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Abstract: The waste rubber vulcanizate, on account of its stable, cross-linked and three-dimensional
structural arrangement, is difficult to biodegrade. Thus, the ever-increasing bulk of worn-out tires is
a serious environmental issue and its safe disposal is still a challenging task reported widely by the
scientific community. The rubber materials, once they end their useful life, may present difficulties to
be reused or recycled. At present, only one tire recycling method is used, which involves grinding and
separating steel and fibers from vulcanized rubber, and then using rubber for industrial applications,
such as flooring, insulation, footwear. In this paper, a new compound material is presented from a
base of reused tire powder (Ground Tire Rubber: GTR) as a mixer and linear low-density polyethylene
(LLDPE) as a matrix. The reused tire powder, resulting from grinding industrial processes, is separated
by sieving into just one category of particle size (<200 pm) and mixed with the LLDPE in different
amounts (0%, 5%, 10%, 20%, 40%, 50% and 70% GTR). Due to the good electrical properties of the
LLDPE, this study’s focus is settled on the electrical behavior of the obtained composites. The test of
the dielectric behavior is carried out by means of DEA test (Dynamic Electric Analysis), undertaken
at a range of temperatures varying from 30 to 120 °C, and with a range of frequencies from 1 to 107,
to 3:10° Hz, from which permittivity, conductivity, dielectric constant and electric modulus have
been obtained. From these experimental results and their analysis, it can be drawn that the additions
of different quantities of GTR to LLDPE could be used as industrial applications, such as universal
electrical cable joint, filler for electrical applications or cable tray systems and cable ladder system.

Keywords: reused tires; LLDPE; electrical properties; electrical modulus; composite
recycling applications

1. Introduction

Tire rubber wastes are a serious world environment problem and its safe disposal is still a
challenging task reported widely by the scientific community [1,2], the main cause is due to the
difficulties in rubber waste recycled, that causes harmful environmental effects. Tires containing
almost 50% rubber are polymeric materials. The global production of rubber materials in last years
was about nearly 27-30 MTons [1]. However, the tire industries, as the main application of rubbers
(65% of the global rubber production), generate the largest amounts of tire waste materials. Because
of this, 1.5 billion waste tires per year are discarded worldwide, containing up to 90% of vulcanized
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rubber that cannot be easily recycled (reprocessed) due to its crosslinked structure [3,4]; therefore,
the management and recycle of used tires has become such a huge environmental challenge. Likewise,
many efforts are being made to find new fields of application that can absorb the large amount of
waste tire rubber that is generated yearly. The use of these materials as reinforcements or blends
in composite materials has been widely studied in many works [5-7], but the presence of these in
composites of polymeric matrix modifies physical characteristics, for instance, dielectric, mechanical,
thermal behavior. Vulcanized waste rubbers are difficult to recycle, due to the crosslink structure of
rubber [8]. Therefore, an interesting option is to blend waste tires with plastics to decrease the final costs
of the products due to a lower amount of virgin material being used. Waste tires need to be shredded
into smaller particles (microparticles) for easier addition into plastic matrices, and the separation of
textiles and steels from waste tires is required [9]. Shredded tires can be used in virgin/fresh polymers
such as rubbers, thermoplastics, and thermoset blends for civil engineering, automotive applications,
and other uses. Therefore, blends of rubber with thermoplastics are consuming a large amount of waste
tires [10,11]. The addition of GTR particles into polymeric thermoplastic matrices has proven to be
promising in terms of cheaper product, a cleaner environment and viable processing. Polymer blends’
recycling of waste tires seems a promising field of studies due to balanced properties obtained by
partially replacing the virgin polymer with waste tires (GTR) [12,13]; so, actual research experiences in
the rubber recycling as a polymeric reinforcement suggested that this field is hopefully being explored
by the scientific community.

Studies reveal that the recycling process is an excellent option to treat waste polymer products
in comparison with the old-style methods (landfill accumulation, combustion of waste polymers,
burying underground) that lead to negative impacts on the environment [14,15], and this trend is
confirmed by the increasing of the recycling yield rate and the weight of recycled materials, which was
gradually increased to more than 70% [16]. Thermoplastic blends are useful for developing new
recycling strategies and developing new composites materials after value addition. Moreover, different
actual research experiences develops recycling thermoplastic blends can be mixed up together for
making blends in order to produce further value-added products since those have comparatively
similar properties [17]; so, the development of more recycling composite applications is a necessary
research activity in order to evaluate the feasibility of the recycling composites.

