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Abstract Wireless community networks (WCNs) are large, heterogeneous, dynamic, and decen-

tralized networks. Such complex characteristics raise different challenges, such as the effect of wire-

less communications on the performance of networks and routing protocols. The prediction

approaches of link quality (LQ) can improve the performance of routing algorithms of WCNs while

avoiding weak links. The prediction of LQ in WCNs can be a complex task because of the fluctu-

ated nature of LQ measurements due to the dynamic wireless environment. In this paper, a deep

learning based approach is proposed to accurately predict LQ in WCNs. Specifically, we propose

the use of two variants of deep recurrent neural network (RNN): long short-term memory recurrent

neural networks (LSTM-RNN) and gated recurrent unit (GRU). The positive feature of the pro-

posed variants is that they can handle the fluctuating nature of LQ due to their ability to learn

and exploit the context in LQ time-series. The experimental results on data collected from a real-

world WCN show that the proposed LSTM-RNN and GRU models accurately predict LQ in

WCNs compared to related methods. The proposed approach could be a helpful tool for accurately

predicting LQ, thereby improving the performance of routing protocols of WCNs.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Wireless community networks (WCNs) are owned and man-
aged by community members [1]. FunkFeuer [2], Gifui.net
[3], and Ninux [4] are typical examples of WCNs. These well-

known networks enable members to access the Internet and
provide various free services. WCNs are decentralized infras-
tructures comprising many nodes and links and their size

increases dynamically. Indeed, the unreliability and asymmet-
rical features of links in wireless networks affect the network
performance and routing protocols, thereby degrading the

delivery rate and traffic congestion. To cope with these issues,
the routing protocols of these networks use various link qual-
ity (LQ) estimators to specify the best available paths consid-

ering higher-quality links. LQ estimators can measure the
quality of links between nodes based on physical or logical
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metrics, such as signal-to-noise ratio (SNR), received signal
strength and packet success rate. However, they provide insuf-
ficient information about the quality of links in the future, i.e.,

they cannot give predictions for the upcoming LQ values. It is
a fact that network protocols require an accurate LQ predic-
tion method to predict LQ in advance besides modeling past

LQ measurements.
The term LQ can be generally defined as link characteriza-

tion that is related to throughput or reliability [5]. LQ can be

also explained as the portion of positive probes received by a
node from its neighboring node during a specified time dura-
tion. In turn, a neighbor LQ (NLQ) represents the portion
of successful probes received by the neighboring node within

a specified time duration. In this context, a probe can be
defined as packets that each device sends automatically, from
time to time, searching all-around to check if a network is

nearby, and so they can connect. The values of LQ and
NLQ are used to compute the expected transmission count
(ETX) [6]. ETX is a widely used link metric for routing algo-

rithms of WCNs which calculates the number of expected
transmissions for a certain packet to be correctly transmitted
from the sending node to the receiving node. For instance, in

[7], a combination of different link metrics (ETX, minimum
delay, and minimum loss) with link state routing (OLSR)
was used to improve the reliability of wireless mesh networks
in a smart grid.

To estimate LQ, the common procedure is to select the
measurements that are periodically sampled from the links
(LQ metrics) [8,9]. These metrics can be physical (hardware-

based) or logical (software-based) [10]. The authors of [11]
reported three general approaches for modeling LQ empiri-
cally: analytical models, probabilistic estimation models, and

statistical prediction models. Machine learning algorithms
are typically exploited in LQ estimation, where analytical mod-
els are anonymous, inexact, or difficult to be derived. Tao et al.

[12] applied machine learning methods to predict the short-
term LQ values for facilitating the use of middle links with
repeated quality changes. They stated that by utilizing machine
learning techniques, their adaptive link estimator can be

adapted to the dynamics of the network better than the models
that have been trained in a static manner. In [13], an approach,
called XCoPred (cross-correlation to predict) was proposed for

LQ prediction. This approach is based on pattern matching to
estimate the future state of each link in terms of its quality
variations. XCoPred does not consider potential emerging

links (i.e. links that may be created in the future) since it makes
predictions on the basis of the existing links of each node to its
neighbors.

Besides, it does not need the use of extra hardware where it

depends on SNR measurements. Miguel et al. [14] studied the
performance of machine learning techniques for predicting LQ
and proposed a hybrid on-line LQ prediction technique.

