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Pulsating campaigns of human prophylaxis driven by risk perception palliate oscillations
of direct contact transmitted diseases
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Human behavioral responses play an important role in the impact of disease outbreaks and yet they are often
overlooked in epidemiological models. Understanding to what extent behavioral changes determine the outcome
of spreading epidemics is essential to design effective intervention policies. Here we explore, analytically, the
interplay between the personal decision to protect oneself from infection and the spreading of an epidemic. We do
so by coupling a decision game based on the perceived risk of infection with a susceptible-infected-susceptible
model. Interestingly, we find that the simple decision of whether to protect oneself is enough to modify the
course of the epidemics, by generating sustained steady oscillations in the prevalence. We deem these oscillations
detrimental and propose two intervention policies aimed at modifying behavioral patterns to help alleviate them.
Surprisingly, we find that pulsating campaigns, compared to continuous ones, are more effective in diminishing
such oscillations.
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I. INTRODUCTION

In the context of a disease outbreak, it is known that
humans might change their behavioral patterns in an effort to
avoid infection [1]. Behavioral responses range from wearing
face masks or increasing hand hygiene to prevent influenza-
like illnesses, to using condoms to stop sexually transmitted
diseases, to avoiding travel to an infection locus, among
others. In the past years, substantial efforts have been made
by governments and policymakers to monitor the spreading of
diseases and implement effective containment measures, some
of which include recommending certain behavioral changes to
the population. Though crucial, the effect of changing human
behavior is often overlooked in epidemiological models for
disease spreading that might ultimately be used for policy-
making. Studying the effect of individual human responses
to the presence of infectious diseases in a population is of
outmost importance as it is known to alter the spreading
dynamics and can cause a systematic bias in the disease
forecast if not taken into account [2,3].

Reports of the existence of an effect of human behavior on
the spreading of epidemics have been known for a long time.
However, it has not been until recently that some mathemati-
cal models have explicitly incorporated the effect of individual
behavioral responses on the outcome of an epidemic [4,5].
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Some interesting mathematical models consider, for example,
individuals lowering their daily contact activity rates once an
epidemic has been identified in a community [6–8], individ-
uals rewiring their contacts with infected neighbors [9–12],
or the selfish behavior of individuals confronting vaccination
campaigns and its effect on the endemicity of the epidemics
[13–19].

A very common way of factoring in the effect of human
behavior in epidemics is to consider that individuals alter
their behavior according to the prevalence level of the disease.
Indeed, empirical studies [20,21] have shown that protective
behavior increases as a disease becomes more prevalent. How-
ever, some surveys [22,23] indicate that individuals base the
decision on whether to protect themselves on their perceived
risk of infection, which may differ from their real risk of
infection as other factors are taken into account. These factors
may include one’s perceived susceptibility, the number of
reported cases of diseased individuals, the distance to the
focus of the epidemic, the cost of the measures to be taken, etc.

In our model, we assume that individuals act according to
their perception of the risk of infection and, more particularly,
that individuals will be inclined to take preventive measures if
their perceived risk exceeds the cost associated to taking the
prophylactic measure. We formulate the decision problem as
a two-strategy game-theory dilemma, where the individual’s
perceived risk depends on the cost of contracting the disease
and its prevalence. One strategy is to take protective measures
against the disease, in which case we say that the agent is
protected (P); the other strategy is to disregard any behavioral
change and stay not protected (NP). Taking the protective
measures will imply, in terms of the epidemics, that this
individual will have a lower chance of getting infected if she
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is susceptible, and that she will be less infectious to others
in case she is infected. We couple this decision game with
an epidemic process, modeled using the Microscopic Markov
Chain Approach [24], for the susceptible-infected-susceptible
(SIS) model—in which agents can either be susceptible (S)
or infected (I)—and we let both processes evolve simulta-
neously. On the one hand, the decision of whether to adopt
protective measures is made according to the risk perceived in
each strategy according to global information. On the other
hand, the epidemics propagate in a contact network, using
therefore local information. We call this model “risk-driven
epidemic spreading” given that the epidemics is palliated by
the individual prophylaxis which, in turn, is driven by their
risk perception.

We will present our analysis for surrogates of contact direct
networks. First, we investigate mathematically the nonlinear
interplay between the risk perception decision and the preva-
lence of the disease, whose outcome is a sustained oscillation
in time. We scrutinize the role of the different parameters
of the model, with particular focus on the effectiveness of
the protection method that plays a key role in the oscilla-
tions. Furthermore, we provide the exact epidemic thresholds
and protection thresholds. Finally, we evaluate two types of
awareness campaigns leveraging the full predictive power of
the model: a continuous awareness campaign that is active
through time and a pulsating campaign that is activated only
when the epidemic is on the rise. The results prove that pul-
sating campaigns are more effective to contain the prevalence
of the disease.

II. RISK PERCEPTION DRIVEN EPIDEMIC
SPREADING MODEL

In our risk-driven epidemic spreading model, agents can be
in four possible states: infected and protected, infected and not
protected, susceptible and protected, or susceptible and not
protected. Formally speaking, let us define the macroscopic
quantities Ip(t ), Inp(t ), Sp(t ), and Snp(t ) as the fraction of the
population in each of the former possible states at time t ,
respectively.

The agents will choose one of the two possible strategies
according to the difference of payoffs of each strategy. The
payoffs of being protected (Pp) and of disregarding protection
(Pnp), respectively, are

Pp(t ) = −c − T
Ip(t )

Ip(t ) + Sp(t )
, (1)

Pnp(t ) = −T
Inp(t )

Inp(t ) + Snp(t )
. (2)

The parameter c refers to the cost associated with taking the
protective measures. This cost may refer to the monetary cost
that the individual has to assume for adopting the protection,
but also to other related costs such as the side effects provoked
by the protection or other personal concerns regarding the
measures to be taken. The parameter T accounts for the cost of
contracting an infection, that is, how severe the consequences
are of an infection. The quantities

Ip(t )
Ip(t )+Sp(t ) and

Inp(t )
Inp(t )+Snp(t )

are the fraction of infected individuals that have chosen strat-
egy P or NP, respectively. These ratios can be interpreted

as the success of one strategy over the other, and players
in P and NP use this information to assess how well their
strategy is paying off. Therefore, the severity (or cost) of the
infection T multiplied by the estimated fraction of protected
or not protected individuals that get infected encapsulates the
perceived risk of infection.