In the present research, the matrix is the thermoplastic polymer (linear low-density polyethylene
(LLDPE)) and the reinforcements are GTR particles. Significant works studied the mechanical and
morphological properties of the GTR blends [18-21]. Despite the polymeric blends with GTR behavior
showing a low compatibility between both phases (polymeric/GTR loads) [22,23], the cheaper and
easier process of blended GTR into thermoplastic matrices gives an opportunity to this GTR recycling
strategy. With this aim, this article looks for what is the ideal amount of GTR loads in polymeric
matrices, for different industrial applications analyzed in this paper. For this reason, in the actual
research are the compared results from the Spanish standards (UNE) and International standards (IEC)
specific applications, used as an application standard in industrial developments with dielectric results
obtained to study the industrial application feasibility of the composites analyzed according to specific
standards application. This analysis conducts the classification of some low-requirement applications
in the industrial field, whereby such applications can be applied to this composite (LLDPE + GTR),
for a low GTR content. The analyzed applications will be industrial applications, such as universal
electrical cable joint, filler for electrical applications and cable tray systems and cable ladder systems.

The composite materials are heterogeneous, and their properties depend on the quantity, size and
shape of the reinforcement, as well as other factors, such as their preparation, as well as compatibility.
One way to increase the compatibility between components is to reduce the degree of cross-linked GTR
by devulcanization [24,25]. Relevant changes in the properties are observed when changes to the size
of the reinforcement particles take place. In fact, previous investigations [26,27] have shown that there
are better mechanical properties for samples with particle diameter under 200 pum. Thus, this research
is focused on particles of GTR with a diameter under 200 um. For this purpose, it was used as a matrix
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LLDPE, which has good electrical, processing and mechanical properties as well as relatively low
price [28-30]. In general, the incorporation of fillers in LLDPE increases the elastic modulus of the
material and its tensile strength, but often decreases the elongation at break [31,32].

The complete dielectric characterization behavior of thermoplastic polymer LLDPE with the
additions of different GTR particle amounts, as a function of frequency and temperature, is provided.
Is expected that carbon black (CB) in the GTR particles may affect the conductive process in the polymeric
composites (LLDPE + GTR) [33], affecting electrical insulation properties. Other research [34-36]
studied the dielectric properties of composite polymers, depending on frequency and temperature.
The Maxwell-Wagner-Sillars (MWS) interface polarization theory is observed in heterogeneous systems
composed of two or more phases. In polymer composites, interface polarization is almost always
present, because additives or impurities make them heterogeneous systems. In general, in systems with
a conductive component, the dielectric’s permittivity, relaxation interfaces and conductivity can be both
high and low frequencies. To overcome this difficulty in the study of interface polarization, the electric
module is used in polymers and composites to study its conductivity relaxation behavior [37-40].

Featured Application

The aims of this manuscript are to analyze the dielectric behavior of different seven composite
materials obtained by mixing LLDPE polymer with different percentages of GIR (up to 70%) to see their
response as function of the amount of GTR particles and its possible feasibility to be used in specific
applications in the industrial electric field. Therefore, the double objective of this research is framed
in the characterization and study of the electrical properties of composite materials, the evaluation
and characterization of the electrical behavior of LLDPE + GTR compounds, and the use of some of
these compounds for the industry, mainly for insulating, in order to give output to recycle materials
coming from tires that are out of use and to give a possible industrial application, purposing a possible
application for the recycling of tire rubbers.

2. Materials and Methods

2.1. Materials

Linear low-density polyethylene (LLDPE) was supplied by Montachem International (Fort
Lauderdale, FL, USA). The physical and tensile properties of this polymeric material are summarized
in Table 1. On the other hand, the old used tire (GTR), with a particle size less than 200 pum, has verified,
by TGA analysis (thermogravimetric analysis), that carbon black content was about 35%. The original
GTR was separated by sieving into one size particles: <200 um.

Table 1. Linear low-density polyethylene (LLDPE) features provided by the manufacturer and
processing variables for composites (LLDPE-GTR) with the Brabender mixing machine.

Properties Unities Values
Flow index g/10 min 1.0
Density g/em3 0.924
Melting temperature °C 126
Tensile strength Psi 8.000
Elongation at break % 720
Processing Temperature °C 124 °C
Pressing Temperature °C 130 °C

2.1.1. Preparation of the Compound

The recycled tire powder was dried in an oven at 100 °C for 24 h. Samples of Polymer/GTR
compound, varying the composition (0%, 5%, 10%, 20%, 40%, 50% and 70% of GTR), were prepared.
The mixing process was done with a Brabender mixer machine at processing temperature, and, to prevent
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the degradation of the polymer, the mixing time was limited to 4 min. After the mixing process, all the
samples were homogenized in a laboratory two roll mill (Collin W100T, Collin, Maitenbeth, Germany)
at 60 °C to improve the dispersion of GTR particles. LLDPE/GTR laminates were obtained by using
a hot plate press (Collin, Maitenbeth, Germany) at 100 kN and a pressing temperature for 10 min
(Table 1). The cooling stage was done with a closed water circuit, which was held in the same press
and pressure for 5 min. Samples for testing were properly set up according to the specifications of
ASTM D-150. A sample of the pure LLDPE polymer was also prepared with the same requirements in
order to obtain comparable results. One specimen for testing was used.

