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Abstract

A minimum cost spanning tree problem analyzes the way to efficiently connect individuals

to a source. Hence the question is how to fairly allocate the total cost among these agents.

Our approach, reinterpreting the spanning tree cost allocation as a claims problem defines

a simple way to allocate the optimal cost with two main criteria: (1) each individual only

pays attention to a few connection costs (the total cost of the optimal network and the cost

of connecting himself to the source); and (2) an egalitarian criteria is used to share costs.

Then, using claims rules, we define an egalitarian solution so that the total cost is allocated

as equally as possible. We show that this solutions could propose allocations outside the

core, a counter-intuitive fact whenever cooperation is necessary. Then we propose a mod-

ification to get a core selection, obtaining in this case an alternative interpretation of the

Folk solution.

Introduction

We consider a situation in which some individuals, located at different places, want to be con-

nected to a source in order to obtain a good or a service. Each link connecting any two individ-

uals, or connecting each individual to the source, has a specific fixed cost. This situation is

known as the minimum cost spanning tree problem (hereafter, the mcst problem) and it is used

to analyze different actual issues, such as telephone, cable TV or water supply networks.

There are several methods for obtaining a way of connecting agents to the source so that the
total cost of the selected network is minimum. Once the minimum cost network is built, several

solutions have been proposed to allocate the cost among the individuals, such as Bird rule [1],

Kar [2], Folk [3, 4], Cycle-complete [5], a family of strict responsive rules [6], or the class of egal-

itarian Shapley value solutions [7]. Some of these solutions take into account the cost of each

link in the network, so all the costs are relevant in order to set the final allocation of the optimal

cost, although most of them would never be used. Contrary to this trend, we define a model in

which only a few costs in the network are considered.

In doing so, our main assumption is that individuals are not worried about costs of links

not being used. They have a local vision of the network and only a few information is relevant

to each individual. At this point, it is important to remark that cooperation is needed to build
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the efficient network. That is, if some individual does not agree with the allocation of the cost,

this individual could connect to the source on his own and the cheapest network is not built.

Remark 1 Actual situations reveal that agents do not necessarily agree on how to distribute
this cost, and in those cases the social optimum is not implemented. Hence, a more expensive net-
work is built (for an example, see [8]; see also [9] for a discussion about individual and social
optimality).

Then, we follow a reductionist approach in which some information is not used, or simpli-

fied, when obtaining the cost sharing of a mcst problem. Specifically, we suppose that individu-

als are only concerned about two particular costs:

1. Their minimum cost to connect to the source (either directly or throughout other individuals).

2. The total cost of the optimal network.

If there is no cooperation, each agent will connect to the source by himself and the total

cost of the network could be much higher than the optimal one (the minimum cost spanning

tree).

Our second key point is the use of an egalitarian criterion. Taking into account that no one

should pay more than the cost of connecting to the source by himself (individual rationality),

our approach will allocate the cost based on an equal distribution of the benefit of cooperation.

This approach leads us to solve the allocation problem by using claims rules. Let us observe

two problems that illustrate our idea.

(A). Consider a set of three houses in a row (at the same distance each one from the other). A
water supply ω is located at one end of the row. The cost of each link between two adjacent
houses is 1 monetary unit. The nearest house to the supply may connect directly with a cost
of 10 units; the second house has a direct cost of 11 units; and the cost of directly connecting
the farthest house is 12 units. The total (minimum) cost of connecting the three houses to
the water supply is 12 units. If each individual connects directly to the source, the total cost
is 33 units.

2 13 !
1 101

In this situation, the cooperation provides a benefit (savings) of 21 monetary units. The
question is how to share this benefit. Note that individual 1 is in a “better position” and
a lower payment of this individual would be reasonable. If the benefit of cooperation is
equally shared, each agent obtains a return of 7 unitary units, paying, respectively, 3, 4 and
5 monetary units. But an egalitarian cost sharing will propose an allocation of 4 units for
each individual.

(B). Consider a similar situation, but now individual 1 is closer to the source, whereas individu-
als 2 and 3 remain at the same location and the costs vary accordingly (the new situation is
as depicted in the following graph):

2 13 !
10 11

As in the previous case, the total (minimum) cost of connecting the three houses to the
water supply is 12 units. But the situation is quite different and now cooperation provides
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a benefit of 12 monetary units. An equal sharing of the benefits originates a negative alloca-
tion to individual 1; that is, he obtains a net benefit from his participation in the network.
On the other hand, observe that in the new situation an equal allocation of the cost is not
admissible for the first individual, since he may connect to the source with a cost of 1 unit,
instead of paying 4 units.

