
Co-Utile Peer-to-Peer Decentralized Computing

Josep Domingo-Ferrer, Alberto Blanco-Justicia, David Sánchez, Najeeb Jebreel
Universitat Rovira i Virgili

CYBERCAT-Center for Cybersecurity Research of Catalonia

UNESCO Chair in Data Privacy

Department of Computer Engineering and Mathematics

Av. Paı̈sos Catalans 26, E-43007 Tarragona, Catalonia

e-mail {josep.domingo, alberto.blanco, david.sanchez, najeebmoharramsalim.jebreel}@urv.cat

Abstract—Outsourcing computation allows wielding huge com-
putational power. Even though cloud computing is the most usual
type of outsourcing, resorting to idle edge devices for decentral-
ized computation is an increasingly attractive alternative. We
tackle the problem of making peer honesty and thus computa-
tion correctness self-enforcing in decentralized computing with
untrusted peers. To do so, we leverage the co-utility property,
which characterizes a situation in which honest co-operation is
the best rational option to take even for purely selfish agents; in
particular, if a protocol is co-utile, it is self-enforcing. Reputation
is a powerful incentive that can make a P2P protocol co-utile.
We present a co-utile P2P decentralized computing protocol that
builds on a decentralized reputation calculation, which is itself
co-utile and therefore self-enforcing. In this protocol, peers are
given a computational task including code and data and they
are incentivized to compute it correctly. Based also on co-utile
reputation, we then present a protocol for federated learning,
whereby peers compute on their local private data and have
no incentive to randomly attack or poison the model. Our
experiments show the viability of our co-utile approach to obtain
correct results in both decentralized computation and federated
learning.

Index Terms—P2P computing, Reputation, Self-enforcement,
Co-utility, Edge computing, Federated learning

I. INTRODUCTION

The possibility of outsourcing computation of heavy tasks

to more capable entities or to a network of peers have brought

supercomputer-like computational capabilities to end users and

low-tier devices. The most prominent example is cloud com-

puting. Even though computation outsourcing is commonly

viewed as a centralized architecture, in which computation

is delegated to a highly capable server, we can also find

examples of decentralized peer-to-peer architectures in which

a community of peers collaborate to complete a task. The most

recent example is federated learning, promoted by Google

and other players for collaborative machine learning based on

smartphones [24].

Decentralization has many benefits. It allows a requester to

get large computations done without owning large computing

facilities or even renting cloud computing power. Comput-

ing tasks can be assigned to peers owning edge-computing

devices that have free resources, such as idle smartphones.

Furthermore, in the case of federated learning, decentralized

computing allows the requester to learn a model based on data

that are privately owned by the computing peers.

Even though computation outsourcing may be limited to

fully trusted networks, in most cases the requester and the edge

peers do not trust each other. In such a scenario, privacy and

correctness become major concerns [34]. The privacy issue

arises when the outsourced task requires analyzing personal

or confidential data. This raises the problem of preventing the

untrusted peers from learning sensitive information. A variety

of methods can be employed to tackle this issue, ranging

from fully cryptographic approaches that typically incur large

overheads to lightweight data anonymization, which may limit

the accuracy of the results [11]. On the other hand, lack of trust

also means that the requester cannot be sure whether the results

of the computation are correct. Failure to address correctness

can bring serious consequences, such as model poisoning in

the case of federated learning [2]. How to guarantee that peers

correctly compute their assigned tasks is precisely the focus

on this work.

A. Previous work

Verifiable computing [13] tackles the problem of dishonest

peers that may modify their assigned tasks to return plausible

results without performing the actual work [25].

The simplest form of verification is achieved by replica-

tion [6], [7]: the requester sends identical tasks to multiple

peers and waits for the results. If a minimum quorum of the

results agree, the requester assumes those results are correct.

If the minimum quorum is not reached (due to off-line peers,

communication failure, computation errors or cheating peers),

the requester repeats the request to a different set of peers.

Since it is difficult to prevent dishonest peers from sub-

mitting false data, verification by replication may require

substantial redundancy and thus incur significant overhead.

A solution to control untrusted peers is to use trusted

hardware [27], such as secure coprocessors [29] or trusted

platform modules [32], but this significantly complicates the

network infrastructure and requires a chain of trust along with

assumptions that the hardware works correctly.

Mathematical approaches to verifiable computing require

the peers to return the results of the task and a proof that

the computation was carried out correctly. Initially, verifi-

able computing proofs typically relied on very expensive

constructions like interactive proofs [23] and probabilistically

checkable proofs [30]. For many years, these approaches were



purely theoretical: interactive protocols were exponential-time

and probabilistic checkable proofs were prohibitively com-

plicated [33]. Modern approaches to verifiable computing

take ’only’ polynomial cost but are limited to verification of

computations expressible as certain kinds of circuits; further,

they employ fully homomorphic encryption [13], [8], which

is far from being practical. Recently, more efficient (but more

ad-hoc) solutions have brought verifiable computing closer to

practicality [26], [28], [31]. However, none of these words is

yet practical enough [33] and different protocols are needed

for each task that is to be computed verifiably. Also in re-

cent years, succinct non-interactive arguments (SNARGs) and

succinct non-interactive arguments of knowledge (SNARKs)

have been introduced to allow verification of NP statements

with much reduced complexity [4], [1]. Nonetheless, SNARGs

and SNARKs still need to be designed ad hoc for the statement

to be verified.

An alternative approach aimed at ensuring correctness for

the specific case of federated learning is [18]. It uses decentral-

ized reputation to encourage correct computation by peers. A

consortium blockchain is leveraged to achieve decentralized

peer reputation management. The spirit of this proposal is

similar to ours, because we also use decentralized reputation.

