubated with 10 lM BrdU for 48 h, were treated with Vehicle (�), 10 lM MPA for 6 or 24 h, or 20 lM Hydroxyurea for 4 h before cell

permeabilization and fixation (see Materials and Methods). Cells were immunostained for native BrDU (green) or RPA (red). DNA was counterstained with DAPI (blue).
One representative z-confocal stack is shown per condition. Scale bars correspond to 5 lm.

F HCT116 cells treated with 10 lM MPA for increasing time were analyzed by Western blots for the indicated proteins. a-tubulin was used as a loading control.
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both the IRBC-p21 response and the NBS1/Treacle signaling path-

way, each acting at a distinct level to protect from DNA damage.

The loss of p21 with increasing severity of IMPDH inhibition

seems responsible for the entry of cells in S phase, as ectopic

expression of p21 in MPA-treated HCT116 p21�/� cells is sufficient to

maintain cells in G1. The downregulation of p21 appears to be inde-

pendent of its transcription, but caused instead by its selective degra-

dation. It has been recently reported in a context of doxorubicin-

A

B

Figure 5. The downregulation of p21 facilitates S phase entry at high concentrations of MPA.

A HCT116 cells were treated with either the vehicle alone (�), 1 lM MPA, or 10 lM MPA for 24 h, before p21 immunolabeling, propidium iodide staining, and FACS
analysis. Cell-cycle profiles of the total cell population (upper panel, left), the total intensity of p21, and propidium iodide were determined in 20,000 cells and plotted
in a scatter diagram (lower panel, left). The specific cell-cycle profiles are shown of p21high (upper panel, right) and p21low (lower panel, right) cell populations.
Mean � SD of the percentage of cells in each cell-cycle phase of at least two independent experiments is shown in the right panels.

B HCT116 p21�/� isogenic cell lines were transfected for 24 h with an empty plasmid (EV) or a plasmid encoding a p21wt cDNA (p21-OE), and then, cells were serum-
deprived for 16 h before the re-addition of serum for additional 24 h in the absence or presence of 10 lM MPA. Cells were subjected to p21 immunolabeling,
propidium iodide staining, and FACS analysis. The results are representative of two independent experiments.

ª 2020 The Authors The EMBO Journal 39: e103838 | 2020 11 of 19

Joffrey Pelletier et al The EMBO Journal



A

E

B

C

D

F

Figure 6.

12 of 19 The EMBO Journal 39: e103838 | 2020 ª 2020 The Authors

The EMBO Journal Joffrey Pelletier et al



induced DNA double-strand breaks that the proteasomal degradation

of p21 during S phase is prevented by Chk1 inhibition, suggesting a

role for Chk1 signaling in p21 degradation (Hsu et al, 2019). However

in the case of IMPDH inhibitors, replicative stress and Chk1 activation

would require S phase entry, restricted by p21. In normal cycling

cells, the degradation of p21 takes place prior to the G1/S transition

by the ubiquitin ligases CRL4Cdt2 and SCFSkp2 suggesting a potential

role of these proteins in the degradation of p21 by IMPDH inhibitors

(Barr et al, 2017; Sheng et al, 2019). However, it has also been

reported that p21 binds to the central domain of HDM2 (Jin et al,

2003; Zhang et al, 2004), where RPL11 also binds (Zheng et al,

2015), and that HDM2 promotes the degradation of p21 in tumor cells

which are either deficient or mutated in p53 (Jin et al, 2003; Zhang

et al, 2004). Given that higher doses of MPA lead to p53 S15 phos-

phorylation, which is reported to disrupt the HDM2/p53 interaction,

this would liberate HDM2 to degrade p21. It should be noted that the

effects of HDM2 on p21 are independent of the HDM2 E3 ligase func-

tion, probably acting through the binding of both p21 and the C8

subunit of the 20S proteasome (Jin et al, 2003; Zhang et al, 2004). It

will be of interest to determine the underlying mechanism(s) by

which severe IMPDH inhibition leads to the degradation of p21

protein.

During early tumorigenesis, oncogenic stresses lead to acceler-

ated rates of rRNA synthesis despite nucleotide deficiencies (Bester

et al, 2011), which may impair ribosome biogenesis, and lead to the

IRBC-dependent senescence phenotype (Nishimura et al, 2015). The

acute sensitivity of ribosome biogenesis impairment to nucleotide

depletion as compared to that of replicative stress supports the

notion that the IRBC acts as a first-line barrier against oncogenes.