The transition probabilities between strategies are de-
fined as a function of the difference in payoffs, �Pnp-p(t ) =
Pnp(t ) − Pp(t ) and �Pp-np(t ) = Pp(t ) − Pnp(t ), respectively. In
this sense, agents will transition to the strategy which is
providing a greater payoff at the current time with a given
probability. These transition probabilities are those leading to
the replicator dynamics at the population level [25], i.e.,

�p→np(t ) = �Pnp-p(t )

T + c
�[�Pnp-p(t )], (3)

�np→p(t ) = �Pp-np(t )

T + c
�[�Pp-np(t )], (4)

with � representing the Heaviside function, where �(x) =
1 if x � 0 and �(x) = 0 if x < 0, and (T + c) being the
normalizing factor that is equal to the maximum possible
payoff difference between P and NP strategists.

In general, behavioral changes towards protection do not
imply an absolute protection from the disease (e.g., the ef-
ficacy of condoms for the transmission of HIV is approxi-
mately 80% [26]). For this reason, we define a parameter γ

as the probability of the preventive measures failing, where
γ = 1 means that the prevention strategy is useless and both
protected and unprotected users will get infected with the
same probability. On the other hand, if γ = 0, a suscepti-
ble protected agent will be totally immune against getting
infected, and an infected protected agent will absolutely not
transmit the disease to anyone else. The protection mechanism
is bilateral, meaning that as long as one of the two parties
participating in an infection contact is protected, the other
party is protected as well.

The transition probabilities for changing the epidemic
compartment can be summarized as the following reactions
between agents i and j:

Si
np + I j

np
λ−→ I i

np + I j
np, (5)

Si
np + I j

p
γ λ−→ I i

np + I j
p , (6)

Si
p + I j

np
γ λ−→ I i

p + I j
np, (7)

Si
p + I j

p
γ λ−→ I i

p + I j
p , (8)

where λ is the infectivity rate of the epidemic and γ is the
aforementioned probability that preventive measures fail. The
variables Si

p, I i
p, Si

np, I i
np with i = 1, 2, . . . , N describe the state

of the N agents in the population. Note that the linear reduc-
tion, instead of quadratic, of the γ parameter as two agents
with the same P strategy meet [see Eq. (8)]. The fact that the
reduction of the infectivity rate λ is linear in γ implies that
there is no additional benefit in both partners being protected.
This is true for certain protection mechanisms, while for
others a quadratic reduction would be in order.

Now, by using all of the above definitions, we can write
the dynamical equations of the coupled risk-driven epidemic
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model using a probabilistic approach, i.e., the Microscopic
Markov Chain Approach [27]:

Si
p(t + 1) = [1 − �p→np(t )]

{
Si

p(t )
[
1 − qi

p(t )
] + I i

p(t )μ
}

+�np→p(t )
{
Si

np(t )
[
1 − qi

p(t )
] + I i

np(t )μ
}
, (9)

Si
np(t + 1) = �p→np(t )

{
Si

p(t )
[
1 − qi

np(t )
] + I i

p(t )μ
}

+ [1 − �np→p(t )]
{
Si

np(t )
[
1 − qi

np(t )
] + I i

np(t )μ
}
,

(10)

I i
p(t + 1) = [1 − �p→np(t )]

[
Si

p(t )qi
p(t ) + I i

p(t )(1 − μ)
]

+�np→p(t )
[
Si

np(t )qi
p(t ) + I i

np(t )(1 − μ)
]
,

(11)

I i
np(t + 1) = �p→np(t )

[
Si

p(t )qi
np(t ) + I i

p(t )(1 − μ)
]

+ [1 − �np→p(t )]
[
Si

np(t )qi
np(t ) + I i

np(t )(1 − μ)
]
,

(12)

where μ is the epidemic recovery rate. The terms in brackets
in the equations refer to the epidemic spreading dynamics,
which describe the transit between the compartments S � I .
The other terms refer to the game dynamics, allowing the
transition between the compartments P � NP. The quantities
qi

p(t ) and qi
np(t ) express the probability that agent i will

get infected at time t if she is protected or not protected,
respectively, and read

qi
p(t ) = 1 −

N∏
j=1

{
1 − Ai jλγ

[
I j
p (t ) + I j

np(t )
]}

, (13)

qi
np(t ) = 1 −

N∏
j=1

{
1 − Ai jλ

[
γ I j

p (t ) + I j
np(t )

]}
, (14)

where Ai j refers to the adjacency matrix of the epidemic
process, with Ai j = 1 if agents i and j are connected, and
Ai j = 0 otherwise. We are implicitly assuming a Markovian
dynamics, i.e., that temporal correlations are absent on active
edges [28].

III. OSCILLATORY BEHAVIOR

Solving numerically the equations of the risk-driven epi-
demic model [Eqs. (9)–(12)] on top of network models (see
Appendix A), we observe that the infection prevalence I as
well as the number of protected individuals P oscillate in time
in a sustained way; see Fig. 1(a). To unveil the mechanism
behind the oscillations, we plot in Fig. 1(b) the fraction of
agents in each one of the compartments, in time. If we focus
on the gray area, we see that when Pnp is higher than Pp,
individuals cease to protect themselves, and this implies that
the number of infected individuals starts to increase. When
this happens, the payoff of the strategy protected (Pp) becomes
larger than Pnp, provoking individuals to start protecting them-
selves, and thus the number of infected individuals is again
reduced, sustaining the limit cycle observed in the evolution
of I and P.

An interesting question is whether oscillations disappear or
are reduced for certain values of the parameters. We explored
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FIG. 1. Numerical results of the risk-driven epidemic spreading
model on a power-law network of size N = 2000 and exponent
2.5. Default parameters are c = 1, μ = 0.1, T = 10, λ = 0.05, and
γ = 0.1. (a) Fraction of protected (P = Sp + Ip) (blue upper line)
and infected (I = Ip + Inp) (red lower line) individuals as a function
of time. We observe an oscillatory behavior that is sustained in time.
(b) Detail of the oscillations. The red (top plot) and blue (middle
plot) lines indicate the fraction of infected and protected individuals,
respectively. In the bottom plot, the black dashed line plots the payoff
of the not protected strategy (Pnp), while the solid black line is the
payoff of the protected strategy (Pp).

how the cost of contracting the disease T affects the afore-
mentioned oscillations, and observed that higher values of T
(higher cost) generate smaller oscillations [see Fig. 2(a), left
plot], given that when the cost of contracting an infection is
really high, almost all individuals adopt the protected strategy.
However, when plotting the relative amplitude of the oscilla-
tions [see Fig. 2(a), right plot], we observe that for all values
of T , the relative amplitude has the same order of magnitude.
The absolute value of the oscillations is lowered due to a lower
presence of infectious cases, but relatively the oscillations are
the same. We conclude that the cost of contracting the disease
T does not induce the oscillations to vanish.