2.1.2. Dielectric Analysis

The dielectric analysis was performed with GTR particles smaller than 200 um. The dielectric
parameters and magnitudes were measured by means of the Dynamic Electric Analysis (DEA) test [41]
(also called Dielectric Analysis) with BDS40 equipment (Figure 1, Montabaur, Germany) in which a
temperature sensor was incorporated using a compression mold of 2.5 cm in diameter and 0.1 mm
thick. The measurements were carried out in a frequency range between 1072 and 3 x 10° Hz, with a
temperature sweep between 30, 100 and 120 °C and at a speed of 3 °C/min.

i‘ L, N

Figure 1. Dynamic Electric Analysis (DEA) equipment used with the control unit for the parameters
of the test.

2.1.3. Samples

There are two types of specimens: one obtained by neat matrix (LLDPE) and the other type
of specimen is containing the blended LLDPE polymer with different amounts of GTR particles in
the mixers. The dimensions of the specimens are defined by ASTM D-150 [42-44] and are shown in
Figure 2a. This Figure shows that the specimens are cylindrical 2.5 mm in diameter and 0.1 mm thick.
In Figure 2b, blended LLDPE + GTR samples can be seen between the two electrodes used in the test.
Once the specimen is placed between the two electrodes, it must be introduced into a test chamber
to provide the desired temperature during the experiment time. The test system then carries out the
measurements for the different frequencies and temperatures configured. The software used to obtain
the data is WInDETA 4.1 (Montabaur, Germany). This was used to control the DEA system in order to
configure the test of the different electrical properties to be obtained and analyzed.

Main-electrode

Test-specimen

Guard-electrode

Figure 2. Samples for Dynamic Electric Analysis (DEA) used. (a) Specimen dimensions; (b) DEA
electrodes with composite sample.
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3. Microstructural and Electrical Characterization Results

3.1. Microstructural Analysis of the Compounds LLDPE/GTR

Different microphotographs of the interphase GTR-LLDPE matrix were performed using Scanning
Electron Microscopy (SEM) with different magnifications. SEM was used to analyze the fracture
surface of those broken samples in tensile strength tests. It is possible to analyze the effects of
GTR inside the matrix by observing the environment of the reinforcement particles. A JEOL 5610
microscope (Tokyo, Japan) was used, and the samples were previously coated with a thin layer of gold
to increase conductivity.

GTR particles do not reach the degradation temperature when mixing, and it is possible to see those
particles dispersed in the homogeneous LLDPE polymer matrix. As shown Figure 3a, the compatibility
between GTR and LLDPE is not enough good. Moreover, the gap between components damages the
electrical properties. Specifically, the SEM photographs show a compound with GTR, which causes
low interfacial adhesion. So, as a result, with high GTR concentrations there is a greater potential for
particle agglomeration, which obstructs interfacial adhesion. The percentage of LLDPE is not enough
to wrap the GTR particles, making bonding more difficult, with cracks and pores of considerable sizes
appearing in their borders. The interaction between the matrix and reinforcement particles of GTR is
very low. As depicted Figure 3b, the degree of dispersion improves, avoiding the formation of clusters
when the amount of GTR is lower to 20%. This picture shows that small particles are wrapping for
the LLDPE matrix, although in the central part of picture appears a big particle (150 um of length)
that explains the lack of interaction between both components. These results agree with the tensile
properties obtained in a manuscript published by Yao Du et al. [45].

(@ (b)
Figure 3. Scanning Electron Microscopy (SEM) micrographs of LLDPE/20%GTR compounds:

(a) a magnification of 400 and (b) a magnification of 150 that shows the dispersion of small particles
(arrows) and lack of compatibility large particles (circle).

3.2. Conductivity

Figure 4a displays the conductivity results of the different compounds LLDPE/GTR at 30 °C.
The neat LLDPE conductivity measurements define an important dispersion due to the low conductivity
of such material. The measurements of conductivity LLDPE + GTR in the zone corresponding to the
high frequencies of the linear dependence of the conductivity with the frequency are observed in the
zone corresponding to the high frequencies of the log-log plots. The conductivity dependency on the
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frequency is seen as linear. This fits a sublinear dispersive conductivity model Equation (1), as it is
common in polyethylene and similar materials [46], (Equation (1)):

0 =09+ A" (1)

where 0y is the conductivity to direct current (DC), w = 27t f, where f is the frequency, while A and
n (which have values between 0 and 1) are parameters that depend on temperature and materials.
This equation implies two different behaviors, one at low frequencies where DC term is dominant and
there is no dependency between conductivity and frequency, and another dispersive in which the
conductivity has a potential dependence with the frequency. As w increases, the dispersive behavior
appears and replaces the DC one. Therefore, in Figure 4a, for low frequencies, the conductivity is seen
in a direct current (DC) regime, and, for high frequencies and all the composites, the AC current regime
dominates. Figure 4a shows the conductivity for a wide range of frequencies (0.01 Hz-3 MHz) and
combines two differentiated conductivity regimes: DC (low frequencies) and AC (high frequencies),
in a low-frequency regime, the conductivity measurement domains in DC conductivity regime with the
addition of higher GTR loads, but, for the rest of the composites, the AC conductivity regime prevails
at 50 Hz.
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Figure 4. Frequency and thermal response of the conductivity of LLDPE/GTR compounds (a) at 30 °C
with a frequency range of 1072 to 3 x 10° Hz and (b) at 50 Hz with a temperature range of 30 to 100 °C.