As aforementioned, our main criterion in allocating the cost of the optimal tree is that of

egalitarian sharing, which is one of the main criterion supported in the literature. In [10] the

egalitarian method appear, jointly with the proportional, as the most important (and simple)

ways of sharing a joint cost or benefit.

The rest of the paper is organized as follows. Next Section presents the formal minimum

cost spanning tree problem. Then, we relate minimum cost spanning tree problems with

claims problems, introduce the egalitarian solution concept and analyze its properties. We

show that, in general, our proposal may lie outside the core in some situations. In our last Sec-

tion we propose a modification fulfilling core stability, and we obtain a new interpretation of

the Folk solution. Some final comments close the paper.

Preliminaries: Minimum cost spanning tree problem

A mcst problem involves a finite set of individuals, N = {1, 2, . . ., n}, who want to be connected

to a source ω. Let Nω = N[{ω}. The agents are connected by edges and for i 6¼ j, cij 2 Rþ repre-

sents the cost of the edge eij connecting agents i, j 2 N. Following the notation in [2], cii repre-

sents the cost of the edge connecting agent i 2 N to the source ω. Let C = [cij]n×n the n × n
symmetric cost matrix. The mcst problem is represented by the pair (Nω, C). We denote by N n

the set of all mcst problems with n individuals.

A spanning tree over ðNo;CÞ 2 N n is an undirected graph p with no cycles, which connects

all elements of Nω. We can identify a spanning tree with a function p: N! Nω so that p(i) is

the agent (or the source) to whom i connects in his path to the source, and defines the edges

epi ¼ ði; pðiÞÞ: In a spanning tree each agent is (directly or indirectly) connected to the source

ω. Moreover, given a spanning tree p, there is a single path from any i 2 N to the source ω,

given by the edges (i, p(i)), (p(i), p2(i)), . . ., (pt−1(i), pt(i) = ω), for some integer t< n. Let us

denote by SðNoÞ the set of all spanning trees in the problem (Nω, C). The cost of building a

spanning tree p 2 SðNoÞ is the sum of the costs of all the edges in this tree; that is (with some

abuse of notation, when p(i) = ω, cip(i) = cii)

Cp ¼
Xn

i¼1

cipðiÞ ¼
Xn

i¼1

cðepi Þ

Given a spanning tree p 2 SðNoÞ, we denote by p(i, j) the set of edges in the (unique) path

in p joining i and j.
Prim [11] provides an algorithm that solves the problem of connecting all the agents to the

source at the minimum cost. This method has n steps, as much as the number of individuals

in the network. First, it connects to the source the agent i with smallest cost to the source,

cii� cjj, for all j 2 N. In case that more than one agent fulfills this condition, any of them can

be selected. In the second step, an agent in N\{i} with the smallest cost either to the source or

to agent i, who is already connected, is selected and this connection is used. The process con-

tinues until all agents are connected, at each step connecting an agent still not connected to a

connected agent or to the source. We denote by m a tree with minimum cost and by Cm its

PLOS ONE Egalitarian sharing of a spanning tree cost

PLOS ONE | https://doi.org/10.1371/journal.pone.0236058 July 30, 2020 3 / 14

https://doi.org/10.1371/journal.pone.0236058


cost. That is, for all spanning tree p,

Cm ¼
Xn

i¼1

cimðiÞ � Cp ¼
Xn

i¼1

cipðiÞ:

Once a network is built, an important issue is how to allocate the associated cost among the

agents. A cost sharing rule for mcst problems is a function a : N n ! R
n that proposes for any

mcst problem (Nω, C) an allocation ða1; a2; . . . ; anÞ 2 R
n
; such that

Xn

i¼1

ai ¼ Cm:

Remark 2 In some contexts the non-negativity of the cost αi allocated to each individual is
required. This question is related to the assumption of property or non-property rights on the
locations that individuals occupy (see, for instance, [6] for a discussion). In the second case, non-
property rights approach, the allocations must be necessarily non-negative. In what follows we
will consider the non-property rights approach.

Bird [1] proposes a cost allocation so that each individual pays the cost of the edge he

directly uses to be connected in the minimum cost spanning tree. In case there are several net-

works providing the (same) minimum cost, the Bird solution allocates to each individual the

average of the cost of the connections he uses in these networks. Since then, several authors

have proposed other solution concepts in the mcst literature: for instance, [2, 3, 4, 5, 6, 12], etc.