Specifically, they used support vector machines (SVM),
k-nearest neighbors (kNN), regression trees (RT) based on
reduced error pruning, and Gaussian processes for regression

(GPR). Millan et al. [15] presented LQ prediction methods
for the FunkFeuer WCN based on time-series analysis tech-
niques. They used KNN, RT, SVM and GPR algorithms, ana-

lyzed the error variability of each algorithm, and represented
the results using boxplots. It is demonstrated in their study
that the four utilized algorithms obtained a similar accuracy
rate for most links. Furthermore, Millan et al. [16] demon-
strated that time-series analysis is a promising approach to
accurately predict LQ values in WCNs and used SVM,
kNN, RT, and rule-based regression (RBR) to build the LQ

prediction models.
In addition, a conditional restricted Boltzmann machine

(RBM) was used in [17] to predict LQ in an opportunistic sen-

sor network. Additionally, a similarity index based on time
parameters was also proposed to describe similarities between
nodes. RBM represents the LQ time-series by adding connec-

tions from previous time steps. The efficacy of RBM was ver-
ified using INFOCOM and MIT datasets. A data-driven LQ
estimation approach, called 4C, was proposed in [18] which
comprises three steps: data collection, offline modeling, and

online prediction. In the 4C approach, three well-known
machine learning methods (Naive Bayes, logistic regression
and artificial neural networks–ANN) were used for the off-

line model training. In [19], the use of wavelet decomposition
has been introduced for improving link quality prediction.
Specifically, a wavelet-neural-network (WNN) was used to

predict LQ in which SNR is used as an LQ metric. In this
method, the SNR is decomposed into two parts: a time-
varying part and a non-stationary random part and then they

were fed into the WNN model. The authors of [20] utilized
online learning methods to model different conditions of a
wireless network without human interference. They mentioned
that considerable LQ measurements should be collected for all

links before building the prediction model. Weng et al. [21]
introduced a nonparametric algorithm, called functional-
coefficient autoregression, for time-series analysis to predict

LQ online. The performance of this algorithm was assessed
by various datasets: data collected from NS-2 simulation, data
collected from the CRAWDAD wireless network, and the

ANDES lab dataset. Chenhao et al. [22] proposed a cloud rea-
soning method that considers both short- and long-term time
dimensions and current and historical cloud models to predict

LQ in wireless sensor networks. They stated that their algo-
rithm can capture the changes on links more precisely than
the window mean exponentially weighted method.
1.1. Motivation

Accurate LQ prediction of WCNs is a complex task because of
the fluctuated nature of LQ measurements due to the notice-

able dynamic and unpredictable wireless environment. Indeed,

LQ changes randomly across time and space; and so LQ can be
seen as a random time-series containing nonlinear and non-

stationary features. This is the main reason why several meth-
ods in the above-mentioned literature review can produce inac-
curate prediction results since most of them utilize traditional
machine learning approaches. These shallow learning

approaches exploited in machine learning based algorithms
are insufficient for extracting features from LQ measurements
of large-scale dynamic WCNs. In other words, they cannot

fully represent the dynamic random features of wireless links.
Notably, conventional ANN methods do not have memory
units or recurrent mechanism, and thus they cannot handle

the fluctuations in LQ datasets. In turn, deep learning
approaches can have sufficient ability for learning relevant fea-
tures of LQ measurements. Recently, deep learning has been

successfully applied to different engineering problems, such
as mobile advertising in vehicular networks [23], time-series
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prediction [24], signal detection and channel estimation in
orthogonal frequency-division multiplexing systems [25,26],
phase fingerprinting for indoor localization [27], peak-to-

average power ratio reduction scheme [28], and large-scale
light curve time series prediction [29]. Recently, deep learning
models, such as recurrent neural networks (RNNs), long short-

term memory (LSTM) and gated recurrent units (GRU) have
been used to handle the problems of time series prediction.
They have been used in different tasks, for instance, a novel

deep recurrent neural network technique was proposed in
[30] which combines Savitzky-Golay filter with LSTM for pre-
dicting a task time series in cloud computing systems [31]. It
has been demonstrated that the introduction of LSTM to

time-series prediction results in significant benefits because it
can cope with the difficulties of training RNNs and avoid
the problem of long-term dependency in RNNs. Therefore, it

is important to investigate/develop the application of LSTM
and GRU to the LQ prediction in WCNs, which is the main
scope of the paper. Notably, existing LQ prediction methods

discussed in the above-mentioned literature use traditional
machine learning techniques, such as KNN, RT, SVM and
GPR algorithms. These traditional machine learning tech-

niques may not handle the fluctuating nature of LQ measure-
ments. Unlike the above-mentioned studies, we propose to use
deep learning approaches in nonlinear time-series analysis to
predict LQ based on historical information of the quality of

all links.