One would think that the probability that preventive mea-
sures fail (γ ) and the infectivity rate (λ) are able to shape
the oscillations as well. We explore this in Fig. 2(b) and find
that oscillations are only present for low values of γ and
low values of λ, pointing out that only when the preventive
measure is very effective and the disease is not very conta-
gious do individuals face the dilemma of whether to protect
themselves, which ultimately leads to the aforementioned
oscillatory behavior. Outside of this area of the parameters,
either the disease is very contagious or the measures are
useless, or a combination of both. In any case, the number
of infected individuals grows larger and we do not observe
oscillations. We also see that as the infection cost T increases,
the region of parameters that presents oscillations becomes
smaller, but the relative oscillations are higher.

Note that when the timescale for the decision on prophy-
laxis is increased (decreased), the size of the parameter region
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FIG. 2. Numerical results of the risk-driven epidemic spreading
model on a power-law network of size N = 2000 and exponent
2.5. Default parameters are c = 1, μ = 0.1, T = 10, λ = 0.05, and
γ = 0.1. (a) Amplitudes of the oscillations in the fraction of infected
individuals as a function of time (darker colors represent higher
values of T ). The left plot depicts the absolute value of the amplitude,
while the right one depicts the relative one, all of them for three
values of T , the cost of infection. Higher values of T (higher cost)
generate smaller oscillations (see left plot). On the right, we can
see that all amplitudes of the oscillations are of the same order of
magnitude, when calculated relative to the fraction of infected indi-
viduals. (b) Average relative amplitudes of the fraction of infected
individuals in the steady state, for all range of γ (the probability of
protection failure) and λ (the infectivity rate), for different values of
T . We observe that as the infection cost increases, the area where the
oscillations are present is reduced, but the oscillations themselves are
larger.

in which oscillations are observed increases (decreases). If
the decision on prophylaxis evolves significantly more slowly
compared to the spreading of the disease, the epidemics
will reach equilibrium too soon for any strategic decision to
have an impact on the infection. On the other hand, when
agents evaluate their payoffs before the disease has reached
its equilibrium, the success of each strategy [used in Eqs. (1)
and (2) to update the prophylactic behavior] does not capture
the actual risk of getting infected. In other words, agents
make their decisions based on information that is delayed in
time. This is precisely the most common scenario for many
epidemic outbreaks.

Having explored the nature of the oscillatory dynamics, we
now characterize to what extent the quality of the protective
measures affects the spreading of the disease. In Fig. 3, we
plot the average fraction of both I and P individuals as a
function of the epidemic infectivity λ, for different protection
effectivity values γ . When γ = 1, the prevention measures are
useless and thus we recover the second-order phase transition
typical of an SIS model. For very effective measures (γ ≈ 0),
a majority of the population adopts the protective behavior
and thus the number of infected individuals is almost zero
for all values of λ. For intermediate values of the protection
effectivity (γ = 0.5), the effect is interesting: for values of
the infectivity that are sufficiently low (but above the critical
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FIG. 3. Numerical results of the proposed model on a power-law
network of size N = 2000 and exponent 2.5. Default parameters
are c = 1, μ = 0.1, and T = 10. Fraction of infected individuals
(I = Inp + Ip) (top plot) and fraction of protected individuals (P =
Sp + Ip) (bottom plot) in the steady state as a function of the epidemic
infectivity probability λ, for different values of the probability of
preventive measures failing (γ ).

threshold), a fraction of individuals adopt protection, but
as the infectivity increases, for this particular value of the
effectivity γ , prophylaxis is not enough to prevent infection
and thus agents cease to protect themselves. Looking at the
top plot of Fig. 3, we see that the adoption of protection in
this region of λ leads to a decrease in the number of infections,
but the range of λ where this happens is small. In conclusion,
the addition of prophylaxis is only able to diminish (not
completely eliminate) the number of infectious cases and that
only happens for a narrow range of λ. Actually, the epidemic
is only fully eradicated when the disease infectivity λ is below
its critical value λc, and this critical value does not seem to
depend on the decision game.

IV. EPIDEMIC THRESHOLD

To see if the latter statement is true, we need to calculate
the critical threshold of this coupled system and discern
which parameters influence it. We start off by considering our
system in equilibrium, i.e., the game does not evolve and the
epidemics is stationary. The equilibrium of the decision game
is reached when agents keep the same strategy over time. For
an agent to keep the same strategy over a period of time, it
must happen that no other strategy provides a better payoff
than the one provided by the current strategy. In our case,
this only happens when the transition probabilities between
strategies fulfill �np→p = �p→np = 0, which in turn requires
that both payoffs are equal, i.e., Pp = Pnp (see its derivation in
Appendix B). Using Eqs. (1) and (2), we have

c

T
= Inp

Inp + Snp
− Ip

Ip + Sp
. (15)

However, imposing the previous condition for the equilibrium
of the game at the critical point of the epidemics λc, and
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noting that at λc the fraction of Ip, Inp ≈ 0, we observe that
this condition can only be satisfied for c = 0. In other words,
the equilibrium of the system at the critical point can only be
achieved when the cost of the protection is zero, which gives
no incentives to individuals to choose the protected strategy
over the nonprotected one, according to Eqs. (1) and (2).

In conclusion, at the critical point of the epidemics, the
game plays no role and thus the epidemic threshold is the
usual result of the SIS model [27],

λc = μ/�max(A), (16)

where �max(A) refers to the maximum eigenvalue of the
adjacency matrix A. Indeed, this result confirms our intuition
that the decision game is not able to shift the tipping point of
the epidemics.

V. PROTECTION THRESHOLD

In analogy to the epidemic threshold, we can define the
threshold λ̃ such that agents start protecting themselves. The
protection threshold λ̃ can be calculated in a well-mixed
population assuming that the fraction of protected agents
is negligible in comparison to the fraction of nonprotected
ones. In the well-mixed population, agents interact randomly.
Accordingly, the interactions are not structured and thus the
probability for an agent to be in a given compartment is
the same in the whole population. Therefore, the system can
be described by only four variables: Sp, Snp, Ip, and Inp.
Accordingly, the recurrence relations take the same form as
in Eqs. (9)–(12), but without the label i. In a similar way, the
infection probabilities qp and qnp are given by

qnp(t ) = λ[γ Ip(t ) + Inp(t )], qp(t ) = λγ [Ip(t ) + Inp(t )].