(see [13] for definitions and a comparative analysis of most of these solutions).

Some of these solutions take all the possible connections in the graph into account,

although most of these connections are not used in the optimal tree. However, other solutions

use a reductionist approach and they are obtained only considering some of the connection

costs. Specifically, the Bird solution only considers the cost of the link each individual uses in

the optimal network while the costs of other edges are ignored. The Folk and Cycle-complete
solutions also take a reductionist approach. As the reductionist approach ignores some of

the available information it reduces the parameters of the problem (and the computational

complexity).

In order to analyze the cost that any individual would incur without cooperation, we intro-

duce the notion of indirect cost.

Definition 1 Given a mcst problem (Nω, C) the indirect cost to connect individual i 2 N to
the source ω is

c�ii ¼ min
p2SðNoÞ

nX
cðeÞ e 2 pði;oÞ

o

In this context, demanding that the maximum cost to be allocated to any individual cannot

exceed his (indirect) cost to the source (individual rationality) is a compulsory requirement

because, in other case, the individual would be better off acting by himself and would not

cooperate in building the optimal network.

Definition 2 A cost allocation α = (α1, α2, . . ., αn) of the minimum cost Cm in a cst problem
(Nω, C), is individually rational if for all i 2 N, ai � c�ii:

Whenever cooperation is necessary, as in mcst situations, the literature on cost sharing sin-

gles out core stability as the key property of any allocation rule: no coalition of agents should

be charged more than their cost of connecting to the source. Then, given a coalition S� N, the

stand alone cost for this coalition to be connected to the source (in our non-property rights
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model) is:

vðSÞ ¼ min fCmðTÞ : S � T � Ng

where Cm(T) denotes the cost of the optimal tree connecting coalition T to the source. Note

that for any i 2 N, vðfigÞ ¼ c�ii:
Remark 3 It is important to note that the cost function Cm(S), S� N, is not monotonic since

the addition of some agents may reduce the cost of the coalition. As we follow the non-property
rights approach, any coalition S might use locations of individuals outside S to build their mini-
mum cost spanning tree. So, v(S) represents the minimum cost of connecting all individuals in S
to the source ω, possibly using (and paying for) connections of individuals outside S. The stand
alone cost function v(S) is monotonic.

Definition 3 A cost allocation α = (α1, α2, . . ., αn) of the minimum cost Cm in a mcst problem
(Nω, C) is a core selection if for all S� N, S 6¼ ;,

X

i2S

ai � vðSÞ.

Egalitarian cost sharing

We propose an egalitarian treatment of the agents. So, a first attempt to allocate the cost of the

optimal network, Cm is to divide it equally among the individuals: ai ¼
1

n Cm, i = 1, 2, . . ., n.

However, as Problem (B) depicts, the equal division may be not individually rational: agent 1

is allocated 4 monetary units, whereas his cost to the source is c�
11
¼ 1 monetary unit.

Individual rationality provides a way to address the problem of allocating the optimal cost

in a mcst problem by transforming it into a surplus sharing problem:

• First, each agent pays his (indirect) cost to connect the source c�ii. So, the individuals jointly

contribute with the amount C� ¼
Xn

i¼1

c�ii to build a network.

• Then, the efficient tree may be built, with cooperation, at a cost Cm� C� and there is a bene-

fit from cooperation given by B = C� − Cm.

• Any method used to share this benefit B,
Xn

i¼1

xi ¼ B; xi� 0, provides a final allocation of the

cost Cm, ai ¼ c�ii � xi, which is individually rational.

A possible way is to share equally the benefits obtained from cooperation:

ai ¼ c�ii �
C� � Cm

n
i ¼ 1; 2; . . . ; n:

However, as Problem (B) shows, equalizing benefits could end in a negative allocation for

some agents, that implies that these agents get a net profit from participating in the network.

As mentioned in [6] this possibility only has sense if the individuals have property rights on

their location. It is noteworthy that if we want to avoid this possibility (since we are in the

non-property rights approach) a constrained equal division should be considered: no one
obtains a benefit greater than his initial contribution. Then the benefit of cooperation should be

shared as in a claims problem in which each individual claims all his contribution to be
returned. A claims problem is a situation involving n individuals who claim some amount di, so

that the aggregate demand exceeds the available endowment B,
Xn

i¼1

di � B. A claims rule φ

divides efficiently the endowment so that agents do not receive a negative amount, nor more
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than their claim. The following definition transforms mcst problems into claims problems (see

[14] for a complete survey on claims problems).