In Figure 4a,b, it is observed that the neat LLDPE has a very low DC conductivity. For most
temperatures and GTR concentrations, the frequency of trend change that delimits one or the other
behavior is below the range of frequencies analyzed. As is seen in the Figure 4a, only at high GTR
concentrations is it possible to clearly see the change in the slope in the low-frequency region of the
spectrum (1072 and 100 Hz for LLDPE + 70%GTR and LLDPE + 50%GTR, respectively). The reason
is that, by increasing the concentration of GTR, and therefore the amount of carbon black (CB) in
the sample, the DC conductivity increases and shifts the rate of behavior change to higher values.
As expected, there is also a direct relationship between GTR concentration and conductivity, both in
direct current and the dispersion behavior. The CB present within the GTR particles, nearly 35% as the
TGA test in GTR samples [47], is much more conductive than insulation polymers and is generally used
to improve the electrical properties of these materials [48,49]. However, the increase in conductivity is
not enough to cause the material to lose its insulation condition.

On the other hand, in Figure 4b, it is observed how the conductivity at low frequencies (50 Hz)
is greatly increased when measured at different temperatures (30 to 100 °C), and, for different GTR
percents in the polymer blends, the samples increase nearly 4 orders of magnitude, when the percent of
GTR is increased (from 0% to 70% of GTR). For the increase in temperature, the changes in conductivity
with temperature are not significant, so they are not important changes in the slope by temperature,
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but the changes with the presence CB are significant. So, from the observation of Figure 4a,b, we can
obtain the next conclusions, since LLDPE has a very low DC conductivity. For GTR concentrations,
the crossover frequency that delimits one or other behaviors is located below the range of frequencies
analyzed. Only at low frequencies for high GTR concentrations is it possible to see clearly the change
in the slope at the low-frequencies region of the spectra analyzed in Figure 4a. The reason is that by
increasing the frequency and the GTR concentration, and therefore the CB amount in the composite
material, the DC conductivity rises and shifts the crossover frequency to higher values.

The behavior in Figure 4b and Figure 6 (frequency fixed at 50 Hz) is coherent with electrical
insulators; temperature does not affect the conductivity process in the range of temperature (30 to
100 °C). The conductive mechanism observed for the temperature range is that the valence band is full
and energetically separated from conduction, and the barrier between them impedes the electrons
be excited for charge transport. So, the temperature is not high enough, for electrons to move over
the barrier. The major charge carriers are the electrons and the hole in the conduction band and
valence band, respectively. The basic parameters to these are thought to be the concentrations and
mobility (i) of electrons and holes, which measure the movement capacity of charge carriers in the
composite [50,51]. The hopping mechanism transport charge is suitable for polymeric materials [52];
this process is performed when two different charge carriers, such as electrons and holes, are separated
by a potential barrier, one can move to the other through tunneling the barrier or moving over the
barrier via an activated state [53].

3.3. Permittivity

Figure 5 shows, for different compounds of LLDPE/GTR, the values of real permittivity (¢’) and
imaginary permittivity or dielectric loss factor (¢”), which are proportional to the stored and dissipated
energy, respectively, in each cycle, in relation to the frequency, at a temperature of 30 °C. At low
frequencies, both real permittivity (¢’) and dielectric loss factor (¢”) increase as GTR content rises.
The real and imaginary permittivity decreases as frequency increases for the compounds with the
greatest presence of GTR (50% and 70%LLDPE/GTR compounds), as this tendency is less significant for
lower GTR concentrations (LLDPE + 5%GTR — LLDPE + 10%GTR - LLDPE + 20%GTR). In the case of
LLDPE without GTR, ¢’ does not depend on the frequency. The drops in the dielectric dispersion [54,55]
contribute to such phenomenon only because of GTR contents (and the majority CB). Because LLDPE
is a non-polar polymer, how can you verify in the LLDPE pure or low GTR contents composites
(Figure 5a,b)? Similar decreases are observed in all the samples studied for the ¢” results. In this case,
there are contributions of the conductance (¢” o 777) and interfacial phenomena at low frequencies.

