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Abstract  20 

Psychiatric disorders such as Schizophrenia (SCZ) and Bipolar Disorder (BD) 21 

represent an evolutionary paradox, as they exhibit strong negative effects on fitness, 22 

such as decreased fecundity and early mortality, yet they persist at a worldwide 23 

prevalence of approximately 1%. Molecular mechanisms affecting lifespan, which may 24 

be widely common among complex diseases with fitness effects, can be studied by the 25 

integrated analysis of data from genome-wide association studies (GWAS) of human 26 

longevity together with any disease of interest. Here, we report the first of such studies, 27 

focusing on the genetic overlap -pleiotropy- between two psychiatric disorders with 28 

shortened lifespan, SCZ and BD, and human parental lifespan (PLS) as a surrogate of 29 

life expectancy. Our results are twofold: first, we demonstrate extensive polygenic 30 

overlap between SCZ and PLS and to a lesser extend between BD and PLS. Second, 31 

we identified novel loci shared between PLS and SCZ (n=39), and BD (n=8). Whereas 32 

most of the identified SCZ (66%) and BD (62%) pleiotropic risk alleles were associated 33 

with reduced lifespan, we also detected some antagonistic protective alleles associated 34 

to shorter lifespans. In fact, top-associated SNPs with SCZ seems to explain longevity 35 

variance explained (LVE) better than many other life-threatening diseases, including 36 

Type 2 diabetes and most cancers, probably due to a high overlap with smoking-37 

related pathways. Overall, our study provides evidence of a genetic burden driven 38 

through premature mortality among people with SCZ, which can have profound 39 

implications for understanding, and potentially treating, the mortality gap associated 40 

with this psychiatric disorder.  41 
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Introduction  42 

Schizophrenia (SCZ) and Bipolar Disorder (BD) are mental disorders that greatly 43 

impact the quality of life of affected individuals and rank globally among the leading 44 

causes of human disability and cost to health systems (GBD 2016 Disease and Injury 45 

Incidence and Prevalence Collaborators, 2017). Large genome-wide association 46 

studies (GWAS) show that SCZ and BD are highly polygenic diseases with many 47 

known associated genetic variants with small effects (Pardiñas et al., 2018; Prata et al., 48 

2019; Stahl et al., 2019), jointly explaining between one half to one third of the genetic 49 

risk of each disease (Sullivan, 2005; Wray and Gottesman, 2012). Recently, large 50 

amounts of data have accumulated suggesting a genetic overlap between SCZ, BD 51 

and many brain disorders, as well as other medical conditions and personality traits 52 

(Ole A Andreassen et al., 2013; Ole A. Andreassen et al., 2013; Cross-Disorder Group 53 

of the Psychiatric Genomics Consortium, 2019; Cross-Disorder Group of the 54 

Psychiatric Genomics Consortium, 2013; Smeland et al., 2019, 2017; Zuber et al., 55 

2018), which would be consistent with the hypothesis that psychiatric disorders may 56 

arise from complex trade-offs with other traits and diseases and may be considered as 57 

byproducts of other adaptive functions. 58 

People affected by SCZ and BD often die at a considerably younger age than the rest 59 

of the population (Olfson et al., 2015; Roshanaei-Moghaddam and Katon, 2009; Walker 60 

et al., 2015) and suffer from increased morbidity rates (Vancampfort et al., 2017). While 61 

the decline in mortality rates in developed countries has extended average lifespans by 62 

nearly a decade, such improvements have not been observed in psychiatric patients 63 

(Lee et al., 2017; Lomholt et al., 2019; Oakley et al., 2018; Staudt Hansen et al., 2019). 64 

In SCZ, metabolic alterations induced by the use of antipsychotic drugs may contribute 65 

to premature mortality by increasing the risk of diabetes and cardiovascular disease 66 

