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Abstract 

Mass spectrometry imaging (MSI) has become a mature, widespread analytical technique to perform non-targeted 
spatial metabolomics. However, the compounds used to promote desorption and ionization of the analyte during 
acquisition cause spectral interferences in the low mass range that hinder downstream data processing in metabo‑
lomics applications. Thus, it is advisable to annotate and remove matrix-related peaks to reduce the number of 
redundant and non-biologically-relevant variables in the dataset. We have developed rMSIcleanup, an open-source 
R package to annotate and remove signals from the matrix, according to the matrix chemical composition and the 
spatial distribution of its ions. To validate the annotation method, rMSIcleanup was challenged with several images 
acquired using silver-assisted laser desorption ionization MSI (AgLDI MSI). The algorithm was able to correctly classify 
m/z signals related to silver clusters. Visual exploration of the data using Principal Component Analysis (PCA) dem‑
onstrated that annotation and removal of matrix-related signals improved spectral data post-processing. The results 
highlight the need for including matrix-related peak annotation tools such as rMSIcleanup in MSI workflows.
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Introduction
Mass spectrometry imaging (MSI) is a label-free tech-
nology that allows to obtain molecular and spatial infor-
mation from intact tissue sections [1]. MSI has been 
gradually adopted for spatial-resolved metabolomics and 
it has been regarded as a potential tool for understand-
ing the mechanisms underlying complex diseases such as 
cancer or diabetes [2]. However, the conventional organic 
matrices used in Matrix-Assisted Laser Desorption 

Ionization (MALDI) produce spectral signals that inter-
fere in the low m/z range. This is an issue particularly in 
metabolomics which analyses low molecular weight com-
pounds, so mass spectrometers are set to acquire within 
the m/z range where MALDI matrices exhibit most MS 
signals. This seriously hampers downstream metabo-
lomics data processing [3, 4], as the matrix introduces 
noise, redundant variables, and variables with no biologi-
cal meaning into the complex MSI datasets.

Several alternatives to the common organic matrices 
have been proposed to deal with exogenous contami-
nation caused by matrix ion signals. Nanomaterials or 
metal layer deposition methods, for instance, dramati-
cally reduce the number of signals related to the LDI 
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promoting material in the low m/z range. Some examples 
are graphene oxide, silicon or metals such as gold, plati-
num or silver [5–8]. Nevertheless, even when these alter-
natives are used and the number of peaks related to the 
LDI promoting material is reduced, there is still a need to 
annotate them in order to reduce spectral complexity and 
distinguish exogenous from endogenous compounds, 
especially in untargeted applications.

To tackle the issue of annotating MS signals related 
to the LDI-promoting material several software-based 
solutions have been proposed. A simple approach con-
sists of acquiring a reference area outside the sample 
during the MSI experiment. Under the assumption that 
only matrix-related peaks will be recorded, the peaks 
found in the outside area are then subtracted from the 
tissue spectrum. Given its simplicity, some variation 
of this procedure has been adopted by many research-
ers in their workflows. Expanding on this idea, Fonville 
et  al. [9] presented a method that relies on the hypoth-
esis that matrix-related peaks will correlate positively 
to a set of reference peaks outside the tissue region 
while endogenous peaks will correlate negatively. How-
ever, this approach has three main limitations. Firstly, 
due to ion suppression [10] and the formation of matrix 
adducts with endogenous compounds, the matrix-related 
peaks outside and inside the tissue region might differ. 
Additionally, endogenous molecules that are delocal-
ized during the matrix application process can be mis-
classified as matrix-related. Finally, the method cannot 
distinguish a given matrix-related MS peak from an iso-
baric or overlapping endogenous MS peak. Thus, simpli-
fied approaches to annotate matrix-related signals are 
not suitable for untargeted applications such as spatial 
metabolomics. Recent work by Ovchinnikova et  al. [11] 
takes a more comprehensive approach in defining three 
automated algorithms for off-sample ion classification. 
Their methods have proved to perform well when trained 
and validated against a “gold standard set” of ion images 
manually annotated by experts. However, their focus 
is not specifically on matrix-related peaks, but on the 
annotation of signals that exhibit a spatial distribution 
with high concentrations outside of the tissue region. For 
this reason, these methods focus on classifying each ion 
image separately as “on-sample” or “off-sample” and do 
not exploit relevant information such as the identity of 
the ion, adduct type, matrix type, etc. Additionally, since 
they are based in machine and deep learning methods 
they inherently suffer from the black box problem given 
that annotation results cannot be traced back and easily 
justified.

To solve these limitations we propose a new algo-
rithm that relies not only on the ion images but also on 
the chemical information of the LDI promoting material 

used. The algorithm also incorporates an overlapping 
peak detection feature to prevent misclassification of 
overlapped or isobaric ions. The presented algorithm 
is implemented in an open-source R package freely 
available to facilitate its use. Additionally, the package 
generates a visual report to transparently justify each 
annotation.

In order to validate and optimize the proposed method, 
we opted for a well-understood LDI promoting mate-
rial such as silver. The use of silver nanolayers for MSI 
(AgLDI MSI) has been steadily growing in recent years 
[6, 12–17]. The characteristic isotopic pattern of silver 
( 107Ag and 109Ag , 51.84% and 48.16% abundance, respec-
tively), as well as its well-known ionization and adduct 
formation allow to define a list of possible and not-pos-
sible silver-related peaks of a typical AgLDI MSI experi-
ment. This set of possible and not-possible peaks is used 
as a validation list to assess the performance of the clas-
sification algorithm. A total of 14 MSI datasets acquired 
with an Ag-sputtered nanolayer from three different lab-
oratories, were used for validation.