However, its main drawback is that the computational cost of

running a blockchain is likely to offset the computational gains

of federated learning.

B. Contribution and plan of this paper

In this work we revisit the initial approach to verifiable

computing via replication under the novel perspective of co-

utility [12]. Co-utility is a property that characterizes protocols

in which the best way for each participant to reach her

goal is to help others reach theirs. By applying this notion

to computation outsourcing we aim at incenting peers to

deliver correct results. In this way, we minimize the required

computation redundancy, that is, the most significant overhead

of verifiable computing via replication.

To achieve co-utility in computation outsourcing, we rely

on reputation as an incentive. In order to preserve the peer-to-

peer (P2P) computing paradigm, reputation is also computed

in a P2P decentralized way and its correctness is also ensured

by co-utility.

In comparison with [18], our approach avoids the costly

solution of using a blockchain to maintain decentralized rep-

utations; additionally, our co-utile reputation protocol is self-

enforcing and hence rationally sustainable. Compared to the

proof-based approaches discussed above, our proposal is more

general and flexible, since it allows peers to perform any

computational task without requiring ad hoc protocols, and

more efficient, since it does not entail a heavy cryptographic

apparatus.

We first give a protocol for a generic case in which the

requester supplies both the code and the data that the peers

must use in their computation. We then give a protocol for

the case of federated learning, in which peers improve the

requester’s model based on their own private data sets, that

stay unknown to the requester.

The rest of this paper is organized as follows. Section II

gives background on co-utility. Section III describes our

reputation-based co-utile protocol for P2P correct decentral-

ized computing. Section IV justifies the co-utility and the se-

curity of the proposed protocol. Section V presents reputation-

based co-utile federated learning. Section VI justifies the

co-utility, the security and the privacy of reputation-based

federated learning. Empirical results are described in Sec-

tion VII. Conclusions and future research lines are gathered

in Section VIII.

II. BACKGROUND ON CO-UTILITY

Co-utility models a kind of interaction between rational

agents in which the best option for each agent to reach her

own goal is to help other agents reach theirs [12]. Co-utility

focuses on self-enforcing protocols, that are those from which

agents have no rational incentive to deviate.

More specifically, a protocol Π is co-utile if and only if the
three following conditions hold:

1) Π is self-enforcing;

2) The utility derived by each agent participating in Π is

strictly greater than the utility the agent would derive

from not participating;

3) There is no alternative protocol Π′ giving greater utilities

to all agents and strictly greater utility to at least one

agent.

The first condition ensures that if participants engage in

the protocol, they will not deviate. The second condition is

needed to ensure that engaging in the protocol is attractive

for everyone. The third condition can be rephrased in game-

theoretic terms by saying that the protocol is a Pareto-optimal

solution of the underlying game.

III. REPUTATION-BASED P2P DECENTRALIZED

COMPUTING

In this section we depict the protocol we propose by which

a requester R can delegate computation to peers of a P2P

network. The protocol has been designed with the following

goals in mind:

• Decentralization. Delegation of computation and ac-

countability of the results should be controlled by the

peers themselves, rather than by a central authority (that

may be self-interested or attacked).

• Anonymity. Identifiers that reveal the real identity of peers

(e.g., IP addresses) should be avoided, to help thwart

potential collusions. Instead, pseudonyms should be used.

• Low overhead. The overhead of providing accountability

of results should not be large for the network and should

be small or negligible for the computation requester (oth-

erwise, the benefits of outsourcing computation dilute).

• Proper management of new peers. Newcomers should

not enjoy advantages. Otherwise, malicious peers may

be motivated to create new anonymous identities when

identified after abusing the system.



• Symmetry/asymmetry. The protocol should support sym-

metric scenarios (where peers can be both task requesters

and task workers) and asymmetric scenarios (where peers

are just workers and the requester is an external party).

Under the co-utility framework, executing computation re-

quests from others or performing accountability management

are negative utilities for all the peers other than the requester.

Therefore, rational agents have in principle no interest to

execute these tasks. To enforce co-utility and ensure the

sustainability of the network we need an artificial utility that

compensates the negative utilities. For this, we rely on reputa-

tion, which can be used both as a reward and a penalty [10]. On

the one hand, reputation allows peers to build trust, which can

neutralize negative utilities related to mistrust. On the other

hand, reputation also makes the peers accountable for their

actions: if a peer misbehaves, her reputation worsens and the

other peers mistrust her more and more and are less and less

interested in fulfilling her requests. In this manner, free riders

and also malicious peers can be identified and penalized (e.g.,
through denial of their requests).

Several reputation mechanisms have been proposed in the

literature for P2P networks; see [16] for a comparison and a

discussion. Since in our work reputation is used as a means to

turn P2P computing co-utile, the reputation calculation should

be decentralized and co-utile itself.

To keep the network decentralized we assume that each

peer is associated with a number M of peers that will

act as “accountability managers” (AM) of the computation

requested by R. The association between peers and their AMs

is defined according to a distributed hash table (DHT), which

maps a peer with pseudonym IDi to peers with pseudonyms

h0(IDi), ..., hM−1(IDi), where h0, h1, ..., hM−1 are one-way

hash functions. Inversely, we call “pupils” the peers for whom

peer Pi is an accountability manager. Note that the use

of pseudonyms provides anonymity, and the use of a DHT

prevents anyone from choosing a particular pseudonym as

AM for Pi. With this mapping, on average, every peer in

the network is the AM of M other peers; hence, the work

of peers as accountability managers is balanced. Also, as we

discuss later, the M -fold redundancy among AMs ensures that

malicious AMs can be identified (and punished).