(Hjorthøj et al., 2017; Laursen et al., 2014, 2012). However, both high doses and a lack 67 

of antipsychotic use are associated with a higher risk of death, indicating that factors 68 

other than antipsychotic treatment influence mortality (Torniainen et al., 2015). Intrinsic 69 

factors associated with SCZ and BD also contribute to increased mortality, including an 70 

increased risks of suicide and accidents, poor health care and poor health habits 71 

including smoking (Olfson et al., 2015). Besides the potential contribution of all these 72 

factors to mortality, intrinsic accelerated biological aging may also play a role in the 73 

premature mortality and the increased morbidity observed (Nguyen et al., 2018; Rizzo 74 

et al., 2014; Saha et al., 2007), which points toward the downstream expression of 75 

molecular mechanisms that may be shared between mortality and these psychiatric 76 

disorders (Kirkpatrick et al., 2008; Kirkpatrick and Kennedy, 2017). In this regard, 77 
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recent GWAS on parental lifespan and offspring genotypes offer the prospect of 78 

illuminating biological systems involved in lifespan and enable the discovery of genetic 79 

variants affecting all-cause mortality (Timmers et al., 2019).  80 

How common risk alleles persist in the population, given the early mortality and 81 

decreased fecundity associated with psychiatric disorders (Power et al., 2013), has 82 

been long debated (Crespi et al., 2007; Shaner et al., 2004; Srinivasan et al., 2016). To 83 

date, studies evaluating the evolutionary footprint on the disease risk alleles, mainly 84 

conducted on SCZ, support the action of background selection contributing to the 85 

persistence of common risk alleles in the population, as a consequence of purifying 86 

selection in regions of low recombination (Pardiñas et al., 2018). On the other hand, 87 

some limited empirical evidence suggests that standing genetic variation for longevity 88 

is enriched with mutations with pleiotropic effects (Maklakov et al., 2015; Rodríguez et 89 

al., 2017). This would fit the well-known antagonistic pleiotropy (AP) theory of aging, 90 

according to which genetic variants with beneficial effects early in life can be selected 91 

for despite their negative effects late in life (Williams, 1957), a prediction that, in 92 

general terms, matches recent observations on alleles that either protect from or 93 

increase the risk of human disease (Rodríguez et al., 2019, 2017). The study of how 94 

psychiatric disorders would fit in such scenario can benefit from the tests based on 95 

DNA sequence polymorphism that have been developed to detect past selective 96 

events in humans (Huber et al., 2016; Sabeti et al., 2007; Voight et al., 2006) and 97 

which, surprisingly, have been only partially applied to the understanding of psychiatric 98 

disorders (Crespi et al., 2007; Pardiñas et al., 2018).  99 

Given the public health significance of psychiatric disorders and the treatment 100 

implications of any etiological findings, it is essential to determine the nature of genetic 101 

pleiotropy between psychiatric disorders and mortality, if it does exist at all; and to 102 

identify the specific genes and pathways driving these potential trade-offs. Here, we 103 

used genetic epidemiology and genome enrichment analysis to perform a detailed 104 

study on the polygenic overlap between SCZ, BD, and parental lifespan (PLS), 105 

identifying both, novel candidate loci associated to the diseases and specific loci 106 

potentially explaining shared positive and negative comorbidities between these 107 

phenotypes. We show for the first time that single nucleotide polymorphisms (SNPs) 108 

increasing the risk for SCZ and BD are, at large, associated with a greater risk of living 109 

shorter lives, confirming clinical observations. Still, we detect some remarkable 110 

exceptions, unveiling the existence of variants with pleiotropic effects consistent with 111 

the AP theory of aging, since they seem to protect from these diseases at the cost of 112 



5 
 

shorter lives. Altogether, our approach provides early insights to elucidate the shared 113 

pathophysiology between psychiatric disorders and lifespan.   114 
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Methods and Materials 115 

Genome-wide association study (GWAS) samples 116 

GWAS summary statistics on SCZ were obtained from Pardiñas et al. 2018, which 117 

comprised association analyses of a total of 40,675 patients with SCZ and 64,643 118 

controls from European ancestry (Pardiñas et al., 2018). The summary statistics on BD 119 

were obtained from the Psychiatric Genomic Consortium (PGC, 120 

https://www.med.unc.edu/pgc/) and included 20,352 patients with BD and 31,358 121 

controls, all from European descent (Stahl et al., 2019). We also obtained GWAS data 122 

on ~1 million PLS from ~450,000 European individuals from the UK Biobank (Timmers 123 

et al., 2019).  124 

Preprocessing 125 

All GWAS summary statistics were referenced to a set of 9,546,816 single nucleotide 126 

polymorphisms (SNPs) generated from the 1,000 Genomes Project (1KGP, 127 

http://www.internationalgenome.org/). SNPs that were non-biallelic, without rsIDs, 128 

duplicated, or with strand-ambiguous alleles were removed. SNPs with INFO scores < 129 