Consistent with this model, earlier studies conducted in El-Myc

transgenic mice harboring the C305F mutation in MDM2, which

disrupts its interaction with RPL11 and the inhibitory effect of the

IRBC complex, demonstrated that mutant mice succumb earlier to

lymphoma with respect to their WT counterparts (Macias et al,

2010). As the loss of the IRBC enhances MPA-induced DNA damage

in cell culture, one might expect the MDM2-mutant tumors, which

are IRBC-defective, to have an increased rate of genomic instability.

The mechanism by which the disruption of the IRBC leads to DNA

damage is not known. An interpretation for the amplification of

DNA damage may come from studies showing that in RPL11 deleted

mouse embryo fibroblasts, the expression of genes involved in DNA

repair are downregulated (Morgado-Palacin et al, 2015). On the

other hand, cells harboring reductions or mutations in components

of the IRBC continue to cycle, but with reduced ribosome content

and translational capacity, leading to alterations in the pattern of

translation, as we reported earlier (Teng et al, 2013). It is likely that

under such conditions the translation of specific factors is required

to sustain the correct replication of DNA, or to sense and resolve

replicative stress to limit DNA damage and potentially genomic

instability.

Activation of the IRBC would appear to have an important role

in cancer therapy. Many approved chemotherapeutic agents are

known to interfere with ribosome biogenesis (Burger et al, 2010).

It has been long established that the major effects of 5-FU on p53-

induced apoptosis are not due to the inhibition of thymidylate

synthase, but to the inhibition of rRNA synthesis (Pritchard et al,

1997; Sun et al, 2007). Likewise recent studies showed that oxali-

platin does not induce p53 by causing DNA damage, but instead

through impairing ribosome biogenesis and the apparent activa-

tion of the IRBC (Bruno et al, 2017). These insights have led to

the development of new drugs specifically designed to attack ribo-

some biogenesis, particularly CX-5461 (Drygin et al, 2011; Bywa-

ter et al, 2012), with the first results published of a phase 1 dose

escalation clinical trial in patients with advanced hematologic

cancers (Khot et al, 2019). Importantly, a recent report showed

that the IMPDH inhibitor mizoribine, selectively targets tumors

developing in TSC2-deficient mice, which display constitutive

mTORC1 activation (Valvezan et al, 2017). mTORC1 coordinates

the upregulation of ribosome biogenesis by increasing Pol I- and

Pol III-dependent transcription, and controlling the translation of

RP mRNAs (Pelletier et al, 2018). In this setting, nucleotide pools

are apparently diverted to rRNA synthesis to sustain the hyperacti-

vation of ribosome biogenesis, which appears to sensitize TSC2-

deficient cells to replicative stress caused by guanine nucleotide

depletion. Although Valvezan et al show that IMPDH inhibition

led to increased Chk1 phosphorylation and DNA damage in TSC2-

deficient models, there was no apparent effect on rRNA synthesis

in either TSC2�/�or TSC2+/+ cells (Valvezan et al, 2017). It is dif-

ficult to rationalize this observation with earlier reports (Huang

et al, 2008; Sun et al, 2008), the recent findings of Huang et al, in

c-Myc overexpressing SCLCs (Huang et al, 2018), and those

presented here, particularly with the high demand of nucleotides

in ribosome biogenesis versus DNA synthesis. Given the potential

importance in developing inhibitors of ribosome biogenesis to

treat aggressive cancers, such as those driven by c-Myc, it will be

critical to understand whether TSC is unique in its response to

IMPDH inhibitors or whether it can be more broadly applied to

other cancer types. Moreover, given the role of the IRBC as a

tumor suppressor, a deeper knowledge of the biological processes

controlling the hierarchy of intrinsic tumor checkpoints will be

◀ Figure 6. Disruption of the IRBC enhances MPA-mediated DNA damage.

A HCT116 cells were transfected for 8 h with the indicated siRNA then treated and analyzed as in Fig 5B. Here are shown the cell-cycle profiles after 16 h of serum
deprivation (top panels), or after an additional 24 h of serum re-addition in the absence (middle panels), or presence of 10 lM MPA (bottom panels). The results
are representative of at least three independent experiments.