A. Co-utile decentralized reputation

In [10] we proposed a co-utile extension of the well-known

EigenTrust decentralized reputation protocol [17], which ful-

fills the aforementioned design goals and is robust against

rational attacks related to reputation tampering.

The protocol consists in calculating a global reputation for

each peer P based on aggregating the local opinions of the

peers that have interacted with P . If we represent the local

opinions by a matrix whose component (i, j) contains the

opinion of peer Pi on peer Pj , the distributed calculation

mechanism computes global reputation values that approxi-

mate the left principal eigenvector of this matrix.

The opinion of peer Pi on another peer Pj is the reputation

sij of Pj local to Pi. This value is defined as the aggregation

of ratings (positive or negative) that Pi has issued as a result

of the set Yij of interactions with Pj :

sij =
∑

yij∈Yij

ratingi(yij).

In order to properly aggregate the local reputation values

computed by each peer, a normalized version cij is first

calculated as:

cij =
max(sij , 0)∑
j max(sij , 0)

.

In this manner, the normalized local reputation values lie

between 0 and 1 and their sum is 1. This makes all peers equal

contributors to the global reputation and avoids dominance

by peers with a larger number of experiences. Moreover, this

normalized calculation deters peers from colluding by assign-

ing arbitrarily high values to each other. Finally, truncation

of negative reputation values to 0 prevents selfish peers from

assigning arbitrarily low values to good peers.

A side effect of negative value truncation is that no dis-

tinction is made between peers with whom Pi had a bad

experience (negative local reputation) and those with whom

Pi never interacted so far. Hence, newcomers do not enjoy

any reputation advantage, because their reputation is indistin-

guishable from the one of misbehaving agents. As a result, a

selfish agent has no incentive to take a new virtual identity

in order to “clean” his reputation after misbehaving with

other peers. Likewise, newcomers become instantly motivated

to positively contribute to the system in order to earn the

minimum reputation that other agents require from them.

Local reputation values are then disseminated and aggre-

gated through the network by following the transitive reputa-

tion calculation algorithm described in [10], in order to obtain

the global reputation value gi of each peer Pi.

B. Decentralized P2P computation outsourcing and reputation
calculation protocols

Let R be the requester, that is, the party interested in using

the P2P community to perform a demanding computation C.

R may be a peer himself or an external party. We assume

R has access to a list of the pseudonyms of the peers, and

has a number M of AMs associated with her. We propose

the reputation-based P2P decentralized computing described

in Protocol 1 that works as follows.

First R splits the computation C into a number of indepen-

dent tasks C1, . . ., Cm, where each task includes code and

input data, plus any necessary randomness seeds.

Then a computation redundancy level g is selected, where g
is a (typically small odd) nonnegative integer. Computational

redundancy is used to detect malicious peers, in case the results

they report do not match those of the majority. If global rep-

utations t1, . . . , tN for the N peers of the network are not yet

available (because the network is just starting collaboration),

then g = g0 is taken, where g0 is a parameter. On the contrary,

if global reputations are available, then g = γ(t1, . . . , tN ) is



taken, where γ is a function that decreases as the proportion

of high-reputation peers grows; in particular, when there are

many high-reputation peers γ(t1, . . . , tN ) < g0, that is, in a

highly reputable P2P network less computation redundancy is

required.

Then R selects a subset L of m′ = m × g peers

ID1, . . . , IDm′ that have the highest global reputation among

those peers that are available (not currently busy with other

tasks). After that, R computes and publishes a random per-

mutation π(L) of the m′ selected peer pseudonyms. Then R
sends task C1 to the first g peers in π(L), task C2 to the

next g peers in π(L), and in general Ci to the i-th group of g
peers in π(L). Each selected peer runs her assigned task. After

all tasks are complete, each accountability manager considers

each of his pupils Pi and looks for the g−1 peers Pj ∈ π(L)
that had the same task as Pi; then the accountability manager

assigns Pi normalized local reputation cji = 1 if Pi’s result

is the majority result, and cji = 0 otherwise.

At this point, normalized local reputations are available

for all peers in L. Now Protocol 2, a simplified version of

EigenTrust’s decentralized global reputation computation, can

be run. The main difference is that, in our protocols, local and

global reputations are assigned and computed, respectively, by

the accountability managers themselves. To make Protocol 2

robust against self-interested attacks by the accountability

managers, the reputation value of a peer Pi is computed

by all M accountability managers associated with her. The

initial global reputation t
(0)
i of peer Pi is taken to be be the

global reputation for that peer computed in previous protocol

executions (if available) or a default value (if no previous

global reputation is available).

After the computation of the global reputation values, if

a requester needs the reputation value of another peer Pi

in order to assign tasks to this peer, she can query the

accountability managers of Pi for the peer’s reputation. The M
values obtained from the M accountability managers should

be the same, because the inputs of the managers are the same.

However, if some values are different, the requester can take

the most common value.

IV. CO-UTILITY AND SECURITY OF REPUTATION-BASED

P2P COMPUTING

In the following we show that the security of Protocol 1,

that is, the correctness of the computations by the peers, rests

on co-utility. For peers to be willing to collaborate, they must

be rewarded for their work in such a way that the reward is

higher than the costs they incur to do the work.

In an asymmetric scenario, in which requester R is an

external party, she must reward Pi after a computation if a

majority of local reputations cji is 1. This can be enforced by

having accountability managers request R to reward the peers.

Specifically, if a majority of Pi’s M accountability managers

make such a request, then R rewards Pi in some way (money,

loyalty points, quality of service, etc.).