Definition 4 To any mcst problem (Nω, C) with minimum cost Cm, we associate the claims

problem (B, d), where B = C� − Cm, C� ¼
Xn

i¼1

c�ii and di ¼ c�ii.

That is, each agent claims the amount he paid: his indirect cost to the source. If we use a

claims rule φ to solve the problem (B, d), then ai ¼ c�ii � φi is an individually rational alloca-

tion of the cost Cm. The claim boundedness condition, φi� di, implies that the allocations

ai ¼ c�ii � φi are non-negative, which is coherent with the non-property rights approach. As

we are interested in an egalitarian cost sharing, we consider the two main egalitarian claims

rules: the Constrained Equal Awards (CEA) and the Constrained Equal Losses (CEL), that

equalize, respectively, gains and losses satisfying the restrictions of a claims rule. Formally,

given a claims problem ðB; dÞ 2 Rþ � R
n
þ

CEAiðB; dÞ ¼ min fl; dig l such that
X

i2N
CEAiðB; dÞ ¼ B

CELiðB; dÞ ¼ max f� lþ di; 0g l such that
X

i2N
CELiðB; dÞ ¼ B

Definition 5 Given a mcst problem (Nω, C) such that the cost of the optimal spanning tree is
Cm, let B = C� − Cm and di ¼ c�ii; then, the constrained equal costs sharing rule assigns to each
individual i 2 N the amount

a
ceq
i ðNo;CÞ ¼ c�ii � CELiðB; dÞ:

This sharing rule allocates the same amount to all agents, constrained to no one is allocated

an amount greater than his indirect cost to the source. Example 1 compares this solution with

Bird and Folk proposals in the mcst problems (A) and (B).

Example 1 For problems (A) and (B) the following cost shares are obtained:

Problem (A) Problem (B)
®ceq (4; 4; 4) (1; 5:5; 5:5)
Bird (10; 1; 1) (1; 10; 1)
Folk (4; 4; 4) (1; 5:5; 5:5)

Taking the Folk solution as a benchmark, we analyze if its main properties are satisfied or

not by our egalitarian proposal αceq. First, we formally define these properties (see [4] and [6]

for relationships and interpretations of these properties).

• A solution α for mcstp satisfies positivity if α(Nω, C)�0, for any problem (Nω, C).

• A solution α for mcst problems satisfies continuity if it is a continuous function of the cost

matrix C.

• A solution α for mcstp satisfies symmetry if for any problem (Nω, C) such that there are

i, j 2 N with cik = cjk, for all k 2 N\{i, j}, cii = cjj, then αi(Nω, C) = αj(Nω, C).

• A solution α for mcst problems satisfies strong cost monotonicity if for any pair of problems

(Nω, C), (Nω, C0) such that C� C0, then αi(Nω, C)�αi(Nω, C0) for all i 2 N.

• A solution α for mcst problems satisfies cost monotonicity if for any pair of problems

(Nω, C), (Nω, C0) such that C and C0 coincide except that cik < c0ik, for some i, k 2 N, then

αi(Nω, C)�αi(Nω, C0).
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• A solution α for mcst problems satisfies population monotonicity if for any problem (Nω, C),

any subset S� N and any i 2 S, αi(Sω, C|S)�αi(Nω, C).

• A solution α for mcst problems satisfies ranking if for any problem (Nω, C) and i, j 2 N such

that cik� cjk for all k 2 N\{i, j}, cii� cjj, then αi(Nω, C)�αi(Nω, C).

• A mcst problem (Nω, C) is separable if there are two disjoint subsets S[T = N, S\T = ;, such

that the mcst in N are union of mcst in each of the sub-problems, m(Nω, C) = m1(Sω, C|S)[

m2(Tω, C|T). A solution α for mcst problems satisfies separability if for any separable prob-

lem (Nω, C), N = S[T, S\T = ;,

aiðNo;CÞ ¼
aiðSo;CjSÞ if i 2 S

aiðTo;CjTÞ if i 2 T

(

• A solution α for mcst problems satisfies equal share of extra-costs if for any pair of problems

(Nω, C), (Nω, C0) such that:

1. for all i 2 N, cii = c0, c0ii ¼ c0
0
; c0 < c0

0
.