—&— LIDPE —e— LLDPE

—6— LLDPE+5%GTR —o&— LLDPE+5%GTR
—o— LLDPE+10%GTR 10°F —o— LLDPE+10%GTR
—&— LLDPE+20%GTR —&— LLDPE+20%GTR
—5— LLDPE+40%GTR —&— LLDPE+40%GTR
—&— LLDPE+50%GTR —5— LLDPE+50%GTR
—p— LLDPE+70%GTR 102 F

—p— LLDPE+70%GTR

Permittivity®
Permittivity™

(a) (b)

Figure 5. Compounds LLDPE/GTR, at 30 °C in relation to frequency (From 1072 to 3 x 10° Hz). (a)
Real permittivity, ¢’, and (b) dielectric losses factor, £”.
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The analysis of the permittivity (Figure 5a,b) brings a clear distinction in the behavior of a Debye
system from the Maxwell-Wagner-Sillars model (MWS) system. The frequency response for the LLDPE
scale superlattices can be directly modeled by MWS (see Figure 5a,b) [56], more than a Debye expression,
which cannot account for the low-frequency behavior. Such a low-frequency relaxation suggests that
the ions can move over long distances and may affect the permittivity [57]. The explanation for this
phenomenon is that in heterogeneous systems, where we find two or more components or phases,
such as LLDPE + GTR, the dielectric relaxation of the MWS type occurs. This phenomenon has a
critical point or maximum at 50%GTR reinforcement particles, since at this point the composite is
in a state of maximum heterogeneity, due to its own composition. So, at 50%GTR, the interfacial
polarization due to the MWS phenomenon is maximum.

On the other hand, real permittivity (¢’) and dielectric losses (¢”) at a frequency of 50 Hz and at
various temperatures between 30 and 100 °C are shown in Figure 6a,b. Higher GTR contents are directly
related to higher ¢’ and ¢” values. There is 1 order of magnitude between the ¢’ of pure low-density
linear polyethylene and the 70% GTR samples analyzed, and 4 orders of magnitude between the ¢”
of pure LLDPE and the LLDPE + 70%GTR samples analyzed. In general, the permittivity seems to
maintain when the temperature rises for the real permittivity (¢”) and for imaginary permittivity or the
dielectric loss factor (¢”). For the LLDPE/GTR compounds, the values are slightly increasing with the
increase in the temperature. The data obtained from the ¢” pure LLDPE sample show a relaxation with
a peak around 70-80 °C, and then begin to increase again. Since the GTR is more polar and conductive
than low-density linear polyethylene, the dielectric relaxation of the polymer matrix is masked by the
filling properties (GTR).
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—6— LLDPE+5%GTR —o— LLDPE+10%GTR
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Figure 6. LLDPE/GTR compounds at 50 Hz in relation to temperature (from 30 to 100 °C); (a) real
permittivity, ¢’; (b) €”, dielectric losses factor.

The permittivity (¢’) and dielectric loss (¢”) for a frequency of 50 Hz and several temperatures
between 30 and 100 °C are shown in Figure 6. The GTR higher contents of LLDPE compounds
are directly related to higher ¢’ and ¢” values. There is one order of magnitude between the real
permittivity (¢’) of the LLDPE and the 70%GTR/LLDPE samples, and there are about 1.5 orders of
magnitude in case of the dielectric loss factor (¢”). Temperature does not affect the ¢’ behavior for the
compounds analyzed (LLDPE/GTR), and it affects very mildly the e¢” behavior, only nearly the 100 °C.

In Figure 7, the LLDPE + 20% GTR compound is analyzed, in the range of frequencies (from 102
to 3 x 10° Hz) and for a range of temperatures, from 30 to 100 °C. From this analysis, the conclusion is
clear. For ¢’, there is a peak in frequency from 107! to 100 Hz and which accentuates with increasing
temperature and shifts it to higher frequencies, and ¢” clearly tested that Maxwell-Wagner-Sillars
(MWS) relaxation is clearly seen and that the type interfacial polarization processes acts from 10? Hz.
It is also checked that, in this frequency value, the behavior of ¢” no longer depends on the temperature,
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only on the frequency. This process is clearly seen in Figure 7b, where we see the only dependence on
the ¢” with the frequency from 10? Hz to higher levels of frequency. It is certainly explained by MWS
interfacial polarization processes [58-61].

o —o— LLDPE
—e— &ggés%am —©— LLDPE+5%GTR
—6— LLDPE+10%GTR —6— LLDPE+10%GTR
—&— LLDPE+20%GTR —&— LLDPE+20%GTR
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[(Hz) [ (Hz)
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Figure 7. Real permittivity (a) and imaginary permittivity or dielectric loss factor (b) at various
temperatures for the LLDPE/GTR-20% compound analyzed.