On the other hand, in a symmetric scenario, in which peers

can be also requesters of their own tasks, reputation can be

Protocol 1 REPUTATION-BASED CO-UTILE P2P COMPUTING

Input: N , m, g0, γ()
1: R splits the computation C into a number of tasks C1, C2,

. . ., Cm, each including code and data (plus any needed

random seeds);

2: if global peer reputations t1, . . . , tN are available then
3: Let g = γ(t1, . . . , tN );
4: R selects a subset L of m′ := m × g peers with the

highest global reputation among those that are available

(not busy);

5: else
6: Let g = g0;

7: R selects a random subset L of m′ := m× g available

peers;

8: end if
9: R computes and publishes a random permutation π(L) of

the m′ selected peer pseudonyms;

10: R sends task C1 to the first g peers in π(L), task C2 to

the next g peers in π(L), and in general Ci to the i-th
group of g peers in π(L);

11: for all selected peers P do
12: P completes its assigned task;

13: end for
14: for all accountability managers AM do
15: for all pupil Pi ∈ L do
16: AM looks for the subset Li ⊆ L of g− 1 peers that

had the same task as Pi;

17: for all Pj ∈ Li do
18: if Pj’s result is the same as Pi’s then
19: AM assigns local reputation cji = 1 to Pi;

20: else
21: AM assigns cji = 0 to Pi;

22: end if
23: end for
24: end for
25: end for
26: call Protocol 2 to update the global reputation ti of each

peer Pi.

itself the reward. In this setting, a necessary and sufficient

condition for peers to run the requester’s tasks is that the

requester has a high reputation or, in other words, peers

can decline requests if the requester has a low reputation.

Therefore, peers can only ensure their access to the computing

service if they behaved correctly in previous iterations and

earned reputation as a result. Newcomers start with zero

reputation; to increase it, they need to be selected for the set L,

which will occur when the higher-reputation peers are either

busy with other computations or otherwise unwilling to do any

more computations.

Proposition 1 (Co-utility). Assume most peers are honest and
let rewardi be the total reward earned by peer Pi ∈ L for
correctly performing a computation whose cost is costi. Then,
if rewardi > costi, Protocol 1 is co-utile.



Protocol 2 CO-UTILE P2P GLOBAL REPUTATION COMPUTA-

TION

1: for all Pi do
2: for all pupils Pd of Pi do
3: for all g − 1 peers Pj that had the same task as Pd

do
4: Query all the accountability managers of Pj for

cjdt
(0)
j ;

5: end for
6: k := −1;

7: repeat
8: k := k + 1;

9: Compute t
(k+1)
d = c1dt

(k)
1 +c2dt

(k)
2 + . . .+cndt

(k)
n ;

10: for all g − 1 peers Pj that had the same task as

Pd do
11: Send cdjt

(k+1)
d to all the accountability man-

agers of Pj ;

12: Wait for all accountability managers of Pj to

return cjdt
(k+1)
j ;

13: end for
14: until |t(k+1)

d −t
(k)
d | < ε; // Parameter ε > 0 is a small

value

15: end for
16: end for

Proof. We must examine co-utility for peers in L and for

accountability managers. A peer Pi ∈ L has two possible

strategies:

1) Compute her task correctly. Since most peers are honest

and those in L have high reputation, a majority of peers

in L can be assumed honest and Pi’s correct result earns

her a majority of local reputations cji = 1. In turn, this

earns Pi a reward rewardi > costi from R. Thus, her

utility is

ui = rewardi − costi > 0.

Additionally, Pi’s global reputation increases, which in-

creases the probability that Pi is again selected for L in

the next protocol execution or that Pi’s tasks are accepted

is she becomes a requester (note that only peers in L may

earn rewards).

2) Compute her task incorrectly or do nothing. In this case,

Pi receives 0 reward and may have had some cost if

computing an incorrect result. Hence, ui ≤ 0. Further-

more, Pi’s global reputation decreases, which reduces the

probability that Pi is selected for L in the next protocol

execution and increases the probability that if Pi becomes

a requester her submitted tasks are declined by other

peers.

Hence, for a peer in L the best option is to perform her

computation correctly.

Now let us turn to accountability managers:

• An accountability manager might deny service by not

computing the global reputation of her pupils. In this

case, the querying peer in line 4 of Protocol 2 will

receive no answer. The querying peer will consider that

accountability manager as not active and will remove it

from the list of available peers, which will decrease that

accountability manager’s reputation in the next protocol

execution. Thus, a rational peer acting as accountability

manager is not interested to deny service.

• Even if not denying service, an accountability manager

might award a wrong local reputation cji in Protocol 1

(lines 19 and 21). However, accountability managers are

chosen by means of a hash function, that is, randomly.

By assumption, most peers are honest so that if M is

sufficiently large, the number of malicious managers can

safely be considered less than M/2. In this case, the

querying peer in line 4 of Protocol 2 can reconstruct

the true reputation by a majority decision. Further, the

querying peer can lower the local reputation she awards

to the corresponding cheating accountability managers.

Hence, the safest strategy for an accountability manager is to

perform her role correctly.

Security understood as a guarantee of correct computation

follows from Proposition 1. Using pseudonyms for peers

contributes to thwarting collusion, because peers are not sure

of each other’s identities.

V. REPUTATION-BASED FEDERATED LEARNING

In the case of federated learning, there are several peers

each of whom updates the model based on her local data.

A. Public data

In the simplest case, the local data of peers are provided

by the requester. Thus, at each round of task assignments, the

requester R also assigns local data sets to the different peers,

in such a way that each local data set is shared by g peers.

The assignment of local data sets to peers can be completely

different for each round.

Those peers sharing a certain data set also share the code

for computing a model update, including any random seeds.

In this way, if the g peers sharing a local data set are honest,

they should obtain exactly the same result, which allows using

Protocol 1 for each task assignment round.