B HCT116 cells transfected with a NT siRNA or a siRNA against RPL11 for 24 h were treated with 10 lM MPA for additional 72 h. The levels of c-H2AX were analyzed
on Western blots. GAPDH was used as a loading control.

C, D Statistical analysis of the immunostaining of c-H2AX (C) or 53BP1 (D) in HCT116 cells treated as in (B) (see Materials and Methods). Total nuclear intensities were
obtained on > 6,000 (c-H2AX) and > 1,000 (53BP1) individual cells for each condition from four or two independent biological replicates, respectively. **P < 0.01,
****P < 0.0001 by Kruskal–Wallis test. A.U. Arbitrary Units.

E Representative images from (C, D) of cells labeled with c-H2AX (green), 53BP1 (red), and DAPI (blue). Scale bars correspond to 10 lm.
F HCT116 cells treated as in (B) were analyzed by the comet assay. The percentage of tail DNA/total DNA was analyzed in a total of 300 cells for each condition from

three independent biological replicates. ****P < 0.0001 by Kruskal–Wallis test.

ª 2020 The Authors The EMBO Journal 39: e103838 | 2020 13 of 19

Joffrey Pelletier et al The EMBO Journal



critical for the development of novel strategies exploiting anti-

cancer agents in the clinic.

Materials and Methods

Cell culture

HCT116, LoVo, LS174, and RKO human colorectal carcinoma cell

lines were obtained from the American Type Culture Collection and

maintained in Dulbecco’s modified Eagle medium (DMEM) supple-

mented with 10% heat-inactivated fetal bovine serum (Sigma-

Aldrich, St Louis, MO, USA). Isogenic HCT116 cells disrupted for

p53 or p21 expression were kindly provided by Dr. Vogelstein

(Johns Hopkins University of Medicine, Baltimore, MD, USA).

Stable cell lines generation

The shRNA sequences for IMPDH1 and IMPDH2 were selected using

the Designer of Small Interfering RNA (http://biodev.cea.fr/DSIR/

DSIR.html). shRNA targeting IMPDH2 were cloned into the retrovi-

ral TRMPVIR vector as previously described (Zuber et al, 2011).

Five shRNA sequences were screened, and two were chosen for

virus production (see Appendix Table S2). The generation of shRNA

encoding retrovirus particles and the transduction of HCT116 cells

were performed as previously described (Zuber et al, 2011). After

24 h of transduction, the cells were sorted for Venus-positive cells

by FACS (MoFlo Astrios cell sorter). Individual clones were grown,

treated with doxycycline (2 lg/ml), and analyzed for mRNA and

protein expression. Separately, control non-targeting (shNT) or a

shRNA against IMPDH1 (shIM1) were cloned into pLKO.1 plasmid

and lentiviral particles were generated as described previously (Fon-

seca et al, 2015; see Appendix Table S2). HCT116 cells stably

expressing IMPDH2 shRNA were transduced with control shRNA or

IMPDH1 shRNA followed by 3 weeks of puromycin selection lead-

ing to the generation of IM2iKD-shNT or IM2iKD-shIM1, respectively.

HCT116 cells stably expressing IMPDH2 shRNA seq#2 (see

Appendix Table S2) were transduced with control shRNA leading to

the generation of IM2iKD#2-shNT.

Reagents and plasmids

MPA, AVN944, actinomycin D, etoposide, hydroxyurea, KU55933,

guanosine, doxycyclin and Cycloheximide, CldU and IdU were

purchased from Sigma (Sigma-Aldrich, St Louis, MO, USA). VE-821

(ATRi) was purchased from ApexBio. The transfection reagents,

lipofectamine RNAiMAX (for siRNA transfection), lipofectamine

2000 (for plasmid transfection), and TRIzol RNA extraction reagent,

were purchased from Invitrogen (Carlsbad, CA, USA). Transfections

were performed according to manufacturer’s instructions.