2. for all i, j 2 N, i 6¼ j, c0ij ¼ cij � c0

then aiðNo;C
0Þ ¼ aiðNo;CÞ þ

c0
0
� c0

n
, for all i 2 N.

• Two mcst problems (Nω, C) and (Nω, C0) are tree equivalent if there is a tree m such that it is

a minimum cost spanning tree for both problems, and moreover cimðiÞ ¼ c0imðiÞ for all i 2 N. A

solution α for mcst problems satisfies independence of irrelevant trees if for any pair of tree

equivalent problems (Nω, C) and (Nω, C0), then α(Nω, C) = α(Nω, C0).

Proposition 1 αceq fulfills positivity, continuity, cost monotonicity, strong cost monotonicity,
independence of irrelevant trees, ranking, symmetry and equal share of extra-costs. It does not
fulfill population monotonicity, separability, nor core stability.

Proof. First, we note that our sharing rule may be written alternatively as:

aceqðNo;CÞ ¼ CEAðCm; c�Þ c� ¼ ðc�
11
; c�

22
; . . . ; c�nnÞ

(1) Positivity is immediately fulfilled, since the CEL rule satisfies claims boundedness and

the maximum amount that can be returned is what each individual has paid.

(2) Continuity.

We know that Cm varies continuously with C (see [4]), and the indirect costs, di ¼ c�ii are

obviously a continuous function of the cost matrix. On the other hand, CEA is a continuous

function on its arguments, which proves that αceq is continuous.
(3) Strong cost monotonicity. Consider a pair of problems (Nω, C), (Nω, C0) such that C�

C0. Then, Cm � C0m and di ¼ c�ii � d0i ¼ ðc
0Þ
�

ii, for all i 2 N. Since the claims rule CEA fulfills

endowment monotonicity and claims monotonicity (see [14]), then

CEAiðCm; dÞ � CEAiðC0m; d
0Þ

that implies

a
ceq
i ðNo;CÞ � a

ceq
i ðNo;C

0Þ 8i 2 N:

Since this property implies cost monotonicity and independence of irrelevant trees (see [4]),

all three properties are fulfilled.
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(4) Ranking. Given a problem (Nω, C) and i, j 2 N such that cik � cjk for all k 2 N, then

it is obvious that di ¼ c�ii � dj ¼ c�jj. Therefore, CEAi(Cm, d)�CEAj(Cm, d) (order preserva-

tion, see [14]) and αceq fulfills ranking. Since ranking implies symmetry this property is also

fulfilled.

A core egalitarian proposal

The main objection to αceq> is that, in general, it fails to be a core selection. Then, subsets of

agents may have incentives to leave the grand coalition and perform their project by them-

selves. Next, we show some classes of mcst problems in which αceq> is a core selection. Later,

we will propose a modification of our solution (maintaining the egalitarian criteria) in order to

achieve core selection for all mcst situations.

Some mcst problems where αceq> is a core-selection

In some families of mcst problems αceq> always provides core allocations. We present two

examples of such families.

E1) Let us consider the so-called 2 −mcst problems in which the connection cost between two

different individuals (houses, villages, . . .) can only take one of two possible values: low and

high cost (see, for instance, [15]; see also [16] where this class has been generalized to the

so-called simple mcst problems).

Moreover, we assume that cij = k1, i 6¼ j, cii = k2, and 0� k1� k2. Note that, for this family

of mcst problems the property equal share of extra-costs could be applied.

In this case, if there are n individuals, then Cm = k2 + (n − 1)k1 and di ¼ c�ii ¼ k2. As all

claims are identical, then

a
ceq
i ¼

k2

n
þ

n � 1

n
k1 i ¼ 1; 2; . . . ; n

and, for all S� N, v(S) = k2+ k1(|S| − 1). Then, since k1� k2

X

i2S

a
ceq
i ¼

X

i2S

k2

n
þ

n � 1

n
k1

� �

¼ jSj
k2

n
þ

n � 1

n
k1

� �

� vðSÞ

So the allocation provided by αceq> belongs to the core of the cooperative game.

E2) Let us consider linear mcst problems: a group of individuals N = {1, 2, . . ., n} situated in a

row (equally separated) want to connect to a source ω. The cost of connecting one individ-

ual with the next one is k monetary units. The cost of connecting individual 1 to the source

is M monetary units. If an individual wants to connect to the source, he must do it through

all its neighbors on the way towards the source and pay all costs. This is the case of Problem

(A).

n : : : : : : 2 1 !
Mkk k

Formally, for each i, j 2 N, i 6¼ j, the connection cost is cij = |i − j|k. For each i 2 N, the cost

to the source is cii = M + (i − 1)k.

