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Abstract

Summary: : We define a disease module as a partition of a molecular network whose components are jointly associ-
ated with one or several diseases or risk factors thereof. Identification of such modules, across different types of net-
works, has great potential for elucidating disease mechanisms and establishing new powerful biomarkers. To this
end, we launched the ‘Disease Module Identification (DMI) DREAM Challenge’, a community effort to build and
evaluate unsupervised molecular network modularization algorithms. Here, we present MONET, a toolbox providing
easy and unified access to the three top-performing methods from the DMI DREAM Challenge for the bioinformatics
community.

Availability and implementation: MONET is a command line tool for Linux, based on Docker and Singularity con-
tainers; the core algorithms were written in R, Python, Ada and Cþþ. It is freely available for download at https://
github.com/BergmannLab/MONET.git.

Contact: mattia.tomasoni@unil.ch or sven.bergmann@unil.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene networks, such as protein interaction, signaling, gene co-
expression and homology networks, provide scaffolds of linked
genes. Subnetworks, or modules, include genes normally acting in
concert but whose joint function may be disrupted, if any of its
members is missing, or disregulated. For disease modules, this dis-
ruption can lead to a disease phenotype. The identification of such
modules is therefore useful for elucidating disease mechanisms and
establishing new biomarkers and potential therapeutic targets. Yet,
which methods work best to extract such modules from different
types of networks is not well understood. This prompted us to initi-
ate the ‘Disease Module Identification (DMI) DREAM Challenge’
(Choobdar et al., 2019), providing an unbiased and critical assess-
ment of 75 contributed module identification methods. Our

method evaluation used summary statistics from more than 200
disease relevant genome-wide Association Studies in conjunction
with our Pascal tool (Lamparter et al., 2016), avoiding the bias of
using annotated molecular pathways.

The top-performing methods implemented novel algorithms that
advanced the state-of-the-art, clearly outperforming off-the-shelf
tools. We, therefore, decided to make the top three methods available
for the bioinformatics community in a single user-friendly package:
MONET is a command line tool based on Docker and Singularity
virtualization technologies, automatically installing the tool with all
its dependencies inside a container, avoiding time-consuming and
error-prone manual installations of computing environments and
libraries. All computations then take place in this sandbox environ-
ment and once the output is ready, all resources can be fully released
bringing the user’s machine back to its original state.
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2 Methods and implementation

While our challenge was able to establish Kernel Clustering
Optimization using the ‘Diffusion State Distance (DSD)’ metric by Cao
et al. (2014) (hereafter K1) as the overall winner, there were several

strong competitors using entirely different approaches for the network
modularization. Importantly, we observed that no single method was
superior on all network types and that disease modules identified by dif-

ferent methods were often complementary (Choobdar et al., 2019).

2.1 K1: top method using kernel clustering
K1 is based on the DSD, a novel graph metric which is built on the

premise that paths through low-degree nodes are stronger indica-
tions of functional similarity than paths that traverse high-degree
nodes by Cao et al. (2014). The DSD metric is used to define a pair-

wise distance matrix between all nodes, on which a spectral cluster-
ing algorithm is applied. In parallel, dense bipartite sub-graphs are

identified using standard graph techniques. Finally, results are
merged into a single set of non-overlapping clusters.

BLOG: https://www.synapse.org/#!Synapse:syn7349492/wiki/407359.

2.2 M1: top method using modularity optimization
M1 employs an original technique named Multiresolution intro-
duced by Arenas et al. (2008) to explore all topological scales at

which modules may be found. The novelty of this approach relies on
the introduction of a parameter, called resistance, which controls
the aversion of nodes to form modules. Modularity (Arenas et al.,
2007; Newman and Girvan, 2004) is optimized using an ensemble
of algorithms: extremal optimization (Duch and Arenas, 2005),

spectral optimization (Newman, 2006), fast algorithm (Newman,
2004), tabu search (Arenas et al., 2008) and fine-tuning by iterative
repositioning of individual nodes in adjacent modules.

BLOG: https://www.synapse.org/#!Synapse:syn7352969/wiki/407384.

2.3 R1: top method using random walk
R1 is based on a variant of Markov Cluster Algorithm known as bal-

anced Multi-layer Regularized Markov Cluster Algorithm
(bMLRMCL) (Satuluri et al., 2010), which scales well to large

graphs and minimizes the number of oversized clusters. First, a pre-
processing step is applied so that edges with low weights are dis-
carded and all remaining edges are scaled to integer values. Then,

bMLRMCL is applied iteratively on modules of size greater than a
user-defined threshold.

BLOG: https://www.synapse.org/#!Synapse:syn7286597/wiki/406659.

3 Performance

Figure 1 illustrates the performance of the MONET algorithms on

simulated graphs with planted community structure, generated using
the class of benchmark graphs proposed by Lancichinetti et al.
(2008). Modularization performance is measured using Normalized
Mutual Information (NMI). Experiments were carried out on regular
desktop hardware. In accordance with performance evaluations with-

in the DMI DREAM Challenge, K1, the winner, requires the most
computational resources, with a runtime of about one day and the

highest memory allocation for processing on the Challenge inputs.
M1, the second runner-up, completed the Challenge in a few hours
and displayed excellent performance on the simulated benchmark

(even superior to K1, especially in case of extremely high fraction of
inter-module edges and extremely low memory requirements). R1,

the second runner-up, is the only method that requires parameters to
be tuned (nine in total); nevertheless, we believe it is an excellent add-
ition to our tool, as it performed close to K1/M1 on the benchmark, it

requires only moderate memory and has an extremely low run time
(it completed the Challenge in under an hour). Please refer to the
Supplementary Information for details about the execution time.

4 Installation and usage

MONET is extremely simple to install/uninstall and run. The only
requirement is having installed either Docker (Merkel, 2014) or
Singularity (Kurtzer et al., 2017). For detailed instructions and in-
formation about usage and I/O formats, please refer to the
README file on the github repository.

$ git clone https://github.com/BergmannLab/MONET.git
$ cd MONET &&./install.sh
$ monet –help
$ monet –method¼M1 –container¼docker \
–input¼./input/network.txt –output¼./output
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Fig. 1. Comparison of the MONET methods (K1, M1 and R1) against a baseline

(Louvain) on simulated graphs with planted community structure. On the left: cluster-

ing performance (NMI) as a function of the fraction of inter-module edges (mixing par-

ameter). Right: memory requirements as a function of network size. Each point

represents an average of the results obtained performing a grid search over the follow-

ing parameter space (at least two repetitions for each combination of parameters): num-

ber of nodes: 5k, 7k, 8k, 10k; average node degree: 15, 20, 25; exponent of the

distribution of community sizes: 1, 2 and exponent of the distribution of node degrees:

2, 3
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