Materials and methods
Table 1 summarizes the main processing parameters for 
each of the 14 datasets used in this study. Datasets 1–10 
were acquired in our lab and the materials, sample prep-
aration and MSI acquisition parameters are described 
here. In order to overcome lab-specific bias in our study, 
four additional datasets were provided by collaborating 
laboratories. For further details about the materials, sam-
ple preparation and MSI acquisition of these datasets, 
refer to the original publications of Dataset 11 [18], Data-
set 12 [14] and Datasets 13 and 14 [6].

Materials
For the samples acquired by our group, indium tin oxide 
(ITO)-coated glass slides were obtained from Bruker 
Daltonics (Bremen, Germany). The silver-target (purity 
grade > 99.99%) used for sputtering was acquired from 
Kurt J. Lesker Company (Hastings, England).

Sample preparation
All the samples acquired by our group were obtained 
from mice and provided by the animal facility at the Fac-
ulty of Medicine and Health Sciences of the University 
Rovira i Virgili. All tissues were snap-frozen at − 80  °C 
after collection and kept at this temperature during ship-
ping and storing until MSI acquisition.

The tissues were sectioned with a Leica CM-1950 cry-
ostat (Leica Biosystems Nussloch GmbH) located at 
the Centre for Omics Sciences (COS) of the University 
Rovira i Virgili into 10 μm sections. Tissue sections were 
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mounted on ITO coated slides by directly placing the 
glass slide at ambient temperature onto the section.

The sputtering system ATC Orion 8-HV (AJA Interna-
tional, N. Scituate, MA, USA) was used to deposit a silver 
nanolayer onto each tissue section. An argon atmos-
phere with a pressure of 30 mTorr was used to create 
the plasma in the gun. The working distance of the plate 
was set to 35 mm. The sputtering conditions were ambi-
ent temperature using DC mode at 100 W for 10 s. With 
these parameters, an Ag layer thickness of roughly 5 nm 
was obtained. The deposition times were short to prevent 
the substrate temperature from increasing excessively 
and, consequently, degrading metabolites.

LDI‑MS acquisition
A MALDI TOF/TOF ultrafleXtreme instrument with 
SmartBeam II Nd:YAG/355  nm laser from Bruker Dal-
tonics available at COS was used for MSI acquisition. 
Acquisitions were carried out by operating the laser at 
2 kHz and collecting a total of 500 shots per pixel.

The TOF spectrometer was operated in positive ion, 
reflectron mode, in m/z ranges according to Table 1. The 
spectrometer was calibrated prior to MSI data acqui-
sition using [Ag]+n  cluster peaks as internal reference 
masses.

MSI data processing
The raw spectral data of each MSI dataset was exported 
to the imzML data format [19] in profile mode. The soft-
ware rMSIproc [20] was used to process the data and 
generate a peak matrix in centroid mode. The default 
processing parameters were used. The Signal-to-Noise 
Ratio (SNR) threshold was set to 5 and the Savitzky–
Golay smoothing had a kernel size of 7. Peaks appear-
ing in less than 5% of the pixels were filtered out. Peaks 
within a window of 6 data-points or scans were binned 
together as the same mass peak. Mass spectra were re-
calibrated using the Ag reference peaks as reference 
masses [21].

Datasets 13 and 14 were acquired in centroid mode 
with an Orbitrap mass spectrometer. These datasets were 

Table 1  List of the 14 AgLDI MSI datasets used for validation

Sample type, sample preparation and LDI-MSI acquisition parameters. Datasets from 1 to 10 were acquired in-house. Datasets 11–14 were provided by external 
laboratories

No Species Tissue type Ag deposition system 
and estimated layer 
thickness

Lateral res. m/z range Mass spectrometer Acq. mode Refs.