The minimum cost spanning tree m connects each individual to the next, m(j) = j − 1, j� 2,

and the first one with the source, m(1) = ω, with a total cost Cm = M + (n − 1)k. For each
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i 2 N, di ¼ c�ii ¼ M þ ði � 1Þk and then

B ¼ C� � Cm ¼ ðn � 1Þ M þ
n
2
� 1

� �
k

� �

For any coalition S� N, v(S) = M + kmax{i − 1, i2S}. To obtain the allocation provided by

αceq> we distinguish two cases:

1. If M� k, a
ceq
i ¼

M
n
þ

n � 1

n
k; for all i 2 N. Then, for all S� N

X

i2S

a
ceq
i ¼

X

i2S

M
n
þ

n � 1

n
k

� �

¼ jSj
M
n
þ

n � 1

n
k

� �

�

� M þ ðjSj � 1Þk � M þ kmaxfi � 1; i 2 Sg ¼ vðSÞ:

2. If M< k, a
ceq
1 ¼ M, a

ceq
i ¼ k, for all k� 2. Then, for all S� N

a. If 1 2 S,
X

i2S

a
ceq
i ¼ M þ ðjSj � 1Þk �

� M þ kmaxfi � 1; i 2 Sg ¼ vðSÞ:

b. If 1 =2 S, max{i − 1, i2S}� |S| and
X

i2S

a
ceq
i ¼ jSjk � M þ kmaxfi � 1; i 2 Sg ¼ vðSÞ:

So the allocation provided by αceq> belongs to the core of the cooperative game.

A core-egalitarian proposal

In order to obtain an egalitarian solution satisfying core stability, we express the αceq> solution

in an alternative way (see [17] to obtain an expression of the CEA claims rule as a minimiza-

tion problem). Let A be the set of non-negative individually rational allocations in a mcst prob-

lem (Nω, C)

AðNo;CÞ ¼ x 2 Rn
:
Xn

i¼1

xi ¼ Cm 0 � xi � c�ii i ¼ 1; 2; . . . ; n

( )

then

aceq No;Cð Þ ¼ argmin

(
Xn

i¼1

xi �
Cm

n

� �2

x 2 A No;Cð Þ

)

Note that, as the distance function is continuous and strictly convex, and set A is compact

and convex, the minimization problem has always a unique solution. This expression provides
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us a way of obtaining a core allocation that tries to meet our egalitarian criteria, by defining:

b
ceq No;Cð Þ ¼ argmin

(
Xn

i¼1

xi �
Cm

n

� �2

x 2 co No;Cð Þ

)

where co(Nω, C) denotes the core of the cooperative game defined by the characteristic func-

tion v(S), S� N. Obviously, this proposal is the most egalitarian core allocation. On the other

hand, as coðNo;CÞ � AðNo;CÞ, we obtain the following result:

If aceqðNo;CÞ 2 coðNo;CÞ then b
ceq
ðNo;CÞ ¼ aceqðNo;CÞ

In Example 2, aceqðNo;CÞ ¼ ð3=2; 3=2; 3=2; 3=2Þ=2coðNo;CÞ, and b
ceq

coincides with the

Folk solution. We show that this coincidence is always true in this kind of mcst problems.

Proposition 2 In the class of 2 −mcst problems βceq coincides with the Folk solution.

Proof. From [16] we know that in this class of problems there is a partition of the set of

agents, such that in each subset the Folk solution proposes the same allocation to all individuals

in this group (simple components). To simplify the proof we suppose that there are just two

components in the 2 −mcst problem (Nω, C) (for more than two components, the reasoning

follows an analogous argument):

N ¼ N1 [ N2; N1 \ N2 ¼ ;; Fi ¼ c1; 8i 2 N1; Fj ¼ c2; 8j 2 N2

Let us denote by ni the cardinality of the subset Ni, i = 1, 2, n = n1+ n2 and, as usually, Cm is

the cost of the optimal tree. Then, applying separability

n1c1 þ n2c2 ¼ Cm; n1c1 ¼ vðN1Þ; n2c2 ¼ vðN2Þ vðN1Þ þ vðN2Þ ¼ vðNÞ

Moreover, we know that this allocation is in the core of the monotonic cooperative game.