1.2. Contribution and paper structure

Most existing LQ prediction methods in WCNs employ tradi-
tional machine learning techniques, which may not handle the
fluctuating nature of link quality. In this paper, deep learning

based approach is proposed to accurately predict LQ in
WCNs. Specifically, we propose the use of deep LSTM-RNN
and GRU for LQ prediction. To the best of our knowledge,

this is the first attempt to propose the use of deep LSTM-
RNN and GRU for LQ prediction in WCNs. The proposed
approach models LQ in WCNs using historical LQ time-
series data. The unique feature of the proposed approach is

that it can address the fluctuating nature of LQ values, thanks
to its ability to learn and exploit the context in time-series data.

Experiments are performed on a dataset collected from the

Funkfeuer Wien WCN [1], which includes more than 500
nodes and around 2000 links, demonstrating that the proposed
approach achieves very small LQ prediction errors. To demon-

strate the efficacy of the proposed approach, it has been com-
Fig. 1 Explanation of the
pared with related methods. Based on the obtained results, the
introduction of this deep learning approach greatly increases
the accuracy rate of LQ prediction models and so it will have

considerable positive impacts on the performance of WCNs in
general.

The rest of this paper is structured as follows. Section 2

explains the proposed approach. Section 3 provides the exper-
imental results and discusses them. Section 4 summarizes the
paper and suggests some lines of future work.
2. Proposed approach

To demonstrate the LQ prediction problem, we provide a sim-

ple example of a WCN which comprises 6 nodes (Fig. 1). LQ
measurements are collected at regular time steps from each
link in the wireless network to construct the LQ model for

the six nodes (node1, node2, node3, node4, node5, and node6).
As shown, the LQ prediction algorithm uses the historical LQ
data (past LQ measurements) to generate a model for node3.
Then, the constructed model of node3 is used to predict the

future values of LQ for that node. To build an accurate LQ
model, we propose the use of deep LSTM-RNN and GRU
methods.

It is important noting that the proposed approach is data-
driven, and thus we do not deal with the system models or
modeling dedicated for wireless transmissions. In the next sub-

sections, we explain the basics of RNN, LSTM, and GRU, and
we present the proposed approach in detail.

2.1. Recurrent neural networks (RNNs)

Deep RNNs have considered a variant of the traditional arti-
ficial neural networks and have achieved good results in the
case of sequence data [32]. Indeed, traditional ANNs do not

utilize the data computed at preceding past steps
(. . . ; t� 2; t� 1) of a specified sequence when calculating the
value of the present step. In other words, traditional ANNs

have no memory units. In turn, RNNs have feedbacks where
they pass data of a current time step into the upcoming time
steps. On the basis of the theoretical perspective, RNNs can

utilize information in the case of long sequences, and they also
look back a specified time steps.

Fig. 2 can simplify the understanding of the RNN model by
unfolding or unrolling the RNN graph over the input

sequence. This is a useful way for visualising RNNs while con-
sidering the updated graph formed via unfolding the network
LQ prediction problem.



Fig. 2 The block diagram of RNN.
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along the input sequence. The unfolding process can be consid-
ered as copying the network at each time step in the time-series
data. Note that such unrolling of the RNN graph is common

in the literature that is used to explain the mechanism of RNN.
For example, in the case of considering time-series data which
have 4 samples, RNN can be unfolded into a specified neural

network which includes 4 different layers, where a single layer
is assigned for each element in the time sequence data. In
Fig. 2, xt and st represent the input sample and the hidden state
at time step t, respectively. RNN handles a specified sequence

x ¼ ðx1; x2; . . . ; xTÞ with a varied length, and the output
y ¼ ðo1; o2; . . . ; onÞ can be of a non-consistent length. Note that
during the time step t, the past hidden state and the current

sample are employed to compute st by:

st ¼ fðUxt þWst�1Þ ð1Þ
In Eq. (1), f represents an activation function (e.g. tanh) which
is non-linear. In order to calculate the initial hidden state, s�1 is

required to be adjusted to zeros. The unfolding process of st
can be mathematically expressed as follows:

st ¼ fðst�1; xt; hÞ ¼ fðUxt þWst�1Þ ð2Þ

st ¼ fðst�1; xt; hÞ ¼ fðfðst�2; xt�1; hÞ; xt; hÞ
¼ fðfðfðst�3; xt�2; hÞ; xt�1; hÞ; xt; hÞ ð3Þ

in which h involves the parameters of RNN. In addition, the
state st is related with the input samples (xt; xt�1; xt�2; . . .) as
follows:

st ¼ gtðxt; xt�1; xt�2; . . .Þ ð4Þ
It is important to note that the sample at time step t has a
unique gt function. However, all the samples have a similar f
function. The output of RNN at time step t (ot) can be com-

puted by:

ot ¼ softmaxðVstÞ ð5Þ
It is a fact that st has the capability to detect information of the
previous steps. Generally, the deep networks use diverse

parameters for each layer, but RNNs share the parameters
ðU;V;WÞ of the different time steps, and so they duplicate
the tasks. Therefore, RNNs minimize the required parameters

for building their training models.
Back-propagation through time is considered a traditional

method which computes the sufficient gradients for training
a particular RNN model. Note that the gradients can be
expressed as follows [33]:

@E

@h
¼

X
1<t6T

@Et

@h
ð6Þ

in which E refers to a special cost function which measures the
RNN operation during a specified task, where it can be trans-

formed to independent cost functions for each step.

@Et

@h
¼

X
1<k6t

@Et

@ht

@ht
@hk

@þhk
@h

ð7Þ

Note that @þhk
@h represents the derivative of hk with respect to h.

The gradient component represented by @Et

@h is considered as the

total of temporal components represented by (@Et

@ht

@ht
@hk

@þhk
@h ).

Each of these component can have long-term and/or short-

term roles. Note that the long term refers to special compo-
nents that satisfies k � t.

@ht
@hk

¼
Y
tPi>k

@hi
@hi�1

¼
Y
tPi>k

WT
recdiagðr̂ðhi�1ÞÞ ð8Þ

where diag converts a vector into a special diagonal matrix,

and r̂ computes the first derivative of r. The use of @ht
@hk

ensures

the transportation of the error from the time step t to the step
k.

Bengio et al. [34] stated that there are difficulties when

training RNNs for modeling long term dependencies. The rea-
son behind this argument is the vanishing/explosion problem
of the gradients of the utilized cost function (as can be noticed

in Eq. (7)). To cope with this issue, two different approaches
were proposed in the literature review. In the first approach,
improved learning methods, instead of the stochastic gradient

descent methods, are used. In the second approach, modified
activation functions, which include affine transformation and
non-linear gating units, are utilized. LSTM and GRU are com-
mon examples of the gating units. In this paper, we propose

the use of LSTM and RNN to predict LQ in WCNs. Below,
we explain each method in details.

2.1.1. Long short-term memory recurrent neural networks
(LSTM-RNN)

To cope with the difficulties of training RNNs, Hochreiter and
Schmidhuber proposed a recurrent unit called LSTM that can



Fig. 3 The block diagram of LSTM.

Fig. 4 Block diagram of GRU.

Table 1 The data structure of LQ measurements.

Link number LQðt�1Þ LQðtÞ

7 0.694 0.776

8 0.035 0.039

9 0.149 0.110

10 0.839 0.918

20 1 1
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learn short and long-term dependencies [35]. LSTM was pro-
posed to avoid the problem of long-term dependency in
RNNs, due to their memory blocks connected across layers.

Each LSTM block has gates to estimate its state and the
desired output. There are three gates in the LSTM block: for-
get gate, input gate, and the output gate.

Fig. 3 shows the block diagram of LSTM, where it receives

an input time-series in which the activation units are used to
trigger the gates. Each gate has weights that can be learned
in the training stage of LSTM-RNN. The gates enable

LSTM-RNN to memorize the recent steps. Each LSTM block
has a cell with a state ct at time step t. The input gate it, forget
gate ft, and output gate ot are used to manage the reading or

updating processes of this cell. At each time step t, LSTM
reads inputs from two external sources at each of its four ter-
minals (the forget gate, input gate, output gate, and the input).