1 Mouse Pancreas ATC Orion 8-HV Sputtering 
system, 5 nm

30 70–1200 Bruker ultrafleXtreme™ 
MALDI-TOF/TOF

Positive/profile –

2 Mouse Pancreas ATC Orion 8-HV Sputtering 
system, 5 nm

30 70–1200 Bruker ultrafleXtreme™ 
MALDI-TOF/TOF

Positive/profile –

3 Mouse Kidney ATC Orion 8-HV Sputtering 
system, 5 nm

100 70–1200 Bruker ultrafleXtreme™ 
MALDI-TOF/TOF

Positive/profile –

4 Mouse Brain ATC Orion 8-HV Sputtering 
system, 5 nm

80 70–1200 Bruker ultrafleXtreme™ 
MALDI-TOF/TOF

Positive/profile –

5 Mouse Brain ATC Orion 8-HV Sputtering 
system, 5 nm

80 70–1200 Bruker ultrafleXtreme™ 
MALDI-TOF/TOF

Positive/profile –

6 Mouse Brain ATC Orion 8-HV Sputtering 
system, 5 nm

80 70–1200 Bruker ultrafleXtreme™ 
MALDI-TOF/TOF

Positive/profile –

7 Mouse Brain ATC Orion 8-HV Sputtering 
system, 5 nm

80 80–1000 Bruker ultrafleXtreme™ 
MALDI-TOF/TOF

Positive/profile –

8 Mouse Brain ATC Orion 8-HV Sputtering 
system, 5 nm

80 80–1000 Bruker ultrafleXtreme™ 
MALDI-TOF/TOF

Positive/profile –

9 Mouse Brain ATC Orion 8-HV Sputtering 
system, 5 nm

80 80–1000 Bruker ultrafleXtreme™ 
MALDI-TOF/TOF

Positive/profile –

10 Mouse Brain ATC Orion 8-HV Sputtering 
system, 5 nm

80 80–1000 Bruker ultrafleXtreme™ 
MALDI-TOF/TOF

Positive/profile –

11 Mouse Brain Cressington Sputter Coater, 
23 ± 2 nm

75 100–1100 Bruker ultrafleXtreme™ 
MALDI-TOF/TOF

Positive/profile [18]

12 Homo sapiens Fingermark Cressington Sputter Coater, 
14 ± 2 nm

75 100–1100 Bruker ultrafleXtreme™ 
MALDI-TOF/TOF

Positive/profile [14]

13 B73 inbred corn Root Cressington 108Auto, 5 s 10 50–970 Thermo Finnigan™ MALDI-
LTQ-Orbitrap Discovery

Positive/centroid [6]

14 B73 inbred corn Root Cressington 108Auto, 5 s 10 50–900 Thermo Finnigan™ MALDI-
LTQ-Orbitrap Discovery

Negative/centroid [6]
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directly submitted to the binning process of rMSIproc 
[21] to conform to the peak matrix format.

No data normalization was performed. Data were visu-
alized and explored using rMSI [22].

Algorithm description
Input and output format
The matrix-related annotation algorithm takes the peak 
matrix in centroid mode and the processed spectral data 
in profile mode as input. The user must also provide the 
chemical formulae of the matrix applied and a list of pos-
sible adducts and neutral losses to consider. The choice of 
adducts and neutral losses to consider is purely applica-
tion dependent and is therefore left to the user.

The algorithm produces a vector containing the simi-
larity scores that indicate the likelihood of each mass in 
the input image being a matrix-related ion. The package 
also provides an informative visual report for the user 
to understand the justification behind the classification. 
Additional file  1: Figures  S1–S4 show examples of the 
visual report.

In‑silico cluster and adduct calculation
The theoretical mass and relative isotopic pattern inten-
sities of all possible matrix-related silver clusters (“Ag+n  
theoretical cluster” in this work) are calculated using 
the open-source package enviPat [23], a fast and mem-
ory-efficient algorithm to compute theoretical isotope 
patterns.

For each Ag+n  theoretical cluster ti its experimental 
counterpart ei is obtained from the mean spectra of the 
dataset. The experimental masses closest to the theo-
retical ones within a given tolerance specified by the 
user are used. The Ag+n  theoretical clusters will then be 
matched against their experimental counterparts and 
their presence in the experimental dataset assessed using 
two similarity metrics. In the event of finding more than 
one experimental match within the tolerance, all possi-
ble options will be evaluated. The experimental cluster ei 
with the highest similarity metrics is selected. From our 
experience, this is an unlikely event mostly associated 
with an exceedingly high tolerance threshold.

Similarity metrics
The similarity between each theoretical matrix-related 
cluster and experimental clusters is assessed using two 
similarity scores according to Eq. 1.

where S is the total similarity score, S1 is the cluster spec-
tral similarity (i.e. similarity between the experimental 
and theoretical isotopic intensity patterns) and S2 is the 
intra-cluster morphological similarity (i.e. similarity 

(1)S = S1 · S2

between the spatial distribution of the experimental 
ions). Both similarity scores range from 0 to 1.

The cluster spectral similarity score S1,i for theoretical 
cluster ti determines the degree of similarity between the 
scaled intensity vectors of intensities Iti and Iei and it is 
computed according to Eq. 2.

where dist(a, b) is the distance function chosen by the 
user (Euclidean distance by default), Iti is the vector of 
intensities of the theoretical cluster ti and Iei is the vec-
tor of intensities of experimental cluster ei . Experimen-
tal cluster ei is determined by accessing the element in 
the peak matrix with a mass corresponding to ti within a 
given tolerance. In plain terms, S1 is a decaying exponen-
tial function of the distance between the intensity scaled 
intensity vectors Iti and Iei.

The intra-cluster morphological similarity S2,i returns 
the degree of similarity between the spatial distributions 
of the ions conforming the experimental cluster ei . Ions 
with a high spatial correlation are more likely to belong 
to the same cluster. This metric is computed using Eq. 3.

where Iti is the intensity vector of the theoretical cluster 
ti , correl(A) is the correlation function specified by the 
user (Pearson correlation by default) and Imagesei is the 
set of images corresponding to each ion in the experi-
mental cluster ei . In plain terms, S2 is the weighted mean 
across both directions of the correlation matrix between 
each ion image in ei.

Overlapping peak detection
Insufficient resolving power leads to overlapped MS sig-
nals, which can be a severe problem in matrix-related 
peak annotation as they can lead to a greater number of 
misclassified peaks. This is a particularly limiting issue 
in lower resolution spectrometers such as some TOFs 
in contrast to higher resolution analysers such as Orbit-
rap or FTICR [24]. An additional problem with the same 
effect is the intrinsic inability of mass spectrometry to 
distinguish between isobaric species. In order to cope 
with these issues, we propose an overlapping detection 
algorithm capable of determining if a given MS signal 
corresponds to more than one overlapped ion peaks.