3.4. Dielectric Modulus (M”)

Different authors [62,63] have studied the electrical module that relates the process of dielectric
relaxation, the polarization of the interface or the Maxwell-Wagner-Sillars effect. In polymeric
compounds, the relaxation phenomena in the low-frequency region are attributed to the heterogeneity
of the systems. The investigation of these electrical processes is carried out through the electrical module.
The Debye model, Cole-Cole, Davidson-Cole and Havriliak-Negami equations for dielectric relaxation
are expressed in the form of an electrical module. Relaxation interfacial phenomena in heterogeneous
materials are usually located at very low frequencies so they are not visible in low-temperature
measurements for the frequency range studied. As they are thermally activated processes, they would
appear in this frequency range for higher temperatures. However, at such frequencies and temperatures,
there are several phenomena that typically darken the interfacial relaxations (electrode polarization,
conduction phenomena). In order to overcome these problems, it can be convenient to use the
formalism of the Electric Modulus [64] (see Equation (2)). At low-frequency behavior, the analysis
of the imaginary modulus (M”) provides us the features of the dielectric loss factor avoiding any
contribution of the conductance. In Figure 8, one can see how the relaxation peak is going from higher
frequencies (3-10° Hz) for the compounds with a low presence of GTR in the compounds blends (from
0% to 10% GTR compounds), to lower frequencies (100 Hz) for the compounds with higher contents of
GTR (50% and 70% of GTR), so the presence of GTR is affecting the relaxation phenomena of LLDPE
and changing the frequency relaxation. This trend is clearly shown in Figure 8.

1 1 &’ e’

M = - = - = i :M/ ‘MH 2
e ((,J_]E" 8’2+€”2 +]€/2+€//2 +] ( )

The modulus analysis (see Figure 8) is used for analyzing and determining the dynamical aspects
of electrical transport phenomena. The analysis gives the correlation between the motions of mobile
charge [65]. Figure 8 shows the variation of imaginary modulus (M”) with frequency at different
GTR loadings. In the accessible frequency range, the spectrum exhibits one relaxation peak for
each GTR loading. The peaks shift systematically toward lower frequencies with an increase in
GTR loading. The broadening of the peak indicates the spread of relaxation time with different
(mean) time constants, and hence a non-Debye type of relaxation in the materials is observed that
is coherent with the Maxwell-Wagner-Sillars model (MWS) system, and this is consistent with the
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permittivity data. The nature of the processes is further explored using the Argand Diagram (complex
plane representation) for dielectric modulus, as shown in Figure 11, for different concentrations of
GTR loading. The curve of LLDPE + 50%GTR presents a peak at a slightly lower frequency than
LLDPE + 70%GTR (see Figure 8), which means a better charge mobility for this composite at low
frequencies [66]. This behavior is coherent with the Maxwell-Wagner—Sillars model (MWS) system.

o LLDPE
& LLDPE+5%GTR

— 6 LLDPE+10%GTR
— & LLDPE+20%GTR

1070 — B LLDPE+40%GTR
— g LLDPE+50%GTR
—p— LLDPE+70%GTR
e L L L L
1072 10° 102 104 108

S (Hz)

Figure 8. Imaginary electrical module (M”) of the LLDPE/GTR at 120 °C depending on the frequency,
which ranges from 1072 to 3 x 10° Hz.

Figure 9 simultaneously shows the evolution of the imaginary module (M”) with temperature and
frequency for the pure LLDPE and six different concentrations of LLDPE and GTR (5%, 10%, 20%, 30%,
50% and 70% GTR). At low frequencies and high temperatures, a relaxation associated with the presence
of GTR can be detected, like we have shown in the last Figure (Figure 8). Firstly, this relaxation appears
as a smooth hump on the slope of the «’ relaxation. By increasing the GTR amount in the compound,
this peak becomes more prominent. Such high temperatures and low-frequency-GTR-associated
relaxation can be identified with interfacial polarization phenomena, that is, a Maxwell-Wagner-Sillars
relaxation [67]. These phenomena are typical of heterogeneous materials in which there are regions
with different conductivities. The results in Figure 9 reveal that, for low GTR concentrations, the &’ peak
is placed at very low frequencies. However, it seems that, for GTR concentrations of 5%, the relaxation
is greater than of pure LLDPE. For higher GTR concentrations, the o relaxation decreases, shifts
to higher frequencies, and, finally, it almost vanishes for 70%. Such evolution is analogous to that
of crystallization, which is higher for 5% of GTR and drops if the concentration increases. The fact
that «’ relaxation should be related to amorphous-crystal interfaces is consistent with this apparent
direct dependency.
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Figure 9. Three-dimensional diagrams of the imaginary component of the electric module (M”)
in relation to temperature and frequency for LLDPE (a), LLDPE/GTR-5% (b), LLDPE/GTR-10% (c),
LLDPE/GTR-20% (d), LLDPE/GTR-40% (e), LLDPE/GTR-50% (f), LLDPE/GTR-70% (g).

