
Systems biology

MONET: a toolbox integrating top-performing methods

for network modularization

Mattia Tomasoni 1,2,*, Sergio Gómez3, Jake Crawford4,5, Weijia Zhang6, Sarvenaz

Choobdar1,2, Daniel Marbach1,2,† and Sven Bergmann1,2,7,*

1Department of Computational Biology, University of Lausanne, 2Swiss Institute of Bioinformatics, Lausanne, Switzerland,
3Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain, 4Department of

Computer Science, Tufts University, MA, 5Graduate Group in Genomics and Computational Biology Perelman School of Medicine,

University of Pennsylvania, Philadelphia, PA, USA, 6School of Information Technology and Mathematical Sciences, University of South

Australia, Adelaide, Australia and 7Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa

*To whom correspondence should be addressed.
†Present address: Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La

Roche Ltd, 4070 Basel, Switzerland

Associate Editor: Pier Luigi Martelli

Received on December 12, 2019; revised on March 9, 2020; editorial decision on March 31, 2020; accepted on April 2, 2020

Abstract

Summary: : We define a disease module as a partition of a molecular network whose components are jointly associ-
ated with one or several diseases or risk factors thereof. Identification of such modules, across different types of net-
works, has great potential for elucidating disease mechanisms and establishing new powerful biomarkers. To this
end, we launched the ‘Disease Module Identification (DMI) DREAM Challenge’, a community effort to build and
evaluate unsupervised molecular network modularization algorithms. Here, we present MONET, a toolbox providing
easy and unified access to the three top-performing methods from the DMI DREAM Challenge for the bioinformatics
community.

Availability and implementation: MONET is a command line tool for Linux, based on Docker and Singularity con-
tainers; the core algorithms were written in R, Python, Ada and Cþþ. It is freely available for download at https://
github.com/BergmannLab/MONET.git.

Contact: mattia.tomasoni@unil.ch or sven.bergmann@unil.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene networks, such as protein interaction, signaling, gene co-
expression and homology networks, provide scaffolds of linked
genes. Subnetworks, or modules, include genes normally acting in
concert but whose joint function may be disrupted, if any of its
members is missing, or disregulated. For disease modules, this dis-
ruption can lead to a disease phenotype. The identification of such
modules is therefore useful for elucidating disease mechanisms and
establishing new biomarkers and potential therapeutic targets. Yet,
which methods work best to extract such modules from different
types of networks is not well understood. This prompted us to initi-
ate the ‘Disease Module Identification (DMI) DREAM Challenge’
(Choobdar et al., 2019), providing an unbiased and critical assess-
ment of 75 contributed module identification methods. Our

method evaluation used summary statistics from more than 200
disease relevant genome-wide Association Studies in conjunction
with our Pascal tool (Lamparter et al., 2016), avoiding the bias of
using annotated molecular pathways.

The top-performing methods implemented novel algorithms that
advanced the state-of-the-art, clearly outperforming off-the-shelf
tools. We, therefore, decided to make the top three methods available
for the bioinformatics community in a single user-friendly package:
MONET is a command line tool based on Docker and Singularity
virtualization technologies, automatically installing the tool with all
its dependencies inside a container, avoiding time-consuming and
error-prone manual installations of computing environments and
libraries. All computations then take place in this sandbox environ-
ment and once the output is ready, all resources can be fully released
bringing the user’s machine back to its original state.

VC The Author(s) 2020. Published by Oxford University Press. 3920

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 36(12), 2020, 3920–3921

doi: 10.1093/bioinformatics/btaa236

Advance Access Publication Date: 9 April 2020

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/12/3920/5818484 by guest on 19 January 2021

http://orcid.org/0000-0001-8775-2384
https://github.com/BergmannLab/MONET.git
https://github.com/BergmannLab/MONET.git
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa236#supplementary-data
https://academic.oup.com/


2 Methods and implementation

While our challenge was able to establish Kernel Clustering
Optimization using the ‘Diffusion State Distance (DSD)’ metric by Cao
et al. (2014) (hereafter K1) as the overall winner, there were several

strong competitors using entirely different approaches for the network
modularization. Importantly, we observed that no single method was
superior on all network types and that disease modules identified by dif-

ferent methods were often complementary (Choobdar et al., 2019).

2.1 K1: top method using kernel clustering
K1 is based on the DSD, a novel graph metric which is built on the

premise that paths through low-degree nodes are stronger indica-
tions of functional similarity than paths that traverse high-degree
nodes by Cao et al. (2014). The DSD metric is used to define a pair-

wise distance matrix between all nodes, on which a spectral cluster-
ing algorithm is applied. In parallel, dense bipartite sub-graphs are

identified using standard graph techniques. Finally, results are
merged into a single set of non-overlapping clusters.

BLOG: https://www.synapse.org/#!Synapse:syn7349492/wiki/407359.

2.2 M1: top method using modularity optimization
M1 employs an original technique named Multiresolution intro-
duced by Arenas et al. (2008) to explore all topological scales at

which modules may be found. The novelty of this approach relies on
the introduction of a parameter, called resistance, which controls
the aversion of nodes to form modules. Modularity (Arenas et al.,
2007; Newman and Girvan, 2004) is optimized using an ensemble
of algorithms: extremal optimization (Duch and Arenas, 2005),

spectral optimization (Newman, 2006), fast algorithm (Newman,
2004), tabu search (Arenas et al., 2008) and fine-tuning by iterative
repositioning of individual nodes in adjacent modules.