(17)

For calculating this threshold in a well-mixed population λ̃,
we can make use of the equilibrium condition (that translates
in a stationary state for the epidemics). We recall that the
protection threshold will satisfy Sp, Ip � Snp, Inp and Sp, Ip �
1. Therefore, we can expand the equilibrium condition for the
game in Eq. (15) as

c

T
(Ip + Sp) = Inp

(Inp + Snp)
(Ip + Sp) − Ip

= Inp(Ip + Sp) − Ip + O[(Ip + Sp)2]. (18)

Since we want to calculate the threshold for the strategy P,
we will neglect all the second-order and higher-order terms in
(Ip + Sp). Consequently, Eq. (18) can be rewritten as

Ip = (Ip + Sp)
(

Inp − c

T

)
, (19)

and the stationary Eqs. (9)–(12), in the well-mixed approxi-
mation, read

Sp = Ip

Inp

μ

γλ
, (20)

Ip = Inp
1 − Inp − μ

λ

Inp(1 + γ ) − γ + μ

γλ

. (21)

Inserting Eq. (20) into Eq. (19) leads to a quadratic equation
for Inp:

I2
np − Inp

(
1 + c

T
− μ

γλ

)
− c

T

μ

γλ
= 0 . (22)

In the quadratic equation, there is only one non-negative
solution, given by

Inp = 1

2

⎡
⎢⎢⎢⎣1 − μ

γλ
+ c

T
+

√√√√√√
(

μ

γλ
+ c

T

)2

+ 4
μ

γλ︸ ︷︷ ︸
�

⎤
⎥⎥⎥⎦ . (23)

The threshold λ̃ is reached as Ip becomes nonzero. The
denominator in the expression of Ip in Eq. (20) is always
positive,

Inp(1 + γ ) − γ + μ

γλ

= 1

2

[
1 − γ + μ

λ

(
1

γ
− 1

)
+ (1 + γ )

( c

T
+

√
�

)]
> 0 .

(24)

The positivity is guaranteed due to γ ∈ [0, 1]. Since the
denominator is always positive, the threshold is then reached
when the numerator becomes zero. The threshold condition,
therefore, reads

1 − Inp − μ/λ̃ = 0. (25)

Inserting the expression of Inp in Eq. (25), we find, after some
algebra, the threshold λ̃,

λ̃± = 2μ

1 − c
T ∓

√(
1 − c

T

)2 − 4 c
T

γ

1−γ

. (26)

The equation for the threshold has two solutions: λ̃−
and λ̃+. The threshold λ̃− describes the critical infectivity
rate above which agents start protecting themselves. In other
words, below λ̃−, there is still no risk of infection sufficiently
high as to consider taking preventive measures. On the other
hand, the threshold λ̃+ is the point where agents stop adopting
the protective behavior since the protection is not sufficient
to combat the high infection risk. From Eq. (26), we ob-
tain limγ→0 λ̃+ = ∞. This means that under the condition
where protection leads to complete immunization (γ = 0), an
increasing infectivity rate does not stop agents from taking
preventive measures against the disease and the disease is
controlled independently of the infection probability.

In Fig. 4(a) (left) and Fig. 4(a) (right), we present the
full phase space (λ − γ ) for the expected fraction of pro-
tected individuals and infected individuals, respectively. We
see clearly that agents only take a protective behavior when
the infectivity rate is low and the preventive measures are
reasonably efficient. The real parts of both solutions λ̃− and
λ̃+ are displayed in Fig. 4(a) (left) as a single blue (solid)
curve over the phase space of the prevalence of the protected
population.

To further understand the adoption of prophylactic behav-
ior, in Fig. 4(b) we show the partition of the population across
the four compartments (Snp, Sp, Ip, and Inp) as a function of
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FIG. 4. Numerical results of the proposed model on a power-law
network of size N = 2000 and exponent 2.5. Default parameters
are c = 1, μ = 0.1, and T = 10. (a) Phase-space diagrams of the
prevalence on the number of protected (left) and number of infected
(right) individuals. The red (dashed) line in the left plot denotes the
epidemic threshold of our model, as calculated by (16). The blue
(solid) line on the left plot is the protection threshold as obtained in
(26). The green (dotted) line indicates the epidemic threshold in the
case of a fully protected population. (b) Phase-space diagrams for
each one of the four compartments of our model, at the steady state,
for the entire range of λ and γ .

λ and γ . From the analysis of the four compartments, we
observe four different regimes:

(i) Below the epidemic threshold λc = 0.01 (red dashed
line), the disease dies out and thus all agents are in the Snp

compartment.
(ii) For low values of γ (meaning high protection effec-

tivity), the majority of agents adopt the protection and avoid
the infection. This is observed at the darkest area of the Sp

compartment (below the green dotted line that corresponds to
a fully protected population).

(iii) For values of γ in the protection range defined by the
thresholds given by Eq. (26) (area delimited by the blue solid
line), most agents protect themselves but still get infected.

(iv) Beyond the protective threshold (area beyond the blue
solid line), the protection measures are highly ineffective,
which causes agents to disregard any protection and thus the
infection prevalence is the one expected for such values of λ

in the absence of the decision game.

VI. INTERVENTION POLICIES

Now that we understand the key role that risk perception
has on the adoption of protective measures and, in turn, on the
infection prevalence, we next focus on possible intervention
strategies. Such strategies are often designed to change the
individual’s risk perception, as this is known to induce a
behavioral change [29,30]. One way to change the risk percep-
tion is to spread information about the severity of the disease
in the hopes of raising awareness and containing the epidemic
spreading. This can be done either locally, by considering
first-hand information and word-of-mouth spreading [31–34],
or globally, i.e., using mass-media outlets to disseminate such
information [35]. Our proposal is to raise awareness globally
by increasing the perception of risk of the population. In our
model, the risk perception is encapsulated by the cost of the
infection T multiplied by the estimated fraction of protected
or not protected individuals that get infected, respectively.
Our strategy relies on increasing the cost of infection T
by some quantity �T , which can be interpreted as tricking
the population into believing that the consequences of an
infection are more severe than they actually are. Based on
the previous mechanism, we propose two types of campaigns:
(i) awareness campaigns continuously enforced in time and
(ii) pulsating awareness campaigns only activated when the
infection prevalence is increasing.

In the first one, the campaign raises the perception risk
continuously by a certain increment �T . Given that this
�T is sustained in time, this simply leads to an increased
infection risk (T + �T ) in Eqs. (1) and (2). In the second one,
the increment �T is applied only when the infection preva-
lence is growing with time, i.e., {T + �T �[I (t ) − I (t − 1)]},
where �(x) is the Heaviside function. Additionally, for the
pulsed intervention, we normalize the transition probabilities
in Eqs. (3) and (4) according to the infection cost at time t ,
i.e., with T + c + �T �[I (t ) − I (t − 1)].