The overlapping detection algorithm is only executed 
in those clusters that report S1 and S2 scores under a 
threshold specified by the user. Before concluding that 
the cluster is not present, the algorithm determines 

(2)
S1,i = e

−dist

(

Iti

max
(

Iti

) ,
Iei

max(Iei)

)

(3)S2,i =
I
′

ti
· Iti · correl

(

Imagesei
)

(
∑

Iti)
2
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whether the low similarity metrics could be attributed to 
the presence of overlapped signals.

The algorithm is based on the operating principle of 
bisecting k-means [25]. All the ions in an experimental 
cluster ei are split into two subgroups ( ei:1 and ei:2 ) based 
on the correlation of their spatial distributions using 
k-means. For each subgroup of ions the similarity met-
rics S1 and S2 are recomputed. If the S1 and S2 scores 
of a given subgroup surpass the specified threshold, all 
ions in the subgroup are tagged as matrix-related. The 
remaining ions in ei are tagged as matrix-related but suf-
fering from overlapping, and the overlapping detection 
algorithm terminates. If instead, none of the subgroups 
obtains an S1 and S2 above the threshold, the process of 
splitting into two subgroups by k-means and recomput-
ing the similarity scores is repeated for both ei:1 and ei:2 . 
This bisection of the ions in ei is repeated iteratively until 
a subgroup obtains S1 and S2 scores above the threshold. 
To prevent overfitting, the iterative process will also stop 
when the number of peaks contained by the biggest sub-
group becomes smaller than half the amount of peaks in 
ei . In such event, it is concluded that there are no over-
lapped peaks and all ions in the experimental cluster ei 
are tagged as not-matrix-related. To sum, overlapped MS 
signals will be detected and distinguished from the rest of 
the ions in the cluster based on the dissimilarity of their 
spatial distributions.

Results
Algorithm validation with AgLDI MSI
In order to validate and optimize the algorithm, we opted 
to use sample tissues covered by silver nanoparticles, a 
well-defined and understood LDI promoting material. A 
total of 14 datasets, from 3 different laboratories, were 
used. The datasets included several animal tissues, plant 
tissues and human fingermarks.

The algorithm was challenged with the task of classify-
ing a list of silver-containing compounds and adducts for 
each dataset. The list includes a “positive class” formed 
by clusters that should be present in all samples used in 
this study and a “negative class” containing clusters that 
should not be present in any of them. This list is referred 
to as “validation list” and allowed us to assess the perfor-
mance of the algorithm. An algorithm with a perfect per-
formance should classify all clusters in the “positive class” 
as matrix-related signals and all clusters in the negative 
class as not present and thus not-matrix related. This is 
a common approach in bioinformatics for validating and 
assessing the performance of a classifier algorithm [26]. 
Table 2 shows the complete validation list.

Silver clusters containing up to 60 atoms have been 
reported to form during silver sputtering [27]. The 
“positive class” expected to be found in all datasets is 

therefore formed by all silver clusters within the acquired 
mass range. For most of the datasets, this includes clus-
ters from Ag+1  to Ag+10 . Given the high heterogeneity in 
adduct formation of the samples used (i.e. the possibility 
of biological compounds from the tissue to form adducts 
with silver cations), no silver adducts were included in 
the “positive class”.

The “negative class” consists of silver compounds or 
adducts that should not be present in any of the samples 
used in this study. Firstly, this list includes various silver 
neutral salts which cannot be measured using LDI MSI, 
and some synthetic compounds that are not expected 
to be present in animal or plant samples [28]. It also 
includes compounds found in aerial parts of plants, wax 
and insects (not found in mammal tissues nor in corn 
root) that have been reported to form adducts with silver 
in AgLDI MSI applications [29]. For each of these mol-
ecules, we also included all clusters within the acquired 
mass range. These particular molecules and their clusters 
were selected in an attempt to have a “negative class” cov-
ering the full mass range.

Performance of similarity scores
Using the validation list described in “Algorithm valida-
tion with AgLDI MSI” section, we assessed the perfor-
mance of the similarity scores as a classifier to annotate 
Ag+n -related peaks in AgLDI MSI datasets.

Figure 1 shows the similarity scores obtained for each 
cluster in Table 2 when searched in all 14 datasets from 
Table  1. The blue points represent the “positive class” 
(clusters that should be present) while the red points rep-
resent the negative class (clusters that should not be pre-
sent). The tolerance threshold was set to 4 data-points or 
scans.

Figure  1a represents the spectral similarity score ( S1 ) 
against the intra-cluster similarity score (S2) of each of 
these clusters. The “positive class” is clearly separated on 
the top right corner (high S1 and high S2).