B. Private local data

Protocol 1 is not applicable if the requester R cannot ensure

that groups of g peers have exactly the same local data sets. In

particular, this occurs if peers compute model updates based

on private local data sets that they do not want to share, for

example fitness or health data recorded by their smartphones.

Protocol 3 deals with the case of federated learning with

private local data and works as follows.

First, the level of computation redundancy g is set in the

same way explained in Section III-B, depending on whether

global reputations exist or not; in particular, the greater the

proportion of highly reputable peers, the smaller is g. Then if

global reputations exist, R selects a subset L of g peers that

have the highest global reputations among those peers that



are available (not currently busy or marked as unavailable).

If no global reputations exist yet, R selects a random subset

L of g peers among those available. Subsequently, R sends

the current model with parameters θ to all peers in L. Next,

every peer Pi ∈ L computes a model update with parameters

θi based on her local data and sends θi to all accountability

managers (not only hers).

At this point, accountability managers start their work.

Each manager computes the centroid cL of the model update

parameters of peers in L. Then they compute the distances

disti between each θi and cL. After that, they compute the first

quartile Q1 and the third quartile Q3 of the set of distances,

and the interquartile range IQR = Q3−Q1. This allows them

to find the set

λ = {Pi ∈ L|Q1− τ × IQR ≤ disti ≤ Q3 + τ × IQR}.
In a centralized setting, the previous computations yielding λ
would be performed by a single party. Yet, in a P2P network,

it is more robust and reliable that each accountability manager

replicates them.

The next step is for each accountability manager to check

which of her pupil peers Pi are in λ. If Pi ∈ λ, the manager

assigns Pi local reputation cji = 1, for all j s.t. Pj ∈ λ. If

Pi �∈ λ, then Pi’s update is an outlier and the accountability

manager assigns local reputation cji = 0, for all j s.t. Pj ∈ λ.

An outlying update θi may be due to Pi cheating to poison

the model or to Pi being honest but having genuinely outlying

local data. Our distance-based approach to detect poisoning is

consistent with [5], [3]; Figure 4 in the latter paper shows that

the more malicious poisoning is, the more distant updates it

yields.

Finally, Protocol 2 is called to update the global reputations

of peers, and the global model parameters θ are updated by

aggregating those update parameters θi such that Pi ∈ λ
according to the majority of accountability managers.

VI. CO-UTILITY, SECURITY AND PRIVACY OF

REPUTATION-BASED FEDERATED LEARNING

Similarly to what we did for Protocol 1, we will show that

the security of Protocol 3, understood as correct computation

by the peers, rests on co-utility.

Like we remarked for Protocol 1, in some cases reputation

can itself be the reward. This is the situation if peers are inter-

ested in being requesters in the future and a high reputation is

needed by a requester to have her tasks run by the peers. Yet

further, there may be federated learning settings in which not

even reputation is needed as a reward. This occurs if peers are

genuinely interested in contributing to improving the model

parameters θ because a well-adjusted model is beneficial for

all of them (e.g. to get better recommendations or better pattern

recognition). In this case, the entire reputation management

could be skipped.

Proposition 2 (Co-utility). Assume most peers are honest and
let rewardi be the total reward earned by peer Pi ∈ L for
correctly performing a computation whose cost is costi. Then,

Protocol 3 REPUTATION-BASED CO-UTILE P2P FEDERATED

LEARNING WITH PRIVATE LOCAL DATA

Input: N , g0, γ(), τ
1: if global peer reputations t1, . . . , tN are available then
2: Let g = γ(t1, . . . , tN );
3: R selects a subset L of g peers with the highest global

reputations among those that are available (not busy);

4: else
5: Let g = g0;

6: R selects a random subset L of g available peers;

7: end if
8: R sends the current model parameters θ to all peers in L;

9: for all Pi ∈ L do
10: Pi computes an update θi of model parameters on her

private data;

11: Pi sends θi to all accountability managers;

12: end for
13: for all accountability managers AM do
14: AM computes the centroid cL of the model updates of

peers in L;

15: AM computes the distance disti between θi and cL for

all Pi ∈ L;

16: AM computes the 25th percentile Q1 and the 75th

percentile Q3 of the set {disti : Pi ∈ L};

17: AM computes the interquartile range IQR = Q3−Q1;

18: AM computes λ = {Pi ∈ L|Q1− τ × IQR ≤ disti ≤
Q3 + τ × IQR};

19: Let DAM be the set of AM ’s pupil peers;

20: for all Pi ∈ DAM do
21: if Pi ∈ λ then
22: AM assigns local reputation cji = 1 ∀j s.t. Pj ∈

λ;

23: AM assigns local reputation cji = 0 ∀j s.t. Pj �∈
L \ λ;

24: else
25: AM assigns local reputation cji = 0 ∀j s.t. Pj ∈

L;

26: end if
27: end for
28: end for
29: call Protocol 2 to update the global reputation ti of each

peer Pi;

30: R updates the global model parameters θ by aggregating

those θi such that Pi ∈ λ.

if rewardi > costi/(1 − pτ ), where pτ is the proportion of
outliers for parameter τ , Protocol 1 is co-utile.

Proof. We only need to examine co-utility for peers in L
because co-utility for accountability managers follows by an

argument similar to that of the proof of Proposition 1. A peer

Pi ∈ L has two possible strategies:

1) Honestly follow the protocol. Since most peers are honest

and those in L have high reputation, a majority of

peers can be assumed to return a correct model update



computed on their local data. However, it may be the case

that Pi’s update θi is a genuine outlier, that is, Pi �∈ λ;

in this case an honest behavior would not be rewarded.