3.5. LLDPE/GTR Activation Energies (Ea)
The DC conductivity follows the Arrhenius-type thermal activation process [68,69]:

)
Og4c = 00°€ kB - T

®G)
where 0y is a constant, Ea is the activation energy and kB is the Boltzmann constant. The activation
energy has been calculated from the linear fitting of log (0,4.) versus 1/T (Figure 10), and the results are
shown in the Table 2. Above 70-100 °C, the activation energy of each composite has low variation
when changing temperature. Since the conductivity of the carbon black present in the GTR is much
higher than LLDPE, the decrease in log (0,4.) can be explained by assuming that the space charge
mobility rises with GTR. Differences in the activation energy above 100 °C can be explained by the
differences of the conductivity in each composite. Despite being the evolution in the Ea parameter,
the changes observed are not very important. Another interesting issue that is worthy of comment is
the presence of only one lineal region for the plot of dc conductivity against 1/T. This means that in
the interval of temperature remain only crystalline structures (LLDPE Tm is 122 °C). As depicted in
Figure 10, at temperature below Tm, the DC conductivity has been observed to decrease gradually with
the temperature up to 70 °C. This is due to the fact that, at high temperatures (i.e., 100 °C), the energy
would be large enough to increase the free volume in the system, which facilitates the motion of small
GTR particles. When the amount of GTR in the compound increase (i.e., 40, 50%), the Ea increase
due to the possibility of producing GTR clusters that reduce the segmental motions of big particles
of GTR. Although the addition of GTR, which contains carbon black, increases the DC conductivity,
this reduction in motion possibilities avoids a significant increase in DC conductivity.

Table 2. Activation energy and conductivity rise in the range of temperatures from 70 to 100 °C.

Ea (eV) Ao =0100°c—070°c (S/m) GTR (%)
0.2585 0.0001 x 10710 0%
0.1157 0.0005 x 10710 5%
0.0553 0.0009 x 10710 10%
0.0982 0.0038 x 10710 20%
0.1130 0.0238 x 10710 40%
0.1220 0.0590 x 10710 50%

0.0959 0.2200 x 10710 70%
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Figure 10. Linear fitting of log (04.) versus 1/T for composites with different amounts of GTR.
3.6. LLDPE/GTR Argand Diagram

Representation of the impedance in a vector diagram or Argand diagram, using the Module
Electric, that is, a complex magnitude:

M*=M+jM” 4)

Coelho’s theory of space charge contribution [70] is based on the concept of macroscopic dipole.
A sample with electrical neutrality, has the mobile carriers evenly distributed in the absence of field.
If an electric field is applied to the sample, the mobile carriers move towards the opposite sign electrode,
leaving opposite sign carriers next to the other electrode, resulting in equilibrium after the next charge
distribution. This distribution constitutes a macro dipole that would oscillate in an alternating field
with the frequency of the field, causing a relaxation process that affects the heat of the permittivity of
the medium. For the development of the model, it is assumed that the processes that regulate electrical
charge transport are ohmic conduction and diffusion caused by the concentration gradient of the
carriers. Coelho has shown that the Argand diagram corresponding to the relaxation of space loading
is very similar to the Cole-Cole circle [71]. In Figure 11, M” is represented related to M’ in the so-called
Argand’s plot for the electric modulus at 120 °C. An arc at the low-frequency behavior is observed for
all the samples. This is consistent with the Coelho’s model for space charge relaxation. The relaxation
of Coelho is observed for pure LLDPE in the Figure 11. In the rest of the analyzed cases of changes for
different GTR contents in LLDPE + GTR blends analyzed, changes in the Argand Diagram are seen
as a larger percentage of GTR is incorporated in the LLDPE blends. Coelho’s Model assumes that,
when an electric field is applied to a sample, the free charges move through the sample toward the
electrode of opposite sign and finally the accumulation of charges close to electrodes results in a macro
dipole [72,73]. If the field oscillates, then the macro dipole is forced to oscillate with the frequency of the
field, and a dipolar-like relaxation appears. A semicircular trend (a requirement for non-Debye model)
followed by a linear increase is observed for all GTR loadings in the Argand Diagram (Figure 11).
It is also observed that, with the increase in GTR loading, the size of the semicircular loop decreases,
which confirms better conduction. So, the presence of a non-Debye type of relaxations has been
confirmed by complex dielectric modulus analysis [74]. It can also be observed that the arc is an almost
perfect semicircle for pure LLDPE, which implies that the electrodes are blocked, and can conclude
that a macro-dipole behavior for neat LLDPE, as is tested in the Figure 11.
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Figure 11. Argand Diagram (M”-M’) for LLDPE/GTR blends at a temperature of 120 °C.

3.7. Industrial Applications Analysis

The addition of increasing amounts of GTR in the LLDPE matrix has worsened the electrical
insulation properties of the composites but it is seen that there are composites that, for low contents of
GTR (5%, 10% and 20%), have enough insulation properties according with UNE Standards (Spanish
Standard) and International Standards (IEC), as we can check in Tables 3 and 4. This give possibilities
to use composites with low amounts of GTR for low-requirement applications, such as: universal
electrical cable joint, filler for electrical applications, pipes for electrical cables, as you can see in Table 4.
As is seen in Table 3, electrical parameters, needed for insulators, such as conductivity, loss factor and
loss tangent, are slightly affected by GTR loads, for low GTR amounts (5%, 10%, 20% of GTR), but the
worsening of these electrical properties (Table 3) is significant for higher amounts of GTR particles in
the composites (40%,50%,70% of GTR). Loss Tangent, Tg 6 = ¢”/¢’.