The first external source is the current sample xt while the sec-
ond one is the previous hidden states of LSTM blocks in the
same layer ht�1. The operation of LSTM can be mathemati-
cally formulated as follows:

it ¼ rðWxiXt þWhiht�1 þWcict�1 þ biÞ ð9Þ

ft ¼ rðWxfXt þWhfht�1 þWcfct�1 þ bfÞ ð10Þ

ct ¼ ftct�1 þ it tanhðWxcXt þWhcht�1 þ bcÞ ð11Þ

ot ¼ rðWxoXt þWhoht�1 þWcoct þ boÞ ð12Þ

ht ¼ ot tanhðctÞ ð13Þ
where W refers to the weight of the corresponding hidden neu-

ron in the LSTM block.

2.1.2. Gated recurrent unit (GRU)

To cope with the limitations of RNN, Cho et al. proposed a

variant of the recurrent units called GRU [36]. As demon-
strated in Fig. 4, GRU has gating units representing the flow
of information. Note that GRU does not have memory, and

the activation function hjt of GRU at step t can be represented

by the interpolation between the past activation hjt�1 and the

present activation ~hjt

hjt ¼ ð1� zjtÞhjt�1 þ zjt
~hjt ð14Þ

where zjt controls the activation process, which is called the
update gate, which can be calculated as follows:
zjt ¼ rðWzXt þUzht�1Þj ð15Þ
The GRU does not manage the condition of its state. How-
ever, it exposes the entire state at each step. The candidate acti-

vation ~hjt is expressed as follows:

~hjt ¼ tanh ðWXt þUðrt � ht�1ÞÞj ð16Þ
in which rt represents a group of reset gates, and � represents
an element-wise reduplication. In the case of turn off state (rtt is

approaches to 0), the reset gate enables the unit to read the

data of the first sample, and so GRU removes the information
of the previous states. The reset gate rtt is represented by:

rjt ¼ rðWrXt þUrht�1Þj ð17Þ
2.2. LQ prediction using deep LSTM-RNN and GRU

In this paper, we propose the use of two deep RNN variants

(LSTM and GRU) to model LQ. In Table 1, we present an
example of the data structure of the proposed LQ prediction
approach. As shown, the link 9 has an LQ value of 0.149 at



Fig. 5 Interactive map for Funkfeuer Wien WCN, which includes active and inactive nodes [37]. The red points refer to the active nodes

while the black ones represent the. inactive nodes.

Table 2 The performance of the proposed LSTM-RNN approach.

Proposed Approach Average MSE�Std Average RMSE�Std Average MAE�Std

2 LSTM 0.0066795 ± 0.00057553 0.0705911 ± 0.00086189 0.0432364 ± 0.00084861

5 LSTM 0.0065654 ± 0.00071958 0.0809786 ± 0.00051683 0.0432292 ± 0.00066084

7 LSTM 0.0065765 ± 0.00026346 0.0810479 ± 0.00087782 0.0446647 ± 0.00048420
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the time step ðt� 1Þ and an LQ value of 0.11 at the next time
step. The two proposed RNN variants are employed here to

build a model that formulates the LQ prediction problem as
a regression problem. Given the LQ value of the current time
step ti, the goal is to predict the LQ at the next time step tiþ1.

The model receives the LQ values at the time steps
LQt�2;LQt�1, and LQt as inputs, and then it predicts the LQ
value at the time step LQtþ1.

There are quite a few missing samples in CONFINE data-
sets. Note that a missing sample does not mean that its LQ
value equals zero. This may mean that the link is off or the
software capturing LQ measurements did not work. If there

are missing samples, two scenarios can be used:

� The first scenario would be to treat them as LQ = 0.

� The second scenario would avoid offering prediction results
for the missing samples. This approach is used in this study.

Indeed, the physical layer can provide immediate information
on the quality of the decoding of a packet. In this study, we did
not deal with the physical layer of the WCN or simulate a
model for the network. The operator of the Funkfeuer net-

work provides only LQ measurements for a period of time.
Also, the operator of the network represents the link quality
values in three decimal digits (e.g. 0.951). Given that, our
method is a data-driven approach, we deal only with the col-
lected LQ dataset and the available LQ data representation.

