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Abstract: Using trained panelists to evaluate sensory attributes is unfeasible when many samples
must be evaluated, such as in quality control or breeding programs. Near-infrared spectroscopy
(NIRS) is a rapid inexpensive method often used in food quality evaluation. We assessed the feasibility
of using NIRS to estimate sweetness, fiber perception, and off-flavors, the most important sensory
attributes in cooked ‘calçots’ (the immature floral stems of second-year onion resprouts). The best
results were achieved through models using interval partial least squares (iPLS) variable selection on
spectra from pureed cooked ‘calçots’, which yielded values of the ratio of performance to deviation
(RPD) greater than 1.4 in all cases. Therefore, it would be feasible to use NIRS to estimate sensory
properties in ‘calçots’. This approach would be useful in initial screening to discard samples that
differ substantially from the ideotype; thus, sensory analysis by trained panels could be reserved for
finer discriminations.

Keywords: ‘calçot’; NIRS; sensory analysis; quality control; PLS; onion

1. Introduction

‘Calçots’ (Allium cepa L.) are the immature floral stems of second-year ‘Blanca Tardana de Lleida’
(BTL) onion landrace resprouts. This crop is typical of Catalonia (Northeast Spain), where ‘calçots’
are typically prepared by roasting on a hot open fire. Although official economic data are lacking,
the market volume for ‘calçots’ is estimated at €20 million [1]. However, the economic importance of
‘calçots’ lies not only in their production but also in associated agro-tourism, which boosts the regional
economy and has increased the demand for ‘calçots’ worldwide.

‘Calçots’ from the traditional cultivation area have been awarded the European Union’s
food-quality label ‘Protected Geographical Indication’ (PGI) [2]. To date, the PGI’s regulating board
has focused the quality control of ‘calçots’ on morphological traits (length and width of the edible part)
but producers aim to highlight the internal quality, especially organoleptic attributes.

The sensory ideotype representing consumer preferences of the ideal ‘calçot’ is sweet, with low
fiber perception, and without off-flavors [3]. The evaluation of sensory attributes requires trained
panelists to apply standardized methods and a considerable amount of the sample. Since only a few
samples can be evaluated in each session, panelists must meet several times, making it impracticable
to analyze large numbers of samples [4]. These limitations discourage breeders from including sensory
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traits in breeding programs and limit the scope of the regulating authority’s efforts at quality control.
Therefore, other approaches are needed to replace or complement traditional sensory analysis.

Chemical analysis has been used to estimate sensory attributes in fruit and vegetables, including
melons (Cucumis melo L.) [5], onions [6,7], tomatoes (Solanum lycopersicum L.) [8] or red raspberry
(Rubus idaeus L.) [9], among others. Correlations between sensory attributes and chemical parameters
have been established also for ‘calçots’ [10]. Nevertheless, standard chemical analyses are expensive,
laborious, and time-consuming. Besides, organoleptic properties can be difficult to predict from isolated
chemical data because these properties result from interactions among various compounds [11].

In recent years, near-infrared spectroscopy (NIRS) has attracted attention because it is a fast
technique and easy to apply, inexpensive, and enables the simultaneous estimation of different
properties from a single spectrum. NIRS has been widely used in the agri-food industry, for example it
is often used to evaluate food quality [12], to control food safety [13], and to detect food adulterations [14].
Albeit to a lesser extent, NIRS has been used to estimate sensory attributes in products such as wine [15],
green tea [16], coffee [17,18], chicory [19], beans [20], potatoes [21], and meat and fish products [22,23],
among others. These studies have shown that NIRS is a useful tool for sensory evaluation when
combined with chemometrics.

In ‘calçots’, NIRS has been applied to determine some chemical properties (dry matter content,
soluble solid content, titratable acidity, and ash content), providing good results [24]. The present
study aims to investigate the usefulness of NIRS in the determination of sensory attributes of cooked
‘calçots’ as a further step in quality evaluation of ‘calçots’. To this end, we developed models to estimate
sweetness, fiber perception, and off-flavors, the sensory attributes included in the ideotype of ‘calçots’
promoted by the PGI.