Both campaigns increase the population’s perception of
how serious it is to contract an infection, with the only differ-
ence being whether this intervention is enforced temporarily
(in the case of pulsating) or permanently (in the continuous
case). What we observe is that this strategy turns out to
be more effective in alleviating the oscillations when it is
enforced in a pulsating manner than when it is promoted
continuously; see Fig. 5. This result seems counterintuitive at
first, as one would think that a constant and permanent shift in
the infectivity cost would be more effective than a shift that is
only applied on and off. To illustrate the mechanism of why
a pulsating campaign proves more effective than a continuous
one, we plot, in Fig. 6, the fraction of infected individuals I,
the protection level P, and the normalized payoff difference
between the protected and nonprotected strategies, as they
evolve in time, starting from t = 0. On top of Fig. 6, for the
sake of clarity, we illustrate the periods of time in which each
of the campaigns is active.

Following the enumerated points depicted in Fig. 6, we
are able to describe the effective differences between the two
strategies. Starting out from an initial fraction of infected
individuals, the infection starts to grow. In this stage, both
interventions are active and operate with the same infection
cost T + �T , therefore rendering identical curves. However,
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FIG. 5. Time evolution of the infection prevalence in the pres-
ence of a pulsating awareness campaign (top) and a continuously
sustained awareness campaign (bottom), for different values of the
perceived risk increment �T (darker colored lines represent higher
�T ). The contact network used here is a power-law network of size
N = 2000 and exponent 2.5.

as the infection grows, individuals start protecting themselves,
which slows down the spreading of the infection. Eventually,
the protection is adopted by enough individuals such as to pre-
vent the infection from increasing anymore. This maximum
of the infection is depicted in label 1. Given that the epidemic
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FIG. 6. Infection prevalence (top), protection level (middle),
and normalized payoff difference (bottom), as a function of time
for �T = 1.2. For the pulsed intervention, we define T (t ) = T +
�T �[I (t ) − I (t − 1)]. In the case of a continuous intervention, we
have T (t ) = T + �T . The contact network used here is a power-law
network of size N = 2000 and exponent 2.5. Default parameters are
c = 1, μ = 0.1, and T = 10. The pulsating campaign allows one to
more efficiently suppress the peaks in the infection prevalence than
the sustained campaign.

is no longer increasing, the pulsed strategy is switched off,
which causes the difference in payoffs to drop for the pulsed
strategy (see label 2). This means that at this point, individuals
subject to the continuous intervention have a greater incentive
to adopt protection than those under the pulsating campaign.
The normalized payoff difference for both campaigns evolve
further, up to a point in which the payoff for the protected
strategy and the payoff for the nonprotected strategy are equal
(the payoff difference is zero; see label 3). This point defines
the maximum of the protection curve (see label 4) because,
from that moment on, individuals will have a negative payoff
difference, meaning they will consider a better strategy to
disregard protection. This, in turn, promotes the propagation
of the epidemics, and therefore the I curve starts to grow
again (see label 5). At this moment, the pulsating strategy is
switched on again, causing the pulsating intervention’s payoff
difference to increase abruptly, effectively reaching a lower
minimum than the one of the continuous strategy (see label 6).
At this point, users subject to the pulsating intervention have
both a higher number of infectives than in the continuous case
and a higher payoff difference; this implies that the individuals
under the pulsating campaign will perceive a higher risk and
protect themselves more than under the continuous interven-
tion. This can be seen in label 7, where individuals in the
pulsating campaign are not disregarding protection as much
as continuous intervention users. Consequently, the infection
prevalence in the case of a pulsating campaign will grow less
than the one subject to continuous intervention, as seen in
label 8. From that moment on, the mechanism illustrated in
labels 1 to 8 is repeated periodically.

Put in a nutshell, both the continuous and pulsating cam-
paigns seek to raise the awareness of the population by
increasing the perceived infection cost. The reason why the
pulsating campaign is more effective is because the minima
and maxima of the function of the difference in payoffs are
moderated by switching on and off the intervention cam-
paign. When the maximum difference in payoffs is relaxed
by switching off the intervention (as seen in label 2), it causes
less people to adopt protection (label 4), which results in a
slightly higher infection than in the continuous case (label
5). Symmetrically, when the minimum in payoff difference
is increased by switching on the intervention (label 6), less
people disregard protection (label 7) and a lower infection
prevalence is achieved (label 8). By making the minima and
maxima less pronounced, the oscillations are more dampened
in the pulsating intervention.

VII. CONCLUSIONS

Wrapping up, we have confronted the quantitative analysis
of prophylactic human behavior in the spread of direct contact
transmittable diseases using a mathematical model. The re-
sults allow us to better understand some observed oscillatory
patterns that could depend on the biological seasonality of
viruses and bacteria and, according to our findings, also on
the human decision of prophylaxis.

Our model is an up-to-date description of the co-
evolutionary dynamics of human behavior and disease
spreading, using a probabilistic microscopic model for the
epidemic spreading coupled to a risk-driven decision game.
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The accuracy of the epidemic spreading description at the
level of individuals in a network, using our model, allows one
to include a decision strategy for each individual in a very
natural way. The results of the model are enlightening. First,
we prove the emergence of self-sustained oscillations in the
prevalence of the disease as a consequence of the interplay
between the prevalence and the assessment of risk by individ-
uals. This discovery allows one to think about mechanisms to
ameliorate the evaluation of risk made by individuals, with the
aim of damping out these oscillations that represent a health
threat and a possible collapse of health services.

We fix our attention on the quantitative evaluation of
awareness campaigns as probably the best strategies to modify
risk perception. We analyze two different types of campaigns:
continuous (persistent in time) and pulsating (active only in
certain periods of time). Through the mathematical model,
we discover that pulsating campaigns are far more efficient
than continuous ones in damping out the oscillatory behavior
of the disease. This is because the pulsating campaign is
switched on abruptly when the number of infections starts
to increase, causing users under the pulsating campaign to
start protecting themselves before the individuals under the
continuous campaign would. It is precisely this time delay that
is responsible for less-pronounced minima and maxima in the
curve of infection. This reveals the need for future study of the
explicit time delays between the protection game and the epi-
demic process, which could unravel additional mechanisms to
enhance the already observed effects of pulsating campaigns.
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APPENDIX A: NETWORK MODEL

To illustrate the model, we will consider the case of sex-
ually transmitted diseases, without considering the medical
details of any particular disease, only the direct propagation
mechanism and the associated risk perception. The propa-
gation of sexually transmitted diseases takes place on the
so-called sexual contact networks [36–38]. In these networks,
the distribution of the number of sexual partners is hetero-
geneous, with few individuals having a number of sexual
contacts orders of magnitude larger than the average. Previous

studies approximated the distribution of the number of sexual
contacts, P(k), with a power law P(k) ∼ k−γ , where k is the
number of sexual contacts. These studies [38,39] identified
scaling exponents 1.5 < γ < 3.5. More specifically, they state
that sexual contact networks have different scaling exponents
depending on whether they depict relationships between men,
men and women, or among women. For the sake of simplicity,
we will focus on men-men sexual contact networks, although
the same analysis can be performed on heterosexual networks.
We will study the coupled disease-decision dynamics on syn-
thetic networks that are built to resemble the structure of real
men-men sexual contact networks. There are a series of other
models, besides the power law, that have been found to fit well
to the degree distribution of sexual contact networks [40,41].
However, our results are not only robust for power laws with
different exponents, but are also qualitatively equivalent for a
well-mixed population. Accordingly, we would not observe
a different phenomenology by considering other generative
network models yielding different degree distributions.