3. Experimental results and discussion

3.1. Dataset

The dataset used in this paper is taken from Funkfeuer Wien,
which is a real-world WCN with around 500 nodes and 2000

links. Fig. 5 provides an interactive map for all nodes of the
Funkfeuer Wien network [37]. In this map, the red points rep-
resent the active nodes while the black points refer to the inac-

tive ones. In this network, a routing protocol derived from an
open link state routing is used to enhance the scalability of the
network. The topology information of the network provided

by the routing protocol were gathered from each node of the
network every 5 min. The dataset is publicly available in the
Confine project.

In the Funkfeuer Wien dataset, a total of 998 links have

variation in their quality while the remaining links have con-
stant LQ values and so we do not use them in the training
phase of the proposed approach. Note that, there are many

links with constant quality, of which deriving predictions is



Fig. 6 Box plots of MSE, RMSE, and MAE of the proposed LSTM-RNN approach with the seven test days. Note that – refers to the

median value of errors and +refers to an outlier.

1 https://keras.io/.
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trivial. Other publications that used this dataset also removed
these links. Indeed, the LQ values of each link can be repre-
sented as a time-series because they were collected at regular
time steps (5 min). The range of LQ values varies from 0 to

1, where 1 refers to a perfect link and 0 refers to a bad link.
Since there are related studies with different datasets

derived from the CONFINE European project, we have

uploaded the link quality dataset used in this study at
https://sites.google.com/site/lqdataset/1.

3.2. Performance evaluation of LSTM-RNN and GRU

In our experiments, we have used the first day of the dataset to
train the proposed LSTM-RNN and GRU models while one

week (7 days) has been used to test the prediction accuracy.
Note that we train one single model for all links. To demon-
strate the efficacy of the proposed approach, we calculate the
mean square error (MSE), root mean square error (RMSE),

and mean absolute error (MAE) between the predicted LQ val-
ues and the actual ones. The formulae of these metrics can be
expressed as follows:

MSE ¼ 1

N

XN
i¼1

LQPredicted
i � LQActual

i

� �2 ð18Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
jLQPredicted

i j � jLQActual
i j� �2r

ð19Þ

MAE ¼ 1

N

XN
i¼1

jLQPredicted
i � LQActual

i j ð20Þ
where LQPredicted is the predicted LQ values and LQActual is the

real LQ measurements. In general, there are two approaches to
compute MAE over all the links and samples. The first
approach is to compute the error for each link and then com-

pute the average. The second approach would be to average
the MAE for all samples. In this study, we use the second
approach.To build the LSTM and GRU models, we exploit
the sequential models of Keras library1 (theano backend)

and use the adaptive moment estimation (ADAM) optimizer
[38]. The loss function of LSTM was the mean squared error.
Both LSTM and GRU models are trained for a total of 100

epochs with a batch size of 1. The number of LSTM and
GRU blocks, and the other super-parameters are experimen-
tally tuned. To study the effect of the number of LSTM blocks

on accuracy of LQ prediction, in Table 2 we show MSE,
RMSE, and MAE per link for three configurations of the pro-
posed LSTM-RNN approach (two, five, and seven LSTM

blocks) for all links of all testing days. Note that we calculate
MSE, RMSE and MAE for each day of the testing days indi-
vidually and then average them for the seven days. The pro-
posed approach with 5 LSTM blocks gives the smallest MSE

(0.0065654) and MAE (0.0432292). The smallest RMSE is
achieved with 2 LSTM blocks (0.0705911). Fig. 6 shows box
plots of MSE, RMSE, and MAE per link with the seven test

days (day 1 to day 7) for the best configuration of the
LSTM-RNN approach (5 LSTM blocks). As shown, the
LSTM-RNN approach gives small prediction errors with the

seven test days.

https://sites.google.com/site/lqdataset/1
https://keras.io/


Fig. 7 The actual and predicted LQ values using the LSTM-RNN approach for (a) day1, (b) day2, (c) day3, (d) day4, (e) day5, (f) day6,

and (g) day7.
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Fig. 8 Box plots of MSE, RMSE, and MAE of the GRU approach with the seven days. Note that – refers to the median value of errors

and +refers to an outlier.
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As the testing datasets contain thousands of samples, we
cannot visualize the predicted LQ values of all links. For the
sake of keeping the visualization simple, in Fig. 7 we show

the predicted LQ values by the proposed approach and the
actual ones for only 100 randomly-selected links from each
testing day. It is clear that the predicted LQ values of the links

are very close to the actual ones. It worth noting that despite
the strong variance between the quality of the 100 links, the
proposed approach can accurately predict their quality.