EN3HANCE autoradiography enhancer, 3H-Leucine, and 3H-Uridine

were purchased from PerkinElmer. The protein assay kit was

purchased from Pierce (Rockford, IL, USA). The antibodies used are

listed in Appendix Table S1. It should be noted that the anti-IMPDH

antibody (pan antibody) was argued to be a specific antibody

against IMPDH1, but our findings indicate that it recognizes both

IMPDH1 and IMPDH2. The Magna ChIP Protein A/G magnetic beads

mix was purchased from Millipore (Billerica, MA, USA). Random

hexamers and MMLV Reverse transcriptase were from Invitrogen

(Carlsbad, CA, USA). The SYBR Green kit was purchased from

Roche (Basel, Switzerland). The Dual-Luciferase kit was purchased

from Promega (Madison, WI, USA). The sequences of siRNAs used

in the experiments, siRPL5, siRPL11, siRPL7a, sip53, and siNT are

reported in Appendix Table S2. For each treatment, the amount of

siRNA transfected was maintained constant between samples, by

using siNT where required. pcDNA 3.1 (Addgene plasmid V790-20),

PG13-luc plasmids (wt p53 binding sites, Addgene plasmid #16442),

and MG15-luc plasmids (mut p53 binding sites, Addgene plasmid

#16443) were obtained from Addgene (Cambridge, MA, USA). The

pcDNA3.1-p21 plasmid is a kind gift from Dr. Sawaya.

Protein analysis

Cell protein extracts and protein concentrations for Western blot

analysis were carried out with the indicated antibodies

(Appendix Table S1) as recently described (Gentilella et al, 2017).

Immunoblots were developed using secondary horseradish peroxi-

dase-coupled antibodies (Polyclonal swine anti-rabbit and poly-

clonal rabbit anti-mouse, Agilent, CA, USA) and an enhanced

chemiluminescence kit (GE Healthcare). Signal was detected using

iBright CL1000 (Thermo Fisher Scientific, PA, USA), and quan-

tification of band intensities by densitometry was carried out using

the ImageJ software.

Real-time PCR

Total cell RNA was isolated using TRIzol reagent (Invitrogen)

according to the manufacturer’s instructions. Reverse transcription

and quantitative real-time PCR were performed as previously

described (Gentilella et al, 2017). The sequences of primers utilized

are reported in Appendix Table S2. For the quantification of RNA

normalized to the DNA content, cells were harvested in an equal

volume of cold PBS and 50 ll of the cell suspension was lysed in

50 ll of 0.1 N NaOH and DNA was quantified using a NanoDrop

1000 spectrophotometer (Thermo Scientific). The remaining cells

were pelleted, lysed in TRIzol, a spike of Firefly luciferase mRNA

proportional to the amount of DNA was added, and the samples

were processed as described above and the RNA amount normalized

to luciferase mRNA.

Immunoprecipitation

Cells grown in 15-cm dishes were lysed and subjected to immuno-

precipitation largely as previously described (Donati et al, 2013).

After lysis, mature ribosomes were pelleted by ultracentrifugation at

200,000 g for 2 h at 4°C and an equivalent amount of protein

(1 mg) was incubated at 4°C overnight with rotation with anti-

RPL5, anti-HDM2, or anti IgG to a ratio antibody/sample of 4

lg/mg. Magna ChIP Protein A/G magnetic beads (Millipore) were

added to the extracts for an additional 2 h at 4°C with rotation and

washed following manufacturer’s instructions. Beads-containing

pellets were resuspended either in protein loading buffer for

Western blot analysis or TRIzol reagent, together with a spike of

firefly luciferase mRNA (5 ng/mg of precipitated proteins) before

RNA purification, to recover immunoprecipitated RNA for 5S rRNA

qRT-PCR analysis.
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Autoradiographic analysis of rRNA synthesis

To analyze newly synthesized RNA, cells were pulse-labeled for 2 h

with 1.2 lCi/ml of [3H]-uridine (PerkinElmer) and then chased in

non-radioactive media for 4 h before TRIzol RNA extraction as

described above. 2 lg of total RNA were resolved either on a

formaldehyde-containing 1.2% agarose gel for 18S and 28S rRNAs

or on a TBE-urea 10% polyacrylamide gel for 5S rRNA, 5.8S rRNA,

or tRNAs and transferred to Hybond N+ membrane (GE Healthcare).

After ultraviolet cross-linking, the membranes were sprayed with

EN3HANCE (PerkinElmer) and exposed to Kodak BioMax MS film

(Kodak) at �80°C for 1 week.

Measurement of de novo protein synthesis by [3H]
leucine incorporation

After treatment, cells were pulse-labeled for 30 min with 10 lCi/ml

of [3H] leucine as previously described (Gentilella et al, 2017).

Figure 7. Model of the hierarchical organization of the IRBC and the DDR response upon ribonucleotides depletion.