APPENDIX B: CONDITIONS FOR EQUILIBRIUM

For characterizing the equilibrium of Eqs. (9)–(12), we first
focus on the condition such that the system can reach the
equilibrium state. Can the system reach the equilibrium state if
the transition probabilities are nonzero, �a→b 
= 0? Intuitively,
since the game and disease dynamics are decoupled, it should
not be possible. For proofing so, let us consider the following
new set of variables:

Pi ≡ I i
p + Si

p, (B1)

NPi ≡ I i
np + Si

np, (B2)

I i
p ≡ I i

p, (B3)

I i
np ≡ I i

np, (B4)

where the variables P and NP represent the probability of an
agent adopting the protection mechanism and not adopting the
protection mechanism, respectively. With these variables, the
recurrence relations become

�Pi = Pi(t + 1) − Pi(t ) = NPi�np→p − Pi�p→np, (B5)

�NPi = NPi(t + 1) − NPi(t )

= −NPi�np→p + Pi�p→np, (B6)

�I i
p = I i

p(t + 1) − I i
p(t ) = −μI i

p + (
Pi − I i

p

)
λγ

(
I i
p + I i

np

)
−�np→pI i

np + �p→npI i
p, (B7)

�I i
np = I i

np(t + 1) − I i
np(t ) = −μI i

np + (
NV i − I i

np

)
× λ

(
γ I i

p + I i
np

) + �p→npI i
p − �np→pI i

np. (B8)

Since the transition probabilities �np→p and �p→np contain
a Heaviside function �(Pp − Pnp) and �(Pnp − Pp), respec-
tively [see Eqs. (3) and (4)], they cannot be nonzero si-
multaneously. Consequently, the two terms in the first two
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equations (B5) and (B6) cannot compensate each other
such that �Pi = �NPi = 0. Therefore, equilibrium can

only be reached if �np→p = �p→np = 0, i.e., Pp = Pnp [see
Eq. (15)].

[1] J. N. Hays, Epidemics and Pandemics: Their Impacts on Human
History (ABC-CLIO, Santa Barbara, CA, 2006).

[2] C. Eksin, K. Paarporn, and J. S. Weitz, Systematic biases in
disease forecasting? The role of behavior change, Epidemics
27, 96 (2019).

[3] B. Payn, K. Tanfer, J. O. G. Billy, and W. R. Grady, Men’s
behavior change following infection with a sexually transmitted
disease, Family Plan. Perspect. 29, 152 (1997).

[4] S. Funk, M. Salathé, and V. A. A. Jansen, Modelling the influ-
ence of human behaviour on the spread of infectious diseases:
A review, R. Soc. Interface 7, 1247 (2010).

[5] Z. Wang, C. T. Bauch, S. Bhattacharyya, A. D’Onofrio, P.
Manfredi, M. Perc, N. Perra, M. Salathé, and D. Zhao, Statisti-
cal physics of vaccination, Phys. Rep. 664, 1 (2016).

[6] S. Del Valle, H. Hethcote, J. M. Hyman, and C. Castillo-
Chavez, Effects of behavioral changes in a smallpox attack
model, Math. Biosci. 195, 228 (2005).

[7] A. d’Onofrio and P. Manfredi, Information-related changes in
contact patterns may trigger oscillations in the endemic preva-
lence of infectious diseases, J. Theor. Biol. 256, 473 (2009).

[8] A. Moinet, R. Pastor-Satorras, and A. Barrat, Effect of risk
perception on epidemic spreading in temporal networks, Phys.
Rev. E 97, 012313 (2018).

[9] T. Gross, C. J. Dommar D’Lima, and B. Blasius, Epidemic
Dynamics on an Adaptive Network, Phys. Rev. Lett. 96, 208701
(2006).

[10] B. M. Althouse and L. Hébert-Dufresne, Epidemic cycles
driven by host behavior, J. R. Soc. Interface 11, 20140575
(2014).

[11] S. V. Scarpino, A. Allard, and L. Hébert-Dufresne, The effect of
a prudent adaptive behavior on disease transmission, Nat. Phys.
12, 1042 (2016).

[12] N. Sherborne, K. B. Blyuss, and I. Z. Kiss, Bursting endemic
bubbles in an adaptive network, Phys. Rev. E 97, 042306
(2018).

[13] C. T. Bauch and D. J. D. Earn, Vaccination and the theory of
games, Proc. Natl. Acad. Sci. 101, 13391 (2004).

[14] T. C. Reluga, C. T. Bauch, and A. P. Galvani, Evolving public
perceptions and stability in vaccine uptake, Math. Biosci. 204,
185 (2006).

[15] A. d’Onofrio, P. Manfredi, and E. Salinelli, Vaccinating behav-
ior, information, and the dynamics of sir vaccine preventable
diseases, Theoret. Populat. Biol. 71, 301 (2007).

[16] R. Vardavas, R. Breban, and S. Blower, Can influenza epi-
demics be prevented by voluntary vaccination? PLoS Comput.
Biol. 3, e85 (2007).

[17] F. Fu, D. I. Rosenbloom, L. Wang, and M. A. Nowak, Imitation
dynamics of vaccination behavior on social networks, Proc.
Biol. Sci. 278, 42 (2011).

[18] A. Cardillo, C. Reyes-Suárez, F. Naranjo, and J. Gómez-
Gardeñes, Evolutionary vaccination dilemma in complex net-
works, Phys. Rev. E 88, 032803 (2013).

[19] B. Steinegger, A. Cardillo, P. De Los Rios, J. Gómez-
Gardeñes, and A. Arenas, Interplay between cost and benefits

triggers nontrivial vaccination uptake, Phys. Rev. E 97, 032308
(2018).

[20] A. Ahituv, V. J. Hotz, and T. Philipson, The responsiveness
of the demand for condoms to the local prevalence of aids,
J. Human Res. 31, 869 (1996).