We have also assessed the performance of the GRU

approach with the seven test days. In this study, we set the
number of GRU blocks to 5 (this value has been experimen-
tally tuned). The MSE, RMSE and MAE of the GRU

approach are 0.0071437, 0.0844780 and 0.0502189, respec-
tively. Fig. 8 presents box plots of MSE, RMSE, and MAE
per link with the seven test days for the GRU approach. As

shown, this approach also gives small prediction errors.
For the sake of keeping the visualization of GRU results

simple, in Fig. 9, we show the predicted LQ by the GRU
approach and the actual values of LQ for 100 randomly-

selected links from each day of the test days. As we can see,
the predicted LQ values are very close to the actual values.
It is important to note that we compute performance metrics

over over all links not over 100 randomly selected links.
Indeed, the architectures of LSTM and GRU approaches

are comparable in terms of complexity. For instance, the num-

ber of weights in the utilized LSTM-RNN approach (5 blocks)
and the GRU approach (5 blocks) are 146 and 111, respec-
tively. The training times of LSTM and GRU networks are

50 min and 45 min, respectively. In turn, their inference times
are 0.1075 s and 0.0846 s, respectively. To demonstrate the
accuracy of the prediction approach, we show in Fig. 10 the
actual values and predicted values by LSTM of a link for a

day where they follow the same trend.
3.3. Comparisons and statistical analysis

In this subsection, we compare the performance of LSTM-

RNN and GRU LQ prediction approaches with the traditional
ANN method. In our experiments, various configurations of
ANN have been examined. Besides, MSE, RMSE, and

MAE, we use two additional metrics in this comparison: mean
absolute percentage error (MAPE) and normalized root mean
square error (NRMSE):

MAPE ¼ 100
1

N

XN
i¼1

ðjjLQPredicted
i j � jLQActual

i jjÞ=LQActual
i ð21Þ

NRMSE ¼ 1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
jLQPredicted

i j � jLQActual
i j� �2r

ð22Þ

where R ¼ maxðLQActualÞ �minðLQActualÞ.
As shown in Table 3, the prediction (MSE, RMSE, MAE,

MAPE, and NRMSE) of the GRU approach are greater than

that of LSTM-RNN approach, while ANN gives prediction
errors much greater than the ones of LSTM-RNN and GRU
approaches.

It is interesting to examine the statistical significance of

LSTM-RNN and GRU approaches in terms of the predicted
LQ values for the seven test days. The term statistical signifi-
cance refers to the likelihood that a relationship between two

or more variables is not caused by chance. Statistical hypoth-
esis testing is used to determine whether the result of a data set
is statistically significant. This test provides a p-value, repre-

senting the probability that random chance could explain the
result. In general, a p-value of 0.05 or lower is considered to
be statistically significant.

We used Welch’s t-test to determine the difference in pre-
dicted LQ values (significance level < 0.05). The normality



Fig. 9 The actual and predicted LQ values using the GRU approach for (a) day1, (b) day2, (c) day3, (d) day4, (e) day5, (f) day6, and (g)

day7.
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Fig. 10 The actual and predicted values by LSTM-RNN of a link for a day.

Table 3 Comparison between the proposed approach (LSTM-RNN and GRU) and traditional approach (ANN).

Proposed

Approach

Average

MSE ± Std

Average

RMSE ± Std

Average

MAE ± Std

Average

MAPE ± Std

Average

NRMSE ± Std

ANN 0.10270 ± 0.0644 0.32040 ± 0.0017 0.18530 ± 0.0577 18.8410 ± 0.0357 0.3210 ± 0.0279

GRU 0.0071437 ± 0.00048053 0.0844780 ± 0.00026415 0.0502189 ± 0.0004164 9.6299 ± 0.0457 0.0731 ± 0.00566

LSTM-RNN 0.0065654 ± 0.00071958 0.0809786 ± 0.00051683 0.0432292 ± 0.00066084 9.3692 ± 0.0060 0.0642 ± 0.0077

Table 4 The statistical significance of LSTM-RNN and GRU

approaches (p-value) for the seven test days

Day LSTM vs. GRU

1 0.328

2 0.217

3 0.690

4 0.427

5 0.473

6 0.421

7 0.115
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of the distributions of the LQ values was assessed by means of
bootstrapping and the Shapiro–Wilk test. We found that all