2. Materials and Methods

2.1. Samples

The experiment used 85 samples of cooked ‘calçots’. Each sample comprised a set of 80 commercial
‘calçots’ (PGI regulations define commercial ‘calçot’ as having a compact white edible base measuring
15–25 cm in length and 1.7–2.5 cm in diameter 5 cm from the root). To ensure variation in sensory
attributes and to take into account the influence of environmental factors on quality traits [10], samples
were harvested in different environments (inside and outside the PGI area) at different harvesting
times during three consecutive seasons: 2014–15, 2015–16, and 2016–17.

2.2. Sample Preparation

Samples were prepared as described by Simó et al. [3] Leaves were cut 4 cm above the ligule and
roots were removed. Then ‘calçots’ were cleaned with tap water to remove adhering soil. Samples were
roasted at 270 ◦C for 18 min using a convection oven (SALVA Kwik-co). After cooking, the two most
external leaves were removed, and the lower, edible part was cut off and pureed with a mixer (Taurus
BAPI 850). Half the pureed samples were dried for 72 h at 60 ◦C and then ground to an average particle
size <0.4 mm to obtain ground dried puree. The remaining pureed samples were frozen with liquid
nitrogen and stored at −20 ◦C until their sensory analysis and NIR registration.

2.3. Sensory Analysis

A panel of 8 trained judges used previously reported protocols for quantitative descriptive sensory
analysis [3] to analyze samples of ‘calçot’ puree. Briefly, in each session, judges used a semi-structured
visual scale labeled from 0 to 10 to evaluate organoleptic descriptors (sweetness, fiber perception,
and off-flavors) in 5 different samples. All tests were carried out in a room designed for sensory
tests that fulfilled the standards specified by the International Organization for Standardization [25].
All samples were evaluated in duplicate.
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2.4. Spectral Measurement

NIR spectra of cooked ‘calçots’ were recorded from two types of preprocessed samples: puree and
ground dried puree as described by Sans et al. [24]. Spectra were registered with a spectrophotometer
(Foss NIRSystems model 5000, Silver Spring, MD, USA) equipped with a rapid content analyzer module
and Vision software, version 2.51. Spectra were recorded every 2 nm between 1100 nm to 2500 nm and
averaged from 32 scans. Puree samples were measured in reflectance mode and ground dried puree
was measured in transflectance mode. The spectrum was expressed as log (1/R). Three spectra were
registered for each sample and the average spectrum was used for computations.

2.5. Data Analysis

Data were analyzed with the PLS_Toolbox v.8.21 (Eigenvector Research Inc., Wenatchee, WA,
USA) and in-house routines running under MATLAB R2017a (The MathWorks™ Inc., Natick, MA,
USA). In all cases, spectra from puree and ground dried puree were treated independently.

To ensure that significant variation had been detected for the three sensory attributes (sweetness,
fiber perception, and off-flavors) evaluated by the tasting panel, sensory data were analyzed using the
analysis of variance (ANOVA) according to the following linear model:

Xi j = µ+ si + p j + spi j + εi j (1)

where s is the sample factor and p the panelist factor. Both factors were considered fixed.
Prediction models were built using partial least squares (PLS) regression with the NIPALS

algorithm as implemented in PLS_Toolbox v.8.21 software. After exploring spectra by principal
component analysis (PCA) to detect clustering due to season or origin and outliers, samples were
randomly divided into 2 groups so that about 75% of the samples could be used for calibration and
25% for external validation.

To obtain the best PLS models, the following spectral pretreatments were tested to reduce unwanted
variation due to sources unrelated to the properties of interest: multiplicative scatter correction (MSC),
standard normal variate (SNV), Savitzky-Golay (SG) first- and second-order derivatives with second
order polynomial approximation, and different point window size. The pretreated spectra and the
values of the sensory attributes were mean-centered before being submitted to the regression algorithm.
To increase the predictive accuracy of the models, the results using both the full spectrum and specific
spectral regions were compared. To select variables, interval PLS (iPLS) was used [26], configuring the
iPLS algorithm in stepwise forward mode, with interval size of 1 variable and using between 10 and
50 intervals.