[21] T. Philipson, Private vaccination and public health: An em-
pirical examination for U.S. measles, J. Human Res. 31, 611
(1996).

[22] J. E. Anderson, R. Wilson, L. Doll, T. S. Jones, and P. Barker,
Condom use and HIV risk behaviors among US adults: Data
from a national survey, Fam. Plan. Perspect. 31, 24 (1999).

[23] N. Prata, L. Morris, E. Mazive, F. Vahidnia, and M. Stehr,
Relationship between HIV risk perception and condom use:
Evidence from a population-based survey in Mozambique, Intl.
Fam. Plan. Perspect. 32, 192 (2006).

[24] S. Gómez, J. Gómez-Gardeñes, Y. Moreno, and A. Arenas,
Nonperturbative heterogeneous mean-field approach to epi-
demic spreading in complex networks, Phys. Rev. E 84, 036105
(2011).

[25] H. Gintis, Game Theory Evolving: A Problem-Centered Intro-
duction to Modeling Strategic Interaction, 2nd ed. (Princeton
University Press, Princeton, NJ, 2009), pp. 1–390.

[26] S. C. Weller and K. Davis-Beaty, Condom effectiveness in
reducing heterosexual HIV transmission, Cochrane Database
Syst. Rev., CD003255 (2002).

[27] S. Gómez, A. Arenas, J. Borge-Holthoefer, S. Meloni, and Y.
Moreno, Discrete-time Markov chain approach to contact-based
disease spreading in complex networks, Europhys. Lett. 89,
38009 (2010).

[28] M. Feng, S.-M. Cai, M. Tang, and Y.-C. Lai, Equivalence
and its invalidation between non-Markovian and Markovian
spreading dynamics on complex networks, Nat. Commun. 10,
3748 (2019).

[29] R. E. Kasperson, O. Renn, P. Slovic, H. S. Brown, J. Emel,
R. Goble, J. X. Kasperson, and S. Ratick, The social ampli-
fication of risk: A conceptual framework, Risk Anal. 8, 177
(1988).

[30] F. Bagnoli, P. Liò, and L. Sguanci, Risk perception in epidemic
modeling, Phys. Rev. E 76, 061904 (2007).

[31] S. Funk, E. Gilad, C. Watkins, and V. A. A. Jansen, The spread
of awareness and its impact on epidemic outbreaks, Proc. Natl.
Acad. Sci. USA 106, 6872 (2009).

[32] N. Perra, D. Balcan, B. Gonçalves, and A. Vespignani, Towards
a characterization of behavior-disease models, PLoS One 6,
e23084 (2011).

[33] C. Granell, S. Gómez, and A. Arenas, Dynamical Interplay
Between Awareness and Epidemic Spreading in Multiplex Net-
works, Phys. Rev. Lett. 111, 128701 (2013).

[34] E. Massaro and F. Bagnoli, Epidemic spreading and risk per-
ception in multiplex networks: A self-organized percolation
method, Phys. Rev. E 90, 052817 (2014).

[35] C. Granell, S. Gómez, and A. Arenas, Competing spreading
processes on multiplex networks: Awareness and epidemics,
Phys. Rev. E 90, 012808 (2014).