Under normal cell growth conditions, the pre-ribosomal complex formed by RPL5, RPL11, and 5S rRNA is incorporated into nascent ribosomes (Left panel). When nucleotide
levels become limiting for 47S rRNA synthesis, ribosome biogenesis is impaired, which converts the RPL5/RPL11/5S rRNA complex into the IRBC complex, which is able to bind
and inhibit MDM2, releasing p53, leading to p21 induction and G1 arrest (Middle panel). However, a more severe drop in nucleotide levels leads to the degradation of p21 by
the proteasome, impairing IRBC-dependent G1 arrest and allowing S phase entry despite reduced nucleotide pools. Cells are therefore exposed to replicative stress, sensed by
the ATR-Chk1 pathway responsible for p53 S15 phosphorylation. Chronic replicative stress leads to DNA damage and eventually genomic instability, key events in tumor
progression (Right panel).
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Cycloheximide (CHX), at a concentration of 100 lg/ml for 2 h, was

used as a control of protein synthesis inhibition.

Luciferase assay

Cells plated in 6-well plates were transfected with 2 lg of reporter

plasmid (PG13-luc or MG-15-luc, see Reagents and Plasmids) and

250 ng of Renilla luciferase control plasmid (Promega, Madison,

WI, USA) for 24 h. Cell extracts were prepared and assayed using

the Dual Luciferase kit (Promega) according to the manufacturer’s

instructions. Firefly Luciferase activity was normalized to Renilla

luciferase activity.

Cell-cycle analysis

After treatment, cells were trypsinized, counted, washed, and fixed

in cold 70% ethanol solution overnight. For p21 or c-H2AX
immunostaining, cells were permeabilized with 0.1% TritonX-100

for 20 min at room temperature (RT), washed with PBS-Tween20

(0.5%), incubated in 4% FBS–containing PBS-T Blocking Solution

for 30 min at RT, and incubated with p21 antibody (1/250, Abcam)

or c-H2AX (Abcam, 1/200) in the blocking solution for 1 h at RT.

Cells were then extensively washed in PBS-T, before alexa647-

conjugated secondary antibody (Invitrogen, 1/500) incubation for

30 min at RT in the dark. After washing, cells were stained with

propidium iodide as previously described (Morcelle et al, 2019)

before FACS analysis, using FACSCanto II (BD biosciences, CA,

USA). In all experiments, 20,000–50,000 gated events were

collected. Experiments were analyzed using ModFit LT software

(Verity Software House, ME, USA) and BD FACSDiva software (BD

Biosciences, CA, USA).

Immunofluorescence microscopy

Immunofluorescence microscopy was performed largely as previ-

ously described (Pelletier et al, 2012). Briefly, after 4% formalde-

hyde fixation for 20 min at RT, and permeabilization with 0.1%

Triton X-100 for 10 min at RT, cells were incubated in the block-

ing solution containing 1% BSA and 0.01% Triton X-100 for 1 h

at RT. Cells were then incubated with the indicated primary anti-

bodies (Appendix Table S1) in blocking solution overnight at

4°C. After extensive washes with PBS-T (0.01%), cells were

stained with Alexa488- or Alexa555-conjugated secondary anti-

body (Invitrogen, 1/500 in blocking solution) for 45 min at RT in

the dark. After additional washes, cells were mounted with

Vectashield mounting solution containing DAPI. Images were

generated either with the Leica spectral confocal microscope TCS

SP5 with a 63×/1.4 NA objective or with the Zeiss Axio Observer

inverted microscope with a 10×/0.25 NA objective. Acquisition

settings for the different channels were adjusted and maintained

to obtain images in non-saturating conditions. For c-H2AX and

53BP1 immunostaining quantification, depending on cell conflu-

ence, 8–15 images were acquired containing n > 1,000 cells per

condition. Images were processed and analyzed using ImageJ

software (NIH USA) (Toledo et al, 2013). The analysis of positive

foci for native BrDU and RPA required a pre-extraction protocol.

Briefly, after treatment, cells were washed once with PBS and

incubated with ice-cold PBS containing Triton X-100 (0.5%) for

1 min on ice prior to 4% formaldehyde fixation. We then

proceeded as above using a blocking solution containing 3% BSA

and 0.01% Triton X-100.