PLS regression models were evaluated using a venetian blind cross-validation with 10 data splits.
Combinations of data pretreatments and different numbers of factors were tried out with the aim
of constructing a model with a good enough compromise among a low root mean square error of
calibration (RMSEC), low root mean square error of cross-validation (RMSECV), high coefficient of
determination (R2), and low bias. The optimal PLS models were finally tested with the external
validation set (25% of the original samples) that had not been used for calibration. To estimate the
performance of the calibration model, the root mean square error of prediction (RMSEP) evaluated
with these samples was used. Also, the model’s predictive ability was assessed with the ratio of
performance to deviation (RPD) and the relative ability of prediction (RAP), calculated as follows:

RPD =
SDx

RMSEP
(2)

RAP =
SD2

x −RMSEP2

SD2
x − S2

ref

(3)
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where SDx is the standard deviation of the validation reference data and Sref is the standard error of
the reference method, which indicates the uncertainty of the analysis due to the panelist.

The RPD is a dimensionless index widely used to evaluate NIRS models in agricultural
products [27]. The RAP takes into account both the error of NIRS prediction and the uncertainty of the
panelists’ evaluations; it has a value between 0 and 1 [28].

3. Results and Discussion

3.1. Sensory Analysis

In the ANOVA, both the sample and panelist factors, but not the interaction between them,
were significant (p < 0.05) for the three sensory attributes. The significance of the panelist factor
indicates that panelists were using the scales differently in their evaluations; this finding is common in
descriptive sensory analyses, and it is related to slight differences in the reference values that panelists
learn [29]. However, the lack of a significant interaction between the panelist and sample factors
indicates that the panel adequately discriminated between phenotypic differences.

Table 1 shows the means, standard deviations, and ranges of the sensory attributes scored by
the panel and divided into calibration and validation sets. To develop robust calibration models, it is
critical to obtain a wide range of values for each attribute to be correlated with the NIR measurements.
The values of the attribute sweetness were widely dispersed, reflecting the variability commonly found
in ‘calçots’. The values of the attributes fiber perception and off-flavors were mostly at the lower end of
the scale, resulting in a narrower range, especially for the attribute off-flavors; however, these findings
were expected because ‘calçots’ from BTL varieties usually have low values of these attributes in
comparison with ‘calçots’ from other onion varieties [3].

Table 1. Statistics (range, mean, and standard deviation) for the sensory attributes measured by the
trained panel in the calibration and validation sets.

Sensory Attribute
Calibration Set (n = 64) Validation Set (n = 21)

Range Mean SD Range Mean SD Sref

Sweetness 3.40–8.11 6.41 1.02 3.59–8.15 6.48 1.30 0.32
Fiber perception 0.23–7.73 1.60 1.27 0.39–3.74 1.75 0.90 0.28

Off-flavors 0.36–5.86 1.73 1.13 0.68–4.25 1.89 1.14 0.37

SD: standard deviation; Sref: standard error.

3.2. NIRS to Estimate Sensory Attributes

PCA of SNV-pretreated spectra showed no clustering due to season or origin in the score plots
(results not shown). The first two principal components explained 92.09% and 89.70% of the variation
for puree and ground dried puree samples, respectively. No outliers were detected.

Figure 1 shows the raw and pretreated spectra measured from puree and ground dried puree
samples. As stated in a previous study [24], it is difficult to assign specific absorption bands to specific
functional groups, due to the complex composition of vegetables. The main difference between the
spectra from puree and ground dried samples is that the spectra from puree are strongly influenced by
water bands, have two characteristic absorption peaks around 1450 nm (stretch of the O–H bonds, first
overtone) and 1940 nm (stretch of the O–H bonds and O–H deformation). Water is a major constituent
of ‘calçots’, ranging its content between 79.9–87.3% for the samples registered. Since the high water
content in the samples could limit the use of NIRS due to the strong absorption bands that predominate
in the spectrum, we considered the alternative of using the spectra from ground dried puree samples.
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general, using the entire spectral range, the best prediction was for the attribute sweetness found 
using spectra from puree (R2pred = 0.66 and RMSEP = 0.78). By contrast, PLS models yielded poor 
results for the attribute off-flavors, both using puree spectra (R2pred = 0.31 and RMSEP = 0.93) and 
ground dried puree spectra (R2pred = 0.27 and RMSEP = 0.96), and for the attribute fiber perception 
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Sweetness 
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GD puree SG-1D (15) + m.c. 9 0.75 0.51 0.49 0.74 0.57 0.98 1.32 0.46 
Fiber perception Puree SG-2D (21) + m.c. 5 0.69 0.71 0.43 0.99 0.55 0.63 1.43 0.57 

Figure 1. (A) Raw spectra from puree and ground dried puree; (B) pretreated spectra (SNV) from puree
and ground dried puree.