023181-9

https://doi.org/10.1016/j.epidem.2019.02.004
https://doi.org/10.1016/j.epidem.2019.02.004
https://doi.org/10.1016/j.epidem.2019.02.004
https://doi.org/10.1016/j.epidem.2019.02.004
https://doi.org/10.2307/2953377
https://doi.org/10.2307/2953377
https://doi.org/10.2307/2953377
https://doi.org/10.2307/2953377
https://doi.org/10.1098/rsif.2010.0142
https://doi.org/10.1098/rsif.2010.0142
https://doi.org/10.1098/rsif.2010.0142
https://doi.org/10.1098/rsif.2010.0142
https://doi.org/10.1016/j.physrep.2016.10.006
https://doi.org/10.1016/j.physrep.2016.10.006
https://doi.org/10.1016/j.physrep.2016.10.006
https://doi.org/10.1016/j.physrep.2016.10.006
https://doi.org/10.1016/j.mbs.2005.03.006
https://doi.org/10.1016/j.mbs.2005.03.006
https://doi.org/10.1016/j.mbs.2005.03.006
https://doi.org/10.1016/j.mbs.2005.03.006
https://doi.org/10.1016/j.jtbi.2008.10.005
https://doi.org/10.1016/j.jtbi.2008.10.005
https://doi.org/10.1016/j.jtbi.2008.10.005
https://doi.org/10.1016/j.jtbi.2008.10.005
https://doi.org/10.1103/PhysRevE.97.012313
https://doi.org/10.1103/PhysRevE.97.012313
https://doi.org/10.1103/PhysRevE.97.012313
https://doi.org/10.1103/PhysRevE.97.012313
https://doi.org/10.1103/PhysRevLett.96.208701
https://doi.org/10.1103/PhysRevLett.96.208701
https://doi.org/10.1103/PhysRevLett.96.208701
https://doi.org/10.1103/PhysRevLett.96.208701
https://doi.org/10.1098/rsif.2014.0575
https://doi.org/10.1098/rsif.2014.0575
https://doi.org/10.1098/rsif.2014.0575
https://doi.org/10.1098/rsif.2014.0575
https://doi.org/10.1038/nphys3832
https://doi.org/10.1038/nphys3832
https://doi.org/10.1038/nphys3832
https://doi.org/10.1038/nphys3832
https://doi.org/10.1103/PhysRevE.97.042306
https://doi.org/10.1103/PhysRevE.97.042306
https://doi.org/10.1103/PhysRevE.97.042306
https://doi.org/10.1103/PhysRevE.97.042306
https://doi.org/10.1073/pnas.0403823101
https://doi.org/10.1073/pnas.0403823101
https://doi.org/10.1073/pnas.0403823101
https://doi.org/10.1073/pnas.0403823101
https://doi.org/10.1016/j.mbs.2006.08.015
https://doi.org/10.1016/j.mbs.2006.08.015
https://doi.org/10.1016/j.mbs.2006.08.015
https://doi.org/10.1016/j.mbs.2006.08.015
https://doi.org/10.1016/j.tpb.2007.01.001
https://doi.org/10.1016/j.tpb.2007.01.001
https://doi.org/10.1016/j.tpb.2007.01.001
https://doi.org/10.1016/j.tpb.2007.01.001
https://doi.org/10.1371/journal.pcbi.0030085
https://doi.org/10.1371/journal.pcbi.0030085
https://doi.org/10.1371/journal.pcbi.0030085
https://doi.org/10.1371/journal.pcbi.0030085
https://doi.org/10.1098/rspb.2010.1107
https://doi.org/10.1098/rspb.2010.1107
https://doi.org/10.1098/rspb.2010.1107
https://doi.org/10.1098/rspb.2010.1107
https://doi.org/10.1103/PhysRevE.88.032803
https://doi.org/10.1103/PhysRevE.88.032803
https://doi.org/10.1103/PhysRevE.88.032803
https://doi.org/10.1103/PhysRevE.88.032803
https://doi.org/10.1103/PhysRevE.97.032308
https://doi.org/10.1103/PhysRevE.97.032308
https://doi.org/10.1103/PhysRevE.97.032308
https://doi.org/10.1103/PhysRevE.97.032308
https://doi.org/10.2307/146150
https://doi.org/10.2307/146150
https://doi.org/10.2307/146150
https://doi.org/10.2307/146150
https://doi.org/10.2307/146268
https://doi.org/10.2307/146268
https://doi.org/10.2307/146268
https://doi.org/10.2307/146268
https://doi.org/10.2307/2991553
https://doi.org/10.2307/2991553
https://doi.org/10.2307/2991553
https://doi.org/10.2307/2991553
https://doi.org/10.1363/3219206
https://doi.org/10.1363/3219206
https://doi.org/10.1363/3219206
https://doi.org/10.1363/3219206
https://doi.org/10.1103/PhysRevE.84.036105
https://doi.org/10.1103/PhysRevE.84.036105
https://doi.org/10.1103/PhysRevE.84.036105
https://doi.org/10.1103/PhysRevE.84.036105
https://doi.org/10.1002/14651858.CD003255
https://doi.org/10.1002/14651858.CD003255
https://doi.org/10.1002/14651858.CD003255
https://doi.org/10.1209/0295-5075/89/38009
https://doi.org/10.1209/0295-5075/89/38009
https://doi.org/10.1209/0295-5075/89/38009
https://doi.org/10.1209/0295-5075/89/38009
https://doi.org/10.1038/s41467-019-11763-z
https://doi.org/10.1038/s41467-019-11763-z
https://doi.org/10.1038/s41467-019-11763-z
https://doi.org/10.1038/s41467-019-11763-z
https://doi.org/10.1111/j.1539-6924.1988.tb01168.x
https://doi.org/10.1111/j.1539-6924.1988.tb01168.x
https://doi.org/10.1111/j.1539-6924.1988.tb01168.x
https://doi.org/10.1111/j.1539-6924.1988.tb01168.x
https://doi.org/10.1103/PhysRevE.76.061904
https://doi.org/10.1103/PhysRevE.76.061904
https://doi.org/10.1103/PhysRevE.76.061904
https://doi.org/10.1103/PhysRevE.76.061904
https://doi.org/10.1073/pnas.0810762106
https://doi.org/10.1073/pnas.0810762106
https://doi.org/10.1073/pnas.0810762106
https://doi.org/10.1073/pnas.0810762106
https://doi.org/10.1371/journal.pone.0023084
https://doi.org/10.1371/journal.pone.0023084
https://doi.org/10.1371/journal.pone.0023084
https://doi.org/10.1371/journal.pone.0023084
https://doi.org/10.1103/PhysRevLett.111.128701
https://doi.org/10.1103/PhysRevLett.111.128701
https://doi.org/10.1103/PhysRevLett.111.128701
https://doi.org/10.1103/PhysRevLett.111.128701
https://doi.org/10.1103/PhysRevE.90.052817
https://doi.org/10.1103/PhysRevE.90.052817
https://doi.org/10.1103/PhysRevE.90.052817
https://doi.org/10.1103/PhysRevE.90.052817
https://doi.org/10.1103/PhysRevE.90.012808
https://doi.org/10.1103/PhysRevE.90.012808
https://doi.org/10.1103/PhysRevE.90.012808
https://doi.org/10.1103/PhysRevE.90.012808


BENJAMIN STEINEGGER et al. PHYSICAL REVIEW RESEARCH 2, 023181 (2020)

[36] F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, and
Y. Åberg, The web of human sexual contacts, Nature (London)
411, 907 (2001).

[37] F. Liljeros, C. R. Edling, and L. A. N. Amaral, Sexual networks:
Implications for the transmission of sexually transmitted infec-
tions, Microbes Infect. 5, 189 (2003).

[38] A. Schneeberger, C. Mercer, S. A J Gregson, N. Ferguson, C.
Nyamukapa, R. Anderson, A. Johnson, and G. P Garnett, Scale-
free networks and sexually transmitted diseases, Sex. Transm.
Dis. 31, 380 (2004).

[39] J. Gómez-Gardeñes, V. Latora, Y. Moreno, and E. Profumo,
Spreading of sexually transmitted diseases in heterosex-
ual populations, Proc. Natl. Acad. Sci. USA 105, 1399
(2008).

[40] M. S. Handcock and J. H. Jones, Likelihood-based inference for
stochastic models of sexual network formation, Theoret. Pop.
Biol. 65, 413 (2004).

[41] D. T. Hamilton, M. S. Handcock, and M. Morris, Degree
distributions in sexual networks: A framework for evaluating
evidence, Sex. Transm. Dis. 35, 30 (2008).

023181-10

https://doi.org/10.1038/35082140
https://doi.org/10.1038/35082140
https://doi.org/10.1038/35082140
https://doi.org/10.1038/35082140
https://doi.org/10.1016/S1286-4579(02)00058-8
https://doi.org/10.1016/S1286-4579(02)00058-8
https://doi.org/10.1016/S1286-4579(02)00058-8
https://doi.org/10.1016/S1286-4579(02)00058-8
https://doi.org/10.1097/00007435-200406000-00012
https://doi.org/10.1097/00007435-200406000-00012
https://doi.org/10.1097/00007435-200406000-00012
https://doi.org/10.1097/00007435-200406000-00012
https://doi.org/10.1073/pnas.0707332105
https://doi.org/10.1073/pnas.0707332105
https://doi.org/10.1073/pnas.0707332105
https://doi.org/10.1073/pnas.0707332105
https://doi.org/10.1016/j.tpb.2003.09.006
https://doi.org/10.1016/j.tpb.2003.09.006
https://doi.org/10.1016/j.tpb.2003.09.006
https://doi.org/10.1016/j.tpb.2003.09.006
https://doi.org/10.1097/OLQ.0b013e3181453a84
https://doi.org/10.1097/OLQ.0b013e3181453a84
https://doi.org/10.1097/OLQ.0b013e3181453a84
https://doi.org/10.1097/OLQ.0b013e3181453a84