Table 3. Conductivity, loss factor and loss tangent, for each composite, at 50 Hz and 30 °C.

Composite Conductivity (S/cm) Loss Factor (¢”) Loss Tangent (Tg 68)

LLDPE 1.6739 x 10714 7.0115 x 10~ 3.19 x 1074
LLDPE + 5% GTR 1.4927 x 10713 6.2523 x 1073 1.49 x 1073
LLDPE + 10% GTR 5.1646 x 10713 2.1633 x 1072 7.67 x 1073
LLDPE + 20% GTR 1.1145 x 10712 4.6681 x 1072 1.49 x 1072
LLDPE + 40% GTR 6.0551 x 10712 2.5363 x 1071 4.64 %1072
LLDPE + 50% GTR 1.3597 x 10~ 11 5.6954 x 1071 7.47 x 1072
LLDPE + 70% GTR 8.3718 x 10711 3.5067 x 100 2.04 x 107!

Table 4. Applications analyzed according to different standards, and the electrical criterion for them.

Applications Analyzed

Electrical Criterion

Standard

1. Universal electrical cable joint

Conductivity <1072 S/cm

UNE-HD 628; IEC 60840

2. Filler for electrical applications

Conductivity <1072 S/cm

UNE-HD 632; UNE-EN 60811-4-1;
UNE-ISO 1853:2012

3. Cable management—Cable tray systems and

UNE-EN 61537:2007; UNE-EN

Conductivity <10712 S/em

cable ladder system. Pipes for electrical cables 50085-1, IEC 61537:2006

UNE and IEC standards are used in order to compare values of specific industrial electrical
applications with dielectric values [75], obtained from experimentation about mixtures of different
LLDPE + GTR particles. Different electrical applications, such as those selected in Table 4, have been
analyzed. However, it has been found that the analyzed mixtures for low GTR (5%-10%-20%) and
LLDPE + GTR amounts produce materials that are insulating enough to constitute electrical insulators
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for different applications according to Table 4 (conductivity <1072 S/cm and Tangent of & <10%), since,
in the results analyzed in Table 3, all the samples analyzed with 5%—20% GTR have turned out results
acceptable, and within limits, as established by analyzed UNE and IEC standards. As a conclusion,
20% GTR analyzed composites have acceptable levels of electrical insulation, for the following selected
applications: universal electrical cable joint, filler for electrical applications, cable tray systems, cable
ladder system and pipes for electrical cables.

4. Conclusions

Conductivity (o) as well as real permittivity (¢”) and dielectric loss factor (¢”), in the LLDPE blended
with GTR particles, increase with the GTR concentration of the analyzed compounds (LLDPE + GTR).
As it takes place in similar materials [76,77], the conductivity presents a sublinear dispersive behavior in
the compounds until 40%GTR. The increase in conductivity is higher in the low-frequency behavior (for
70%GTR/LLDPE, it is around 10* times higher than for LLDPE), but, in any case, the samples relatively
maintain their insulating properties. On the other hand, permittivity decreases with frequency for
higher GTR concentrations (50-70%GTR), whereas the LLDPE/0-20%GTR real permittivity does
not depend on the frequency. The analysis with the temperature shows that the real permittivity
slightly decreases whilst the dielectric loss factor increases with temperature, except for pure LLDPE,
which presents its own dielectric complex spectrum. The dielectric modulus formalism has enabled us
to study the MWS relaxation due to interfacial polarization. For GTR concentrations lower than 20%,
this relaxation is not significant. The activation energy shows a big difference between the LLDPE
net and LLDPE + GTR composites (Table 1) due to the increase in the present of carbon black in
the percent’s of GTR. From the Argand’s plot [78], is proved that electrodes are almost blocked in
the pure LLDPE sample and they become less blocked when increasing the GTR content showing a
macro-dipole behavior for LLDPE sample. Finally, although the insulating features are reduced with
GTR addition, especially above 20% GTR, the conditions for insulation applications are maintained
for low-load amounts of GTR composites (5%-10%-20%), and the composites can be adopted in
industrial applications due to the samples of LLDPE/GTR maintaining insulation properties as we
have proved previously. The results obtained from the analysis of these compounds show that, at 20%
GTR, which corresponds to the maximum degree of dispersion of GTR particles, is the maximum
amount of value for keeping acceptable values of the conductivity of the compound. This would allow
its use in various fields of industry, a priori, as an insulator with low requirements, such as a universal
electrical cable joint, filler for electrical applications and cable tray systems and cable ladder system
and pipes for electrical cables.
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