To evaluate the classifying performance of the two 
similarity metrics we use the Precision vs. Recall (PR) 
curve [26]. The precision is defined as the ratio between 
the number of clusters in the “positive class” classified 
as matrix-related (i.e. true positives) and the total num-
ber of clusters classified as matrix-related (i.e. true posi-
tives + false positives). The recall, on the other hand, is 
the ratio between the number of clusters in the “positive 
class” classified as matrix-related (i.e. true positives) and 
the total number of clusters in the “positive class” (i.e. 
true positives + false negatives). Figure 1b shows the PR 
curves for each of the similarity metrics proposed. The 
areas under the curve (AUC) of 0.97 and 0.91, respec-
tively, show that the spectral similarity score S1 is the 
best classifier followed by the intra-cluster morphology 
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similarity score S2 . The product of S1 · S2 had the same 
classifying skill as S1 with an AUC of 0.97. These results 
prove that Ag+n -related peaks can be well classified by 
these two metrics.
S1 performs much better than S2 as a classifier, and the 

product of S1 · S2 matches but does not improve the per-
formance of S1 alone. Nevertheless, we still decided to 
use the product of S1 · S2 as a classifier in rMSIcleanup 
instead of using S1 alone due to three main reasons. 
Firstly, the overlapping detection algorithm strongly 
relies on the morphological similarity of ions and thus 
depends on S2 . Moreover, even though we did not find 
a single instance of a cluster with a high S1 score and a 
low S2 score (matching isotopic patterns but unmatching 
spatial distributions) in any of the samples, we still con-
sider that S2 should be present to allow for correct clas-
sification should this occur. Finally, S2 can be a strong 
asset in applications other than AgLDI MSI where, due to 
less distinctive isotopic ratios, the performance of S1 as a 
classifier is diminished.

Figure  1c shows the similarity score S1·S2 obtained 
by each cluster in all datasets. Clusters are arranged in 
decreasing order of mean similarity score. Additional 

file  1: Table  S1 maps the cluster numbers to cluster 
chemical formula. A clear gap between an S of 0.5 and 0.7 
separates the “positive class” from the negative one.

Only three false positives (i.e. clusters that should not 
be present but have a high S value) were reported for 
adduct [C28H58O+ Ag]+ . An example is shown for Data-
set 4 in Additional file 1: Figure S5. Identification by MS/
MS is required to assess if the compound is indeed pre-
sent in the sample. Nevertheless, the mass error between 
experimental and theoretical isotopic patterns for this 
compound was 154 ppm, an error much higher than the 
expected for this dataset (acquired with a TOF MS ana-
lyzer). Therefore, we inferred that the experimental pat-
tern detected is not related to adduct [C28H58O+ Ag]+ 
and this is, in fact, a false positive. In order to reduce the 
number of false positives, the mass tolerance of the algo-
rithm can be decreased, however, a too strict mass toler-
ance increases the number of false negatives.

A total of six false negatives (i.e. clusters that should be 
present but have a low S value) were reported for some 
datasets for clusters Ag3 , Ag6 and Ag10 . False negatives 
correspond to clusters for which the majority of peaks 
in their isotopic pattern were under the SNR threshold, 

Table 2  “Validation list” used for validation

The “positive class” consists of silver clusters. The “negative class” consists of neutral silver salts, synthetic silver compounds and silver adducts that are not expected 
to be found in animal samples. The index n denotes the number of atoms or molecules inside the cluster. The minimum and maximum value of n depend on the 
monoisotopic mass of the atom or molecule and the mass range of the dataset

Chemical formula Validation list Type Monoisotopic mass 
(n = 1)

PubChem CID Refs

[Ag]+n Positive class Silver cluster 106.9051 104755 [27]
[

AgF
]

n
Negative class Neutral salt 125.903 62656 [28]

[

AgCl
]

n
141.8734 24561

[

AgBr
]

n
185.8229 66199

[

AgI
]

n
233.809 24563

[

AgH
]

n
Synthetic compound 107.9124 139654

[

AgH2

]

n
108.9202 92028350

[

AgHe
]

n
110.9072 71348557

[

AgNO3

]

n
168.8924 24470

[

AgTh2
]

n
570.9807 71351869

[

AgF2
]

n
144.9014 82221

[

AgBF4
]

n
192.9111 159722

[

C27H56 + Ag
]+

n
Plants, wax, insects’ pheromones 487.3428 – [29]

[

C29H60 + Ag
]+

n
515.3741 –

[

C31H64 + Ag
]+

n
543.4054 –

[

C26H54O + Ag
]+

n
Plant wax 489.322 –

[

C28H58O + Ag
]+

n
517.3533 –

[

C30H62O + Ag
]+

n
545.3846 –

[

C26H52O2 + Ag
]+

n
Wax 503.3013 –

[

C30H60O2 + Ag
]+

n
559.3639 –
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and thus were excluded during pre-processing. In these 
cases, the few included peaks were not sufficient to relia-
bly annotate the cluster. Additional file 1: Figure S6 shows 
the only exception, the Ag6 cluster in Dataset 12, whose 
misclassification is not due to intensity problems. In this 

case, the fingerprint analysed showed highly homoge-
neous ion images, which impedes the proper operation 
of the overlapping algorithm and leads to misclassifica-
tion. Representative examples of correct annotations are 
shown in Additional file 1: Figures S7–S8.