Yet, by increasing parameter τ the proportion of outliers

and therefore the probability pτ of an honest peer not

being rewarded can be made small. Now, an honest Pi’s

utility function is ui = (1− pτ )rewardi − costi. By the

assumption of the proposition, rewardi > costi/(1−pτ )
and hence ui > 0. Beyond direct reward, an additional

incentive for a peer to be in λ is that her global reputation

increases, which in turn increases the probability that Pi

is again selected for L in the next task assignment round

(being in L is the only way to earn future rewards).

2) Deviate from the protocol or do nothing. If Pi does

nothing and returns no result, her utility is ui = 0 (no

cost, no reward). If Pi deviates and computes a wrong

model update θi, two subcases can occur:

• θi happens to be similar to the models computed

by most peers in L and thus Pi ∈ λ. In this case

Pi is rewarded. This is not unfair, because θi does

not poison the model significantly. Sensitivity to

model poisoning by wrong parameter updates θi can

be increased by reducing τ (doing so increases the

probability that a wrong θi excludes Pi from λ, but it

also increases the probability pτ that an honest peer

is not rewarded).

• θi is an outlier and hence Pi �∈ λ. If the deviation

is significant, this is the most likely situation, which

brings nonzero cost and zero reward, and hence ui <
0.

Hence, for a peer in L the best option is to perform

her computation correctly. Regarding accountability man-

agers, the co-utility of their correct operation is justified

in a way analogous to the proof of Proposition 1.

Thus, co-utility makes security in the sense of correct

computation the best option for peers. Regarding the privacy

of the peers’ local data sets, it remains the same as in the

underlying federated learning model: any leakage of private

data can only come from θi.

VII. EMPIRICAL RESULTS

A. Reputation-based co-utile P2P computing

We implemented Protocol 1 and used it for two types of

tasks:

• Tasks with binary result. For such tasks, the correct result

is recovered only if there is an absolute majority of

correct results (because all incorrect results are equal to

each other).

• Tasks with non-binary result. In this case, the correct

result is recovered as long as it is the most frequent

one (although not necessarily reported by the absolute

majority of the g peers). For example, if g = 5 and two

peers report the correct result r1 and the other three peers

Fig. 1. Protocol 1. Binary task quality with random peer selection

report wrong results r2, r3 and r4 that are different from

each other and from r1, then it can be established that r1
is the correct result.

Taking the above into account, we measured the quality of

the results as follows. We counted how many of the m tasks

assigned in each run of Protocol 1 were such that the correct

result was the most frequent one among the g results returned

by the peers running the task. Then we defined the quality as

the previous count divided by m, which gave a metric between

0 and 1.

Figure 1 displays the quality of the results as a function

of the proportion of malicious peers in the network when

using Protocol 1 with a random choice of peers (that is, when

global reputations are not available) for tasks with binary
results and several computation redundancy levels g. Figure 2

shows the same but when global reputations are available

and peers are selected by reputation. It can be seen that,

when reputations cannot be used, one needs to increase the

redundancy g to improve the quality; however this redundancy-

based improvement only works as long as a majority of peers

is honest, otherwise more redundancy yields worse quality.

In contrast, when reputations are available, the best results

are obtained with the lowest redundancy g = 3 as long as

a majority of peers is honest; if the majority is malicious,

it is better to use more redundancy. Thus, if reputations are

available and the majority is honest, choosing peers based

on reputations allows minimizing redundancy and hence the

overhead.

Figure 3 displays the quality of the results as a function of

the proportion of malicious peers when using Protocol 1 with

a random choice of peers (that is, when global reputations are

not available) for tasks with non-binary results and several

computation redundancy levels g. Figure 4 shows the same but

when global reputations are available and peers are selected

by reputation. It can be seen that, when reputations cannot

be used, one needs to increase the redundancy g to improve

the quality. Unlike in the binary case, this redundancy-based

improvement works even if honest peers are as few as 20%.

In contrast, when reputations are available, the best results



Fig. 2. Protocol 1. Binary task quality with reputation-based peer selection

are obtained with the lowest redundancy g = 3, like for

binary tasks. The difference with the binary case is that the

lowest redundancy yields the best results no matter what the
proportion of honest peers is. Thus, for non-binary tasks it is

even more clear that the use of reputations allows reducing

the redundancy while improving the quality.

Note 1 (Further redundancy reduction for g = 3). The lowest

redundancy g = 3 turns out to be the best choice when

reputations are used. In fact, it is possible to obtain majority

results with less than 3 replications, as follows. First, replicate

the task twice. If the two results agree, take the common

result as the good one (as it will be majority even if a third

replication is run). If they disagree, run a third task replication

and take the majority result of the three replications (if any)

as the good one. Let ph be the proportion of honest peers.

For a binary task, the expected number of replications is

E(g) = 2(p2h + (1 − ph)
2) + 3(1 − (p2h + (1 − ph)

2)); it

can be seen that when ph = 1 (all honest) or ph = 0 (all

dishonest), we have E(g) = 2; the highest redundancy occurs

when ph = 1/2, in which case E(g) = 2.5, which is still less

than 3. For a non-binary task, E(g) depends on the number

and distribution of incorrect results; anyway, it is a number

between 2 and 3, obtained as E(g) = 2pa +3(1− pa), where

pa is the probability that the first two results agree.

B. Reputation-based federated learning

For the experiments on Protocol 3, we used the MNIST

public dataset. The dataset consists of 70, 000 images of

handwritten digits (classes), from 0 to 9. Each image is gray-

scaled and 28×28 in size. We used 60,000 of them for training

and the remaining 10, 000 for testing. We divided the training

dataset into 100 equally sized shards which were distributed

among the 100 peers in the network. Whenever a training task

was posted to the network, the requester R randomly chose

15% of the 100 peers to act as workers, which meant a set

L with g = 15 peers. Each peer in L, called worker in what

follows, had a different combination of M = 7 peers who

acted as accountability managers.