On the other hand, after reordering the agents, we can write

b
ceq
ðNo;CÞ ¼ ðx; yÞ x ¼ ðx1; x2; . . . ; xn1

Þ y ¼ ðy1; y2; . . . ; yn2
Þ

such that (x, y) minimizes

Xn1

i¼1

xi �
Cm

n

� �2

þ
Xn2

j¼1

yj �
Cm

n

� �2

x; yð Þ 2 co No;Cð Þ

Then, by noticing that

Xn1

i¼1

xi ¼ vðN1Þ
Xn2

j¼1

yj ¼ vðN2Þ

the function minimizes when all components xi are identical for all i 2 N1, and yj are identical

for all j 2 N2. Then,

xi ¼
vðN1Þ

n1

¼ c1 ¼ Fi; i 2 N1 yj ¼
vðN2Þ

n2

¼ c2 ¼ Fj; j 2 N2

and both solutions coincide.

A piece-wise linear extension

If we denote by Cn the set of all cost matrices involving n individuals, Cn × n, and by Cb
n the set

of elementary cost matrices, i.e., cij 2 {0, 1} for all i, j = 1, 2, . . ., n, we know (see [6]) that there
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is a basis

C1; C2; . . . ; Cp 2 Cb
n p ¼

nðnþ 1Þ

2

such that any cost matrix C 2 Cn can be expressed as

C ¼
Xp

k¼1

lk C
k lk 2 R

Then, given a mcst solution ψb defined only for elementary cost matrices (a partial solu-

tion), its piece-wise linear extension ψ is defined by

cðNo;CÞ ¼
Xp

k¼1

lk c
b
ðNo;C

kÞ

As proved in [6], piece-wise linear solutions have the advantage that many normative prop-

erties automatically extend from elementary to arbitrary cost matrices. In particular, they

show that this is the case with the properties of ranking, cost monotonicity, polynomial complex-
ity, population monotonicity and positivity. Then, we can define the piece-wise linear extension

of the βceq solution defined only on elementary problems:

UðNo;CÞ ¼
Xp

k¼1

lk b
ceq
ðNo;C

kÞ

As an immediate consequence of Proposition 2 (elementary problems are a particular case

of 2 −mcst problems) we obtain that this extension coincides with the Folk solution.

Corollary 1 For any mcst problem (Nω, C), Y(Nω, C) = F(Nω, C).

Then, the Folk solution appears as the piece-wise linear extension of βceq, that picks the

most egalitarian allocation in the core associated to the mcst problem, showing in this way an

alternative interpretation to this solution.

Some further comments

In [18, 19] it is shown that for elementary mcst problems, the Folk solution is the permutation-

weighted average of the extreme points of the non-property rights game defined by v(S). Then,

for any elementary mcst problem (Nω, C), as a consequence of Proposition 2 we obtain

b
ceq No;Cð Þ ¼

XK

k¼1

1

n!
�yk No;Cð Þ ð1Þ

where �ykðNo;CÞ, k = 1, 2, . . ., K, denote the extreme points of the core of the cooperative game

defined by v(S) (see [18]). Moreover, in this class of mcst problems, βceq also coincides with the

nucleolus (see [19]), showing the close relationships between the egalitarian and nucleolus con-

cepts. We could define a non-piecewise linear extension of βceq by using Eq (1).

(5) Equal share of extra-costs. If we consider two problems (Nω, C), (Nω, C0) such that:

1. for all i 2 N, cii = c0, c0ii ¼ c0
0
; c0 < c0

0
.

2. for all i, j 2 N, i 6¼ j, c0ij ¼ cij � c0

then, C0m ¼ Cm þ ðc00 � c0Þ:On the other hand, d0i ¼ c0
0

and di = c0, for all i 2 N. So, as all

claims are identical for all the individuals, the CEL rule allocates the same amount B/n, B0/n to
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each individual and

a
ceq
i ðNo;C

0Þ ¼
C0m
n
¼

Cm

n
þ

c0
0
� c0

n
¼ a

ceq
i ðNo;CÞ þ

c0
0
� c0

n
8i 2 N

which proves that this solution fulfills equal share of extra-costs.
(7) Example 2 shows that αceq does not fulfill separability nor core selection. Since population

monotonicity implies core selection, our proposal does not fulfill population monotonicity.