Fig. 1  Similarity scores performance a Spectral similarity S1 vs. Intra-cluster morphological similarity S2 scatter plot. Each point represents a 
potential cluster classified by the algorithm. All clusters shown in Table 2 are evaluated for all 14 datasets presented in Table 1. Blue points represent 
the “positive class” (should be present in the sample) while the red points correspond to the negative class (should not be present in the sample). 
Most “positive class” points are located in the top right corner well separated from the negative class points. This indicates proper classification 
power. b Precision and recall (PR) curve computed according to Davis et al. 2006 [30]. c Similarity score S1·S2 vs. Cluster number. Clusters are 
arranged in decreasing order of mean similarity score. A clear gap between an S of 0.5 and 0.7 separates the “positive class” from the negative class. 
Refer to Additional file 1: Table S1 for a mapping of cluster numbers to cluster chemical formula
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As an additional validation, the results were matched 
against the published annotations of the datasets pro-
vided by external laboratories. Dataset 12 contains 60 
identifications by MS/MS [14]. Dataset 13 contains 4 
metabolites identified by MS/MS and a total of 10 tenta-
tively identified formulae based on exact mass [6]. Data-
set 14 contains 10 metabolites identified by MS/MS and 
6 tentatively identified formulae based on exact mass [6]. 
None of these endogenous signals was misclassified as 
Ag+n -related by our algorithm.

Overlapping peak detection performance
Figure  2 shows a case example where the overlapping 
peak detection algorithm successfully identified overlap-
ping ions when searching for the Ag6 cluster in Dataset 
1. Figure 2a depicts the experimental mean profile spec-
trum in the mass range of interest along with the calcu-
lated profile of the Ag6 cluster. While most peaks follow 
the calculated isotopic distribution, experimental peaks 
at m/z 641.43, m/z 643.43 and m/z 653.43 are consider-
ably more intense than in the predicted pattern. This 
generates a mismatch between the experimental and 
calculated peaks that leads to a low S1 score. Figure  2b 
shows the spatial distributions of each of the ions in the 
Ag6 cluster. The correlation map in Fig.  2d clearly indi-
cates that peaks at m/z 641.43 and m/z 643.43 have a 
spatial distribution that is unlike that of the rest of the 
ions in the cluster. The peak at m/z 653.43 also shows 
a considerably different spatial correlation to the rest. 
These low correlations lead to a lower S2 score. Figure 2c 
is a zoom-in of the peaks at m/z 641.43 and m/z 643.43 
showing that the silver ion peaks are clearly overlapped 
with Ag-unrelated signals.

Initially, given the low S1 and S2 scores, all peaks in the 
Ag6 cluster were misclassified as not Ag+n -related. Using 
the overlapping detection algorithm, the peaks at m/z 
645.43, m/z 647.43, m/z 649.43 and m/z 651.43 were cor-
rectly tagged as belonging to Ag6 . Peaks at m/z 641.43, 
m/z 643.43 and m/z 653.43 were tagged as related to Ag6 
but with overlapping.

Additional file  1: Figure S9 explores the effects of 
overlapping peak detection on overall performance. 

Two main differences can be appreciated. Firstly, there 
is an overall increase in the S1 · S2 score obtained by 
the “positive class” which leads to a bigger gap between 
the “positive class” and the “negative class” making the 
thresholding classification more robust. This is due to 
the identification of some overlapping peaks in the Ag+n  
clusters. Additionally, there is a clear improvement in 
the scores obtained by the Ag6 cluster. The Ag6 cluster 
suffers from overlapping in most of the datasets and is, 
therefore, the cluster most benefitted from the overlap-
ping detection algorithm. It is also important to note that 
the overlapping peak detection algorithm does not add 
any false positives as the S1 · S2 remains unchanged for 
the “negative class”. This proves that overlapping detec-
tion leads to less misclassification of Ag+n -related peaks.

Matrix‑related peak annotation improves 
the post‑processing
In order to explore the influence of the annotation and 
removal of matrix-related peaks in the post-process-
ing workflows, we carried out a multivariate statistical 
exploratory analysis. The widely used linear algorithm 
Principal Component Analysis (PCA) [31] was per-
formed on all 14 datasets before and after removal of the 
Ag+n  peaks. Given that the features in an MSI experiment 
have a direct physical relationship [32, 33], prior to PCA 
the data was centred and no scaling was performed. We 
then compared the quality of the spatial representation 
of the first three principal components. Given the lack 
of a standard quantitative metric to compare the quality 
of two images in MSI, we followed the trend established 
by recent work [11, 34, 35] and performed a qualitative 
visual comparison.

Figure  3 shows the results of this exploratory analy-
sis on Dataset 2 and Dataset 11. In the pancreatic tissue 
represented in Fig.  3a (Dataset 2), PC1 did not change 
significantly after matrix removal, while PC2 and PC3 
showed a wider variety of morphologies on the tissue 
after the Ag+n  interference was removed. In the brain tis-
sue shown in Fig. 3b (Dataset 11) the contrast enhance-
ment is even clearer in the three PCs. Before the Ag+n  
peaks were removed, PC1 and PC3 did not capture any 

Fig. 2  Overlapping detection algorithm performance when searching for the Ag6 cluster in Dataset 1. a Comparison between the mean 
experimental spectra and the theoretical Ag6 cluster at the Ag6 cluster masses within a tolerance of 4 scans. Red and blue represent theoretical and 
experimental profiles, respectively. As can be seen, while the peaks in the centre of the cluster perfectly match the theoretical ratios, the peaks on 
the edges differ considerably. b Spatial distributions of the experimental cluster peaks. After performing the overlapping detection only the four 
ion images in the centre in green are classified as Ag-related. The remaining ion images in red are classified as Agn+ suffering from overlapping. 
The morphologies of the Agn+ overlapped ions (red) differ from the ones without overlapping (green) due to ion overlapping. c Correlation matrix 
between the experimental ion images of the Ag6 cluster. The ion image number corresponds to the position of the ion in the isotopic pattern 
in ascending order of m/z. The first two images are clearly not correlated with the remaining images of the cluster. The last image also shows a 
considerably lower correlation. d Zoom-in of experimental mean spectra. Peaks m/z 641.43 and m/z 643.43 show clear overlapping