the AUC values follow a normal distribution. Table 4 shows
the statistical analysis of the predicted LQ values obtained
by LSTM-RNN and GRU approaches. In this table, a p-

value lower than 0.05 refers to statistical significance. As can
be seen in Table 4, the predicted LQ values of LSTM-RNN
and GRU are not statistically significant. In other words, there

is a slight difference between the results of the LSTM and
GRU models.

Since the performance of the LSTM-RNN approach supe-
riors that of GRU and ANN approaches, in Fig. 11 we show

the ranking of LQ values errors obtained by the LSTM-RNN
approach with the first test day (day1, see Fig. 11 (a)) and the
last test day (day7, see Fig. 11 (b)). In this figure, we reordered

the predicted LQ values for the two days in an ascending order
(from the lowest actual LQ value to the highest actual LQ
value) to examine the prediction accuracy. As shown, the

curves of the predicted values and the actual ones are very
close (except some outliers). In addition, the proposed
LSTM-RNN approach yields higher prediction accuracy in

the case of higher LQ values, and so the proposed approach
is very helpful for accurately predicting LQ which can improve
the performance of routing protocols of WCNs. Deep learning

techniques offer better representation and prediction results on
a multitude of time-series data compared with shallow
approaches (e.g., auto-regressive networks and ANN)

[39,40]. Thus, in this study, we focus only on RNNs and com-
pared it with the traditional ANN.

It is worth noting that any network with less than the
required Nyquist memory will not be optimal. In this work,

we have not dealt with the acquisition step of LQ values since
we used a publicly available LQ dataset (i.e. Funkfeuer data-
set). Thus, we do not consider this point in our study. In the

literature, the LSTM and GRU models have been applied to
different time-series prediction problems with big dataset
[24,30,36], and thus it is expected that the proposed approach

will still be effective as the scale of data increases.

4. Conclusion and future work

In this paper, we have proposed a deep learning approach for
predicting LQ in WCNs. The problem has been formulated as
a time-series prediction problem, and two variants of deep

RNN (LSTM-RNN and GRU) have been proposed. The pro-
posed approach addresses the fluctuating nature of LQ values
in WCNs because LSTM-RNN and GRU models can learn
and exploit the context in LQ time-series. In our experiments,

we have used a real dataset derived from the CONFINE Euro-
pean project. Indeed, the use of such publicly available dataset
is a good choice concerning reproducibility. According to the

experimental results, we can conclude the following key points:



Fig. 11 The rank of actual and predicted LQ values for (a) day1, and (b) day7 based on LSTM-RNN.
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� The proposed deep learning approaches achieve smaller
prediction errors than that of the traditional ANN.

� The proposed LSTM-RNN approach gives RMSE, MSE

and MAE values smaller than the ones of GRU for the test
seven days.

� The statistical analysis has demonstrated that the predicted

LQ values of LSTM-RNN are not statistically significant
than the ones of GRU.

Therefore, the proposed deep LSTM-RNN and GRU mod-

els could be a very promising approach for LQ prediction. In
general, the process of predicting LQ could raise the complex-
ity of routing protocols because it may required adding hard-

ware and/or software. However, if the LQ prediction approach
is accurate, the overall performance of the routing protocols
can be greatly enhanced. Since we have utilized deep learning

models to predict LQ, their computational cost of training
phase is a bit high as it includes forward and backward passes.
Note that our models have been trained off-line while the LQ

prediction can be performed on-line in a very short time (the
time of forward pass only).

Future work includes different extensions of the current
study such as: (1) the performance of the proposed approach
will be assessed using additional real-world datasets, (2) the

wavelet decomposition will be used to further improve the pre-
diction accuracy of LQ, (3) Bayesian approaches will be used
to give robust uncertainty quantification in LQ predictions
[41,42], and (4) we will investigate the improvement in the per-

formance of various routing algorithms when integrated with
the proposed approach.
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