BLOG: https://www.synapse.org/#!Synapse:syn7352969/wiki/407384.

2.3 R1: top method using random walk
R1 is based on a variant of Markov Cluster Algorithm known as bal-

anced Multi-layer Regularized Markov Cluster Algorithm
(bMLRMCL) (Satuluri et al., 2010), which scales well to large

graphs and minimizes the number of oversized clusters. First, a pre-
processing step is applied so that edges with low weights are dis-
carded and all remaining edges are scaled to integer values. Then,

bMLRMCL is applied iteratively on modules of size greater than a
user-defined threshold.

BLOG: https://www.synapse.org/#!Synapse:syn7286597/wiki/406659.

3 Performance

Figure 1 illustrates the performance of the MONET algorithms on

simulated graphs with planted community structure, generated using
the class of benchmark graphs proposed by Lancichinetti et al.
(2008). Modularization performance is measured using Normalized
Mutual Information (NMI). Experiments were carried out on regular
desktop hardware. In accordance with performance evaluations with-

in the DMI DREAM Challenge, K1, the winner, requires the most
computational resources, with a runtime of about one day and the

highest memory allocation for processing on the Challenge inputs.
M1, the second runner-up, completed the Challenge in a few hours
and displayed excellent performance on the simulated benchmark

(even superior to K1, especially in case of extremely high fraction of
inter-module edges and extremely low memory requirements). R1,

the second runner-up, is the only method that requires parameters to
be tuned (nine in total); nevertheless, we believe it is an excellent add-
ition to our tool, as it performed close to K1/M1 on the benchmark, it

requires only moderate memory and has an extremely low run time
(it completed the Challenge in under an hour). Please refer to the
Supplementary Information for details about the execution time.

4 Installation and usage

MONET is extremely simple to install/uninstall and run. The only
requirement is having installed either Docker (Merkel, 2014) or
Singularity (Kurtzer et al., 2017). For detailed instructions and in-
formation about usage and I/O formats, please refer to the
README file on the github repository.

$ git clone https://github.com/BergmannLab/MONET.git
$ cd MONET &&./install.sh
$ monet –help
$ monet –method¼M1 –container¼docker \
–input¼./input/network.txt –output¼./output

Funding

This work was supported by the Swiss National Science Foundation grant no.

FN 310030_152724/1.

Conflict of Interest: none declared.

References

Arenas,A. et al. (2007) Size reduction of complex networks preserving modu-

larity. N. J. Phys., 9, 176.

Arenas,A. et al. (2008) Analysis of the structure of complex networks at differ-

ent resolution levels. N. J. Phys., 10, 053039.

Cao,M. et al. (2014) New directions for diffusion-based network prediction of

protein function: incorporating pathways with confidence. Bioinformatics,

30, i219–i227.

Choobdar,S. et al.; The DREAM Module Identification Challenge

Consortium. (2019) Assessment of network module identification across

complex diseases. Nat. Methods, 16, 843–852.

Duch,J. and Arenas,A. (2005) Community detection in complex networks

using extremal optimization. Phys. Rev. E, 72, 027104.

Kurtzer,G.M. et al. (2017) Singularity: scientific containers for mobility of

compute. PLoS One, 12, e0177459.

Lamparter,D. et al. (2016) Fast and rigorous computation of gene and path-

way scores from SNP-based summary statistics. PLoS Comput. Biol., 12,

e1004714.

Lancichinetti,A. et al. (2008) Benchmark graphs for testing community detec-

tion algorithms. Phys. Rev. E, 78, 046110.

Merkel,D. (2014) Docker: lightweight linux containers for consistent develop-

ment and deployment. Linux J., 239, 2.

Newman,M.E. (2004) Fast algorithm for detecting community structure in

networks. Phys. Rev. E, 69, 066133.

Newman,M.E. (2006) Modularity and community structure in networks.

Proc. Natl. Acad. Sci. USA, 103, 8577–8582.

Newman,M.E. and Girvan,M. (2004) Finding and evaluating community

structure in networks. Phys. Rev. E, 69, 026113.

Satuluri,V. et al. (2010) Markov clustering of protein interaction networks

with improved balance and scalability. In: Proceedings of the First ACM

International Conference on Bioinformatics and Computational Biology

(BCB’10). ACM, New York, NY, USA, pp. 247–256.

Fig. 1. Comparison of the MONET methods (K1, M1 and R1) against a baseline

(Louvain) on simulated graphs with planted community structure. On the left: cluster-

ing performance (NMI) as a function of the fraction of inter-module edges (mixing par-

ameter). Right: memory requirements as a function of network size. Each point

represents an average of the results obtained performing a grid search over the follow-

ing parameter space (at least two repetitions for each combination of parameters): num-

ber of nodes: 5k, 7k, 8k, 10k; average node degree: 15, 20, 25; exponent of the

distribution of community sizes: 1, 2 and exponent of the distribution of node degrees:

2, 3

MONET 3921

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/12/3920/5818484 by guest on 19 January 2021

https://www.synapse.org/#
https://www.synapse.org/#
https://www.synapse.org/#
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa236#supplementary-data
https://github.com/BergmannLab/MONET.git