(See figure on next page.)
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substantial morphology but afterwards, they did and 
PC2, which already showed morphological information, 
did so with increased contrast. To convey the three prin-
cipal components in a single picture we encoded each 
of them as a colour in the Red Green Blue colour model 
(RGB). The RGB picture became richer and more inform-
ative after the Ag+n  peaks were removed. Similar results 
were obtained in the remaining 12 datasets and their cor-
responding images can be accessed in Additional file  1: 
Figures S10–S13.

As shown in Additional file 1: Table S2 and Figure S14 
the removed Ag+n  peaks can represent a substantial frac-
tion of the total number of features. Additional file  1: 
Figure S15 shows the same PCA analysis compensating 
for the lower number of features after removing the Ag+n  
peaks by reducing the original dataset to the most intense 
peaks or by random feature selection. The results still 
show a clear improvement of the morphological contrast 
after removal of the Ag+n  peaks regardless of the feature 
reduction in the original dataset.

The main conclusion that can be drawn from the visual 
analysis of these results is that the removal of matrix-
related peaks leads to a generalized enhancement in the 
contrast of morphological structures obtained with the 
first principal components. This is due to the fact that 
the variance contribution of the matrix-related signals is 
not fed to the PCA and therefore the resulting principal 

components are better focused on the morphology of the 
tissue. In agreement with previous work on the effects of 
MSI data reduction [36], these results demonstrate that 
the removal of matrix-related signals improves post-pro-
cessing, especially when using linear algorithms such as 
the widely used PCA.

Performance comparison to blank subtraction
In order to quantify the improvement of rMSIcleanup 
over previous alternatives, we compared its performance 
to the widely used “blank subtraction”. Datasets 9 and 10 
were used to perform such a comparison. In both cases, a 
Region Of Interest (ROI) outside of the tissue region was 
defined. The basic principle of “blank subtraction” relies 
on discarding signals found in these off-sample regions 
under the assumption that they are matrix-related. Addi-
tional file 1: Figure S16 shows the two ROIS defined. In 
the case of Dataset 9, an ROI close to the tissue with 
apparent signs of metabolite delocalization was selected. 
The ROI for Dataset 10, on the other hand, was selected 
in a region that was far enough from the tissue and clean. 
Additional file 1: Figure S17 compares the mean spectra 
of these ROIS to the mean spectrum of their respective 
datasets. It can be appreciated that overall the intensities 
are noticeably lower in the off-sample ROIs, especially in 
the clean ROI defined for Dataset 10. In this case, due to 

Fig. 3  Exploratory analysis with PCA before and after removing matrix-related peaks. Red, green and blue are used to represent the spatial 
distribution of PC1, PC2 and PC3, respectively. The last column uses the Red Green Blue colour model (RGB) to represent the first three principal 
components in a single image. The annotation and removal of the matrix-related peaks lead to a generalized improvement in the contrast of 
morphological structures in all principal components. a Pancreas tissue from Dataset 2. b Brain tissue from Dataset 11 [18]



Page 11 of 13Baquer et al. J Cheminform           (2020) 12:45 	

the thin layers of silver used in Ag-LDI, the spectrum is 
orders of magnitude less intense.

Three different metrics were evaluated to determine 
the presence of a peak in the off-sample ROI and thus 
label it as Ag-related by the “blank subtraction” algo-
rithm. The three standard metrics used were: intensity 
fold-change between in and off-sample, off-sample inten-
sity and the off-sample SNR. Additional file  1: Figure 
S18 shows the precision vs recall curves obtained using 
“blank subtraction” based on the three metrics. The high-
est AUC of 0.61 reported for Dataset 10 using intensity 
as the classification metric was well below the reported 
AUC of 0.97 for rMSIcleanup.

As an example, analysed blank subtraction with a 
threshold of 10% of the maximum intensity (the top-
performing metric). This resulted in 9 signals correctly 
classified as Ag-related (true positives TP), 141 cor-
rectly classified as not Ag-related (true negatives TN), 5 
misclassified not Ag-related signals (false positives FP) 
and 19 misclassified Ag-related signals (false negatives 
FN). These results are associated with a poor false dis-
covery rate (FP/(FP + TP)) of 35.7% and false omission 
rate (FN/(FN + TN)) of 11.88%. The blank subtraction 
method misclassified as matrix-related three metabolites 
with potentially relevant biological information: choline 
(C5H14NO; as [M +H −H2O]+ m/z 86.09); choles-
terol (C27H46O; as 

[

M +107 Ag
]+ and 

[

M +109 Ag
]+ m/z 

493.24 and m/z 495.24 respectively) and an unidentified 
compound ( 

[

M +107 Ag
]+ and 

[

M +109 Ag
]+ , m/z 538.49 

and m/z 540.49 respectively). On the other hand, several 
[Agn]

+ clusters (from n = 4 to n = 9) were overlooked by 
the blank subtraction method but were properly classi-
fied by rMSIcleanup.