First, PLS regression models to estimate the sensory attributes were developed, using the
entire spectral range and separately using spectra from either puree or ground dried puree samples.
The optimal number of PLS factors was established as that which did not significantly reduce the
RMSECV when the number of factors increased. Nevertheless, to prevent overfitting, the upper
limit of optimal PLS factors was set at one PLS factor per ten calibration samples, plus two [30].
The performance of the models varied for each sensory attribute and for the two sample preparations.
In general, using the entire spectral range, the best prediction was for the attribute sweetness found
using spectra from puree (R2

pred = 0.66 and RMSEP = 0.78). By contrast, PLS models yielded poor
results for the attribute off-flavors, both using puree spectra (R2

pred = 0.31 and RMSEP = 0.93) and
ground dried puree spectra (R2

pred = 0.27 and RMSEP = 0.96), and for the attribute fiber perception
using ground dried puree spectra (R2

pred = 0.26 and RMSEP = 0.87) (Table 2).
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Table 2. Statistical descriptors for near-infrared spectroscopy (NIRS) determinations using all the spectra.

Trait Spectra Pretreatment LVs R2
cal RMSEC R2

CV RMSECV R2
pred RMSEP RPD RAP

Sweetness
Puree m.c. 8 0.56 0.68 0.34 0.84 0.66 0.78 1.67 0.68

GD puree SG-1D (15) + m.c. 9 0.75 0.51 0.49 0.74 0.57 0.98 1.32 0.46

Fiber perception Puree SG-2D (21) + m.c. 5 0.69 0.71 0.43 0.99 0.55 0.63 1.43 0.57
GD puree SG-2D (15) + m.c. 8 0.80 0.57 0.54 0.87 0.26 0.87 1.04 0.08

Off-flavors
Puree SNV + m.c. 8 0.53 0.77 0.24 1.03 0.31 0.93 1.22 0.37

GD puree m.c. 3 0.43 0.84 0.36 0.90 0.27 0.96 1.19 0.32

LVs: number of latent variables; R2
cal: coefficient of determination of calibration; RMSEC: root mean square

error of calibration; R2
CV: coefficient of determination of cross-validation; RMSECV: root mean square error of

cross-validation; R2
pred: coefficient of determination of prediction; RMSEC: root mean square error of prediction;

GD puree: ground dried puree; m.c.: mean centering; SNV: standard normal variate; SG-1D: Savitzky-Golay
first-order derivative; SG-2D: Savitzky-Golay second-order derivative; between parentheses: window size.

To improve the models developed using the entire spectral range, iPLS variable selection was
used (Figure 2, Table 3). Once again, sweetness was the parameter best predicted, in both puree
(R2

pred = 0.66 and RMSEP = 0.76) and ground dried puree samples (R2
pred = 0.72 and RMSEP = 0.73).

In general, iPLS improved the prediction of all the attributes, especially sweetness (ground dried puree)
and off-flavors (Puree) (Tables 2 and 3).
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Figure 2. The optimal combination (low RMSECV) of spectral intervals determined by iPLS variable
selection (dark gray) for puree (A–C) and ground dried puree (D–F).
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Table 3. Statistical descriptors for NIRS determinations using interval partial least squares (iPLS)
variable selection.

Trait Spectra Pretreatment No. of
Intervals LVs R2

cal RMSEC R2
CV RMSECV R2

pred RMSEP RPD RAP

Sweetness
Puree m.c. 15 9 0.65 0.60 0.54 0.70 0.66 0.76 1.71 0.70

GD puree SG-1D (15) + m.c. 15 10 0.74 0.51 0.63 0.62 0.72 0.73 1.78 0.73

Fiber perception Puree SG-2D (21) + m.c. 10 4 0.69 0.71 0.56 0.85 0.58 0.64 1.41 0.55
GD puree SG-2D (15) + m.c. 15 8 0.88 0.44 0.82 0.53 0.42 0.82 1.10 0.20

Off-flavors
Puree SNV + m.c. 30 10 0.68 0.64 0.43 0.88 0.57 0.77 1.48 0.61

GD puree m.c. 20 2 0.45 0.83 0.40 0.86 0.20 1.02 1.12 0.22

LVs: number of latent variables; R2
cal: coefficient of determination of calibration; RMSEC: root mean square

error of calibration; R2
CV: coefficient of determination of cross-validation; RMSECV: root mean square error of

cross-validation; R2
pred: coefficient of determination of prediction; RMSEC: root mean square error of prediction;