Example 2 Let us consider the mcst problem defined by the following picture (arcs not
depicted have a cost cij = 2):

3 2 1

4

!
221 1

There are several spanning trees with minimum cost Cm = 6. One of them is given by:

mð1Þ ¼ o mð2Þ ¼ o mð3Þ ¼ 4; mð4Þ ¼ 2:

If we denote S = {1}, T = {2, 3, 4}, m = m1[m2, where m1 and m2 are the minimum cost

spanning trees in problems (S, C|S) and (T, C|T), respectively. On the other hand, c�ii ¼ 2, for

all i 2N, and then B = 2 and aceq ¼ ð3=2; 3=2; 3=2; 3=2Þ. We observe that the separability prop-

erty implies α1 = 2, so αceq> does not fulfill this property. Also note that

vðTÞ ¼ 4 <
X

i2T

a
ceq
i ¼

9

2

so this proposal is not a core selection.

Final remarks

We have proposed an egalitarian approach to the problem of sharing the common cost Cm of a

mcst. One of the main features in our model is to ignore the “non-relevant” costs, considering

only the cost of connecting the individual to the source, c�ii; and the total cost Cm. Our first

attempt to define an egalitarian allocation, the αceq> solution is very simple to understand and

to compute. It captures a solidarity approach in which the optimal cost (obtained throughout

cooperation) is paid as equally as possible among the agents in the project. Nevertheless, it fails

to be coalitionally stable, a crucial property whenever cooperation is necessary. Moreover, the

egalitarian criteria will always ignore situations like the one in Example 2, where separability is

not fulfilled.

To solve the core stability, we define the βceq solution: the most egalitarian allocation in the

core. We have shown that this solution coincides with the Folk solution in elementary prob-

lems. This fact allow us to reinterpret the Folk solution as the piece-wise linear extension of

βceq applied to elementary problems (the Y solution).

Finally, an interesting scenario to extend (in future research) both the Folk solution and our

egalitarian proposals is the generalized minimum spanning tree problem. In this problem, indi-

viduals are grouped into a number of predefined clusters, and the objective is to find a mini-

mum-cost spanning tree of a subset of individuals which includes exactly one individual from

each cluster (see, for instance, [20, 21]). As mentioned in those papers, “the generalized mini-

mum spanning tree problem provides an attractive way of modeling various real world
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applications: in the field of telecommunications, in identifying the position of regional service

centers such as stores, warehouses or distribution centers, agricultural settings, energy trans-

portation, physics, etc.” Once the optimal spanning tree is obtained, as in our setting, its cost

must be shared by the agents (clusters), and the allocation of each cluster must be shared by

the individuals in this cluster.
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17. José Vicente-Pérez. On compromising in claims problems 1: the reverse-Talmud family. Mimeo, Uni-

versitat d’Alacant, 2019.

18. Trudeau Christian and Vidal-Puga Juan. On the set of extreme core allocations for minimal cost span-

ning tree problems. Journal of Economic Theory, 169:425—452, 2017. https://doi.org/10.1016/j.jet.

2017.03.001

19. Trudeau Christian and Vidal-Puga Juan. Clique games: A family of games with coincidence between

the nucleolus and the shapley value. Mathematical Social Sciences, 103:8—14, 2020. https://doi.org/

10.1016/j.mathsocsci.2019.10.002

20. Pop PetricăC., Matei Oliviu, Sabo Cosmin, and Petrovan Adrian. A two-level solution approach for solv-

ing the generalized minimum spanning tree problem. European Journal of Operational Research, 265

(2):478—487, 2018. https://doi.org/10.1016/j.ejor.2017.08.015

21. Pop PetricăC.. The generalized minimum spanning tree problem: An overview of formulations, solution

procedures and latest advances. European Journal of Operational Research, 283(1):1—15, 2020.

PLOS ONE Egalitarian sharing of a spanning tree cost

PLOS ONE | https://doi.org/10.1371/journal.pone.0236058 July 30, 2020 14 / 14

https://doi.org/10.1016/j.ejor.2014.01.056
https://doi.org/10.1016/j.orl.2016.06.008
https://doi.org/10.1016/j.orl.2016.06.008
https://doi.org/10.1016/j.jet.2017.03.001
https://doi.org/10.1016/j.jet.2017.03.001
https://doi.org/10.1016/j.mathsocsci.2019.10.002
https://doi.org/10.1016/j.mathsocsci.2019.10.002
https://doi.org/10.1016/j.ejor.2017.08.015
https://doi.org/10.1371/journal.pone.0236058