Discussion and conclusion
The goal of this study was to develop, optimize and vali-
date a new algorithm to annotate signals attributed to the 
LDI promoting material in MSI. The developed algorithm 
is packaged and released as rMSIcleanup, an open-source 
R package freely available for the scientific community 
and fully integrated with rMSIproc [20], a stand-alone 
package for the visualization, pre-processing and analysis 
of MSI datasets.

As demonstrated, the widely used “blank subtraction” 
approach is outperformed by rMSIcleanup in the anno-
tation Ag-related signals. In comparison to the top-per-
forming alternatives for matrix-related peak annotation 
which are based on machine and deep learning [11], 
rMSIcleanup has the main advantage of using two intui-
tive scores (accounting for the isotopic ratios of clusters 
and the spatial distribution of their ions) and providing a 
visual justification of each annotation. This is a key con-
tribution as it helps overcome the black-box problem, 

increases the user’s confidence in the annotation and can 
help researchers optimize experimental workflows (for 
instance, choosing LDI promoters that minimize inter-
ferences in the m/z range of interest). Another merit of 
our work is that, to our knowledge, it is the first matrix 
signal annotation algorithm to explicitly detect and deal 
with overlapping MS signals, which successfully prevents 
overlapped peaks from being misclassified. Given that 
we follow a targeted analytical approach, our classifica-
tion is focused only on matrix-related signals while the 
algorithms presented by Ovchinnikova et  al. [11] have 
a broader scope and also classify as off-sample other 
exogenous compounds. In the era of big data, these two 
apparently opposite approaches (namely our analytical 
approach based on chemical similarity scores and their 
untargeted approach based on machine learning) must 
not only coexist but also complement each other follow-
ing the trend already initiated in other fields [37]. This 
reality urges the MSI community to develop annotation 
algorithms capable of, not only exploiting the knowledge 
in the increasingly large amounts of MSI datasets availa-
ble, but also incorporating metrics that take into account 
the chemical context of the sample to aid transparent 
justification.

AgLDI MSI was chosen to validate the algorithm, due 
to the well-understood ionization of silver. A “validation 
list” was compiled from the literature, which included sil-
ver clusters that should be present in all samples and sil-
ver adducts or compounds that should not be present in 
any of them. Given the heterogeneity of the samples used 
in this study, the described validation list was adapted 
to each dataset. For each dataset, those clusters in the 
validation list for which the experimental data contained 
none of their theoretical masses were excluded. These 
adjustments in the validation list prevented an overes-
timation of the performance of the algorithm attributed 
to a high number of correctly classified “negative class” 
clusters (i.e. true negatives) located in mass ranges with 
no signal. We propose this validation strategy as a novel 
alternative to more common validation approaches such 
as chemical standards [6] or expert annotation [11, 35]. 
This study adds to previous work [6, 14, 17, 29, 38] and 
further demonstrates the potentiality of AgLDI MS imag-
ing, a thriving technology known for its reduced back-
ground signals in spatial metabolomics that is strongly 
complemented by our annotation algorithm as it further 
removes the influence of the matrix.

In agreement with previous work on the effects of 
MSI data reduction [36], we have demonstrated that 
the annotation and removal of signals related to the 
LDI promoting material used can further enhance post-
processing, due to the elimination of variables attrib-
uted to exogenous compounds that do not reflect the 
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morphology nor chemical composition of the sample. 
These results highlight the need to include software 
annotation tools such as rMSIcleanup in MSI work-
flows before exploring the datasets with classical data 
analysis techniques used in metabolomics. Here we 
would like to emphasize the need for a standardized 
quantitative metric to assess the quality of MSI images 
and we acknowledge the relevance of standardization 
initiatives such as the MALDISTAR project (http://
www.maldi​star.org).

We envision two main applications for rMSIcleanup. 
On the one hand, it can be used in a purely explora-
tory fashion to better understand ionization and adduct 
cluster formation in new matrices, tissues and appli-
cations. In this case, the user is advised to add a long 
list of potential adducts or neutral losses to assess their 
formation. The validation approach followed in this 
paper is a clear example of this exploratory application 
of rMSIcleanup. A second application is the automated 
peak annotation of well-known matrices and tissues. In 
this case, only the clusters that are known to be formed 
need to be given to the software. This curated selection 
increases the data-processing speed. The set of matrix-
related annotated peaks can then be eliminated from 
the dataset prior to performing post-processing work-
flows such as multivariate statistical analysis. In any 
case, the choice of adducts and neutral losses to con-
sider (or matrix adducts with endogenous compounds, 
e.g. fatty acids + Ag) is application dependent and is 
therefore left to the user. This list must be manually 
specified as an input parameter to rMSIcleanup.

Finally, the promising results obtained in the anno-
tation of Ag+n -related peaks in AgLDI MSI open the 
door to the extension of this methodology to more 
widely used matrices such as 2,5-dihydroxybenzoic 
acid (DHB), 1,5-diaminonaphthalene (DAN), and 
9-aminoacridine (9AA) among others. These organic 
matrices pose greater challenges. Firstly, they lead 
to increased matrix background due to their greater 
fragmentation and adduct formation [39–41] and the 
higher quantities in which they are added [40]. Moreo-
ver, they present the problem of “hot spot” formation 
given their less homogeneous application process [42]. 
These issues highlight not only the benefits of AgLDI 
MSI but also that matrix-related peak annotation can 
benefit data post-processing even further in applica-
tions using organic matrices.
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