GD puree: ground dried puree; m.c.: mean centering; SNV: standard normal variate; SG-1D: Savitzky-Golay
first-order derivative; SG-2D: Savitzky-Golay second-order derivative; between parentheses: window size.
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Figure 3 plots NIRS-predicted values for puree and ground dried puree versus reference values of
sensory attributes for the models developed using iPLS variable selection, which generally yielded
better predictions than the models calculated from the entire spectra. In general, for the sensory
attributes, PLS models developed from puree spectra yielded better predictions than those developed
from ground dried puree, with the exception of sweetness, where scant differences were found between
the two (Table 3). As stated before, we used ground dried puree samples spectra to develop the
regression models as an alternative considering the high water content of puree samples. In a previous
study, we found better prediction models using ground dried puree spectra for some chemical
parameters [24]. In this case, the better performance of the models developed from puree can be
explained because panelists evaluated the samples as a puree and the process of drying and grounding
probably changed the properties of the samples.

The dimensionless parameter RPD is commonly used to evaluate the predictive ability of NIRS,
and the reliability of the model is commonly classified into three quality categories: excellent (RPD > 2),
fair (1.4 < RPD < 2), or poor (RPD < 1.4) [27,31]. According to these thresholds, the models developed
could be considered useful for predicting sweetness from NIRS on puree and ground dried puree and
for predicting fiber perception and off-flavors from NIRS on puree (Table 3). However, these thresholds
are not based on statistical analyses, and some researchers have used much higher thresholds [27].
On the other hand, RPD values for sensory attributes are usually lower than those for chemical or
physical properties. For example, in the application of NIRS to estimate sensory attributes in common
beans, the best models developed presented RPD values between 1.19–1.90 [20]. In different meats,
RPD values in almost all the cases were also lower than 1.5 [32]. Higher values of RPD (i.e., RPD > 2)
were reported for some properties in sensory evaluation using NIRS in cheese [33,34], wine [15],
and chicory hybrids [19]. However, in some cases, RPD values were calculated as the ratio of the SD to
RMSECV, rather than by external validation of the models.

It is also important to remember that the use of RPD assumes that the errors of the reference
method are negligible, which is not the case with sensory analysis [15]. For this reason, previous
studies used the parameter RAP to relate the predictive ability of NIRS to the precision of the panelists’
evaluation [20]. The models developed using iPLS variable selection for sweetness showed values of
RAP greater than 0.70 (Table 3), suggesting these models are reliable in predicting this sensory attribute.
The best models developed to estimate fiber perception and off-flavors had RAP values greater than
0.5, which are comparable to RAP values reported for other products, such as beans [20], peas [35],
or rice [36].

In balance, these results demonstrate the potential of NIRS in the evaluation of complex sensory
properties in cooked ‘calçots’, with a pretreatment as simple as pureeing the samples, which makes
it possible to homogenize many specimens representative of a stock, thus enabling a good average
evaluation with a limited number of registers. Although models developed to estimate sensory
attributes are less accurate than those developed to estimate chemical properties [24], used together
with PLS regression, NIRS promises to be useful for evaluating the sensory attributes of cooked ‘calçots’
in plant breeding or quality control.

4. Conclusions

Quality control and plant breeding programs need to analyze large numbers of samples and
rapid, inexpensive phenotyping methods are needed to enable the analysis of sensory attributes.
Our results show that it is feasible to use NIRS to estimate the most important sensory attributes
in cooked ‘calçots’: sweetness, fiber perception, and off-flavors. The best approach to predict these
attributes was using iPLS variable selection to develop predictive models from spectra from pureed
cooked ‘calçots’, which yielded RPD values greater than 1.4 in all cases.

Although NIRS models are less robust for sensory attributes than for other properties such as
chemical composition, they can be used in the initial screening of samples of cooked ‘calçots’, allowing
the more time-consuming and costly panel sensory analysis to be reserved for only when more accuracy
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is needed. In the same way, NIRS can help detect materials that would clearly fail to meet the standards
of the PGI label, facilitating quality control and helping ensure customer loyalty. In summary, NIRS
promises to be a key tool to enable the analysis of sensory properties in ‘calçots’.
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