DNA fiber assays

DNA fiber assays were largely performed as previously described

(Ercilla et al, 2016). Cells were treated and pulse-labeled as indi-

cated with CldU (25 lM)/IdU (250 lM). Labeled cells were

harvested by trypsinization and resuspended in ice-cold PBS at

5 × 105 cells/ml. After DNA spreading, fixation in methanol/acetic

acid (3:1) solution, denaturation, and neutralization steps, CldU and

IdU were detected by immunofluorescence with anti-BrdU mono-

clonal antibody (Abcam, ab6326; 1/1,000 for CldU labeling and

Becton Dickinson, 347580; 1/200 for IdU labeling) for 1.5 h at 37°C.

After incubation with primary antibodies, fiber spreads were fixed

with 4% PFA-PBS for 10 min at RT and finally incubated with Alex-

a488- and Alexa555-conjugated secondary antibodies (Invitrogen,

1/500) for 1.5 h at 37°C. Images were obtained using Zeiss LSM880

confocal microscope with a 63× oil immersion objective and then

analyzed using Fiji software. The length of at least 300 IdU tracks

per condition was measured. We only measured the fibers that were

doubly labeled (by CldU and IdU), to exclude from analysis the

fibers that were initiated during the second labeling period. To

assess fork symmetry, the length of IdU tracks was measured in at

least 38 bidirectional forks (labeled by CldU, and IdU in the two

directions), and the ratio of length between the longer and the

shorter track was analyzed.

Comet assay

After treatment, cells were harvested by trypsinization, resuspended

in ice-cold PBS at 1 × 106 cells/ml and centrifuged at 1,200 g for

8 min. The cell suspension was mixed 1:10 with 0.75% low melting

point agarose at 37°C, dropped on GelBond� Films (GBF) (Life

Sciences, Lithuania) in triplicates and lysed in cold lysis buffer over-

night at 4°C. GBF were then incubated in electrophoresis buffer, to

allow DNA denaturation and expression of alkali-labile sites, for

35 min at 4°C. Subsequently, the electrophoresis step was carried

out at 20 V and 300 mA for 20 min at 4°C. GBF were washed twice

with cold PBS 1× fixed in absolute ethanol for 1 h, then air-dried

overnight at room temperature. Cells were stained with 1:10,000

SYBR Gold in TE buffer for 20 min at room temperature, mounted,

and visualized with an epifluorescence microscope (Olympus BX50)

with a 20× magnifications. DNA damage was quantified with the

Komet 5.5 Image analysis system (Kinetic Imaging Ltd, Liverpool,

UK) as the percentage of DNA in the tail. One hundred randomly

selected comet images were analyzed per sample (33/34 per tripli-

cate). Results from three independent biological replicates were

analyzed.

Targeted liquid chromatography-mass spectrometry
(LC-MS) analyses

Metabolites were extracted from snap-frozen cell pellets by adding

methanol: H2O (1:1 v/v) solution and vortexing samples for 30 s.

Samples were immersed in liquid N2 to disrupt cell membranes

followed by 30 s of ultrasonication. These two steps were repeated
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three times. Then, samples were incubated at �20°C for 2 h, centri-

fuged at 17,000 × g for 15 min, and the supernatant was collected

into a LC-MS vial. Samples were injected in a UHPLC system (1290

Agilent) coupled to a triple quadrupole (QqQ) MS (6490 Agilent

Technologies) operated in multiple reaction monitoring (MRM) and

positive (POS) or negative (NEG) electrospray ionization (ESI)

mode. Metabolites were separated using C18-RP (ACQUITY UPLC

BEH C18 1.7 lM, Waters) chromatography at flow rate of 0.3

ml/min. The solvent system was A = 20 mM ammonium

acetate + 15 mM NH3 in water and B = acetonitrile: water (95:5).

The linear gradient elution started at 100% A (time 0–2 min), 65%

A (time 2–5 min) and finished at 100% B (time 5.5 min). MRM

transitions are shown in Appendix Table S3.

Statistical analysis

Statistical analysis was performed using GraphPad Prism version 7.00

(GraphPad Software, San Diego, CA, USA). Data are presented as

mean � SD. Experimental datasets were compared by (i) two-sampled,

two-tailed Student’s t-test to compare two experimental conditions

sharing normal distribution and variance and (ii) non-parametric

Kruskal–Wallis test for more than two conditions. Multiple compar-

isons were corrected using Tukey’s test for equal variances or using

Dunett’s T3 test for different variances.

Data availability

This study includes no data deposited in external repositories.

Expanded View for this article is available online.
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