Fig. 3. Protocol 1. Non-binary task quality with random peer selection

Fig. 4. Protocol 1. Non-binary task quality with reputation-based peer
selection

We used a convolutional neural network (CNN) with two

convolutional layers and max pooling layers followed by two

fully connected layers. We used 10 filters of size 5 × 5 in

the first convolution layer and 20 filters of size 5 × 5 in the

second layer. The convolution layers were followed by two

fully connected layers with 50 hidden units. The first fully

connected layer took the inputs from the convolutional layers

and applied weights to predict the correct label. The fully

connected output layer gave the final probabilities for each

label. R trained the global model for 30 global training epochs

for each task. In each epoch, R sent a copy of the global model

to workers in L and asked them to train the model (locally)

using a momentum stochastic gradient descent optimizer with

3 local epochs, local batch size 8, learning rate 0.0002 and

momentum 0.9.

We used the precision metric to evaluate the performance

of the model. Precision is the amount of true positives TP
divided by the sum of true positives and false positives FP ,

that is TP/(TP + FP ).

The dashed line in Figures 5, 6 and 7 shows the classifica-

tion precision achieved by the global model at each epoch

when all workers act honestly. The global model achieves



Fig. 5. Protocol 3. Global model precision evolution without reputations

a precision around 96% after 30 epochs. In addition to the

all-honest case, we considered scenarios where 20% of the

workers were malicious. Malicious workers launched either

a random or a poisoning attack at each global epoch with

70% probability, otherwise they acted honestly. Attacks were

as follows:

• Random attack. The attacker tried to prevent the model

from converging by sending random updates.

• Poisoning attack. The attacker tried to cheat the global

model into misclassifying some specific inputs. In our

experiments, the target class was 4, which the malicious

workers tried to misclassify as 7.

Figure 5 shows the evolution of precision when the global

model was trained without reputations, which meant that the

g = 15 workers were selected at random. Clearly, random

attacks prevented the model from converging. In contrast,

poisoning attacks did not affect much the global precision of

the model, which remained very close to baseline precision.

This is not surprising, because by design poisoning attacks

were aimed at introducing bias for class 4 but not for the

other classes.

We next introduced reputations. Since reputations were

available, the requester R chose the g = 15 peers with highest

reputation as workers.

Solid lines in Figure 6 show the evolution of the precision of

the global model under random attacks for the first, second and

third tasks using reputations. Accountability managers used

τ = 1.5 to compute the set λ of good updates. Given that

reputations were not yet available when running the first task,

the model was unable to converge at the beginning because

malicious workers could not be excluded. However, in the

last epochs of the first task, most malicious workers were

already filtered out. Thus, the opinions of their accountability

managers were effective to neutralize their impact on the

performance of the global model. For the second and the third

tasks, all malicious peers had been detected and excluded from

the very beginning (their reputation had been set to 0), which

increased the model precision to the same level attained when

all workers were honest.

Fig. 6. Protocol 3. Global model precision evolution under random attacks
using reputations

Figure 7 shows the evolution of the model under poisoning

attacks. Accountability managers used τ = 1. The accuracy

for the targeted class, 4, dropped as the model misclassified

it as class 7 after the malicious peers launched their attacks.

Detecting stealthy attackers is more difficult than detecting

random attackers and hence it took longer to neutralize the

former. This is why the model achieved good accuracy only

in the fifth learning task, unlike for random attacks in which

malicious peers were eliminated already at the end of the first

task.

VIII. CONCLUSIONS AND FUTURE RESEARCH

Co-utility can make correctness in decentralized computing

rationally sustainable. Decentralized reputation is a powerful

incentive to achieve co-utility. We have described protocols

for reputation-based decentralized P2P computing and for

reputation-based federated learning. In both applications, rep-

utation allows reducing the computation redundancy needed

to withstand malicious peers.

Future work will aim at improving the robustness of

reputation-based federated learning against sophisticated poi-

soning attacks, such as those using generative adversarial

networks (e.g. [15]).

ACKNOWLEDGMENT AND DISCLAIMER

This work was motivated by a research contract from

Huawei Finland. We thank Rami Haffar for help with the

experiments. We acknowledge support from: European Com-

mission (project H2020-871042 “SoBigData++”), Government

of Catalonia (ICREA Acadèmia Prize to J. Domingo-Ferrer

and grant 2017 SGR 705) and Spanish Government (projects

RTI2018-095094-B-C21 and TIN2016-80250-R). The authors

are with the UNESCO Chair in Data Privacy, but their views

here are not necessarily shared by UNESCO.

REFERENCES

[1] H. Ahmad, L. Wang, H. Hong, J. Li, H. Dawood, M. Ahmed, Y. Yang.
Primitives towards verifiable computing: a survey. Frontiers in Computer
Science 12(3) (2018) 451-478.

[2] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, V. Shmatikov. How to
backdoor federated learning. arXiv preprint 1807.00459v3, Aug. 6, 2019.



Fig. 7. Protocol 3. Global model precision evolution under poisoning attacks
using reputations. Top to down, plots for first, third and fifth tasks.

[3] A. N. Bhagoji, S. Chakraborty, P. Mittal, S. Calo. Analyzing federated
learning through an adversarial lens. arXiv preprint 1811.12470v3, Mar.
2, 2019.

[4] N. Bitansky, R. Canetti, A. Chiesa, E. Tromer. From extractable collision
resistance to succint non-interactive arguments of knowledge, and back
again. In: 3rd Innovations in Theoretical Computer Science Conference-
ITCS’12, pp. 326-349. ACM, 2012.

[5] P. Blanchard, E. M. ElMhamdi, R. Guerraoui, J. Stainer. Machine learning
with adversaries: Byzantine tolerant gradient descent. In 31st Conf. on
Neural Information Processing Systems-NIPS 2017, pp. 119-129. NIPS
Proceedings, 2017.

[6] R. Canetti, B. Riva, G.N. Rothblum. Practical delegation of computation
using multiple servers. In: 18th ACM Conference on Computer and
Communications Security-CCS’11, pp. 445-454. ACM, 2011.

[7] M. Castro, B. Liskov. Practical Byzantine fault tolerance and proactive
recovery. ACM Transactions on Computer Systems 20(4) (2002) 398-461.

[8] K.M. Chung, Y. Kalai, S. Vadhan. Improved delegation of computation us-
ing fully homomorphic encryption. In: Advances in Cryptology-CRYPTO
2010, pp. 483-501. Springer, 2010.

[9] W. Diffie, M. E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory IT-22(6) (1976) 644-654.

[10] J. Domingo-Ferrer, O. Farràs, S. Martı́nez, D. Sánchez, J. Soria-Comas.
Self-enforcing protocols via co-utile reputation management. Information
Sciences 367-368 (2016) 159-175.

[11] J. Domingo-Ferrer, O. Farràs, J. Ribes-González, D. Sánchez. Privacy-
preserving cloud computing on sensitive data: A survey of methods,
products and challenges. Computer Communications 140-151 (2019) 38-
60.

[12] J. Domingo-Ferrer, S. Martı́nez, D. Sánchez, J. Soria-Comas. Co-utility:
self-enforcing protocols for the mutual benefit of participants. Engineering
Applications of Artificial Intelligence 59 (2017) 148-158.

[13] R. Gennaro, C. Gentry, B. Parno. Non-interactive verifiable compu-
tation: outsourcing computation to untrusted workers. In: Advances in
Cryptology-CRYPTO 2010, pp. 465-482. Springer, 2010.

[14] R. W. Hamming. Error detecting and error correcting codes. Bell System
Technical Journal 29(2) (1950) 147-160.

[15] B. Hitja, G. Ateniese, F. Pérez-Cruz. Deep models under the GAN:
information leakage from collaborative deep learning. In: Proc. of the
2017 ACM SIGSAC Conf. on Computers and Communications Security
- CCS’17, pp. 603-618. ACM, 2017.

[16] K. Hoffman, D. Zage, C. Nita-Rotaru. A survey of attack and defense
techniques for reputation systems. ACM Computing Surveys 42(1) (2009)
art. no. 1.

[17] S. D. Kamvar, M. T. Schlosser, H. Garcia-Molina. The EigenTrust algo-
rithm for reputation management in P2P networks. In: 12th International
Conference on World Wide Web, pp. 640-651. ACM, 2003.

[18] J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, M. Guizani. Reliable
federated learning for mobile networks. arxiv:1910.06837v1, Oct. 14,
2019.

[19] V. Kolesnikov, R. Kumaresan. Improved OT extension for transferring
short secrets. In: CRYPTO 2013, Part II, pp. 54-70. Springer, 2013.

[20] V. Kolesnikov, R. Kumaresan, M. Rosulek, N. Trieu. Efficient batched
oblivious PRF with applications to private set intersection. In: 24th ACM
Conference on Computer and Communications Security-CCS’16, pp.
818-829. ACM, 2016.

[21] Y. LeCun, C. Cortes, C.J.C. Burges. The MNIST Database of Handwrit-
ten Digits. http://yann.lecun.com/exdb/mnist/ Retrieved March 2, 2020.

[22] K. Leyton-Brown, Y. Shoham. Essentials of Game Theory: A Concise,
Multidisciplinary Introduction. Morgan & Claypool, 2008.

[23] C. Lund, L. Fortnow, H.J. Karloff, N. Nisan. Algebraic methods for
interactive proof systems. Journal of the ACM 39(4) (1992) 859-868.

[24] B. McMahan, D. Ramage. Federated learning: collaborative machine
learning without centralized training data. Google AI Blog, Apr. 6, 2017.

[25] D. Molnar. The SETI@Home problem. ACM Crossroads 7(1) (2000).
[26] B. Parno, C. Gentry, J. Howell, M. Raykova. Pinocchio: Nearly practical

verifiable computation. Communications of the ACM 59(2) (2016) 103-
112.

[27] A.R. Sadeghi, T. Schneider, M. Winandy. Token-based cloud computing:
secure outsourcing of data and arbitrary computations with lower latency.
In: Trust and Trustworthy Computing - Trust 2010, pp. 417-429. Springer,
2010.

[28] S. Setty, R. McPherson, A.J. Blumberg M. Walfish. Making argument
systems for outsourced computation practical(sometimes). In: 19th An-
nual Network and Distributed System Security Symposium - NDSS’12.
2012.

[29] S. Smith, S. Weingart. Building a high-performance, programmable
secure coprocessor. Computer Networks 31(8) (1999) 831-960.

[30] M. Sudan. Probabilistically checkable proofs. Communications of the
ACM 52(3) (2009) 76-84.

[31] J. Thaler, M. Roberts. M. Mitzenmacher, H. Pfister. Verifiable com-
putation with massively parallel interactive proofs. In: 4th USENIX
conference on Hot Topics in Cloud Computing - HotCloud’12. USENIX,
2012.

[32] Trusted Computing Group. Trusted platform module main specification.
1.2, Revision 103 (2007).

[33] M. Walfish, A. J. Blumberg. Verifying computations without re-
executing them. Communications of the ACM 58(2) (2015) 74-84.

[34] X. Yu, Z. Yan, A.V. Vasilakos. A survey of verifiable computation.
Mobile Networks and Applications 22 (2017) 438-453.