0.9 in the summary statistics files, those mapping to the extended major 130 

histocompatibility complex (MHC, genomic position in hg 19; chr6: 25,119,106 – 131 

33,854,733) and the 8p23.1 region (chr8: 7,200,000 – 12,500,000), which are prone to 132 

rearrangements (Smeland et al., 2019), SNPs located on chromosomes X, Y and 133 

mitochondria, and SNPs with sample sizes 5 standard deviations away from the mean 134 

were also filtered out. Finally, a common set of 3,206,698 SNPs were kept in all 135 

datasets. All ORs and Betas from the summary statistics were transformed to z-scores. 136 

We evaluated the directional effects of the loci shared between psychiatric disorders 137 

and PLS by comparing their z-scores. GWAS data was obtained from common data 138 

sources, resulting in overlapping control individuals between BD and SCZ. Thus, all p-139 

values were adjusted for standard genomic control (GC) and Z-scores were adjusted 140 

for sample overlap between GWAS, using intergenic SNPs as implemented in the 141 

pleioFDR script (Lin and Sullivan, 2009; Schork et al., 2013), adjusting the joint 142 

distribution of two GWAS and allowing for the use of the corrected summary statistics 143 

in downstream analysis.  144 

The European populations from the 1KGP were used as the reference panel for the 145 

computation of the linkage disequilibrium (LD) structure between SNPs. Independent 146 

genomic loci were identified as described in Smeland et al. (Smeland et al., 2019). To 147 

define distinct genomic loci, we merged any physically overlapping lead SNPs (LD 148 
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blocks <250 kb apart), and the borders were defined by identifying all SNPs in LD 149 

(r2 ≧ 0.1) with one of the independent significant SNPs in the locus. The region 150 

containing all these candidate SNPs was defined as a single independent genomic 151 

locus and the most significant SNP within the region was selected as the lead SNP.   152 

Shared genetic architecture 153 

A frequent method for visualization of the enrichment of statistical association relative 154 

to the null hypothesis is through conditional or stratified Q-Q plots. When investigating 155 

polygenic shared architecture between two traits, the p-values of the primary trait are 156 

plotted conditioning on different strengths of association with a secondary trait (e.g., 157 

P < 1e-01, 1e-02 or 1e-03). Thus, the visualization of a leftward deflection in the 158 

primary trait of interest is an indicator of a shared polygenic architecture between the 159 

two traits (Zuber et al., 2018). To test for differential fold enrichment of each the three 160 

Q-Q plot strata represented in the Q-Q plots we used LD score regression (LDSC) with 161 

the total LD score as covariate (Finucane et al., 2015). Multiple-testing correction was 162 

performed for all the traits and for the three strata using the Benjamin-Hochberg (BH) 163 

procedure. LDSC was also used to compute genome-wide pairwise genetic 164 

correlations (r) across the studied traits (Bulik-Sullivan et al., 2015).  165 

Conditional Q-Q plots suffer from arbitrary thresholds and do not identify the specific 166 

pleiotropic regions of the genome. We employed the conjunctional FDR (conjFDR) to 167 

detect SNPs associated jointly with both traits at the same time. conjFDR weights both 168 

traits equally and is a suitable technique to discover novel associations that are 169 

otherwise not detected (Andreassen et al., 2014; Ole A. Andreassen et al., 2013). We 170 

used pleioFDR (https://github.com/precimed/pleiofdr) to identify genetic loci jointly 171 

associated with two phenotypes, setting a conjFDR level of 0.05 for each phenotypic 172 

pairwise comparison. For the identification of novel loci associated to each disease, we 173 

downloaded the GWAS Catalog database (v1.0) and searched for associations 174 

containing either the words “schizophrenia” or “bipolar disorder” and kept any 175 

significant (P<1e-05) association within the boundaries of each defined loci. When no 176 

associations were previously reported, the locus was defined as novel. 177 

Pleiotropy and Evolutionary Analysis 178 

In genetics, the term “pleiotropy” refers to one genetic variant influencing multiple 179 

phenotypes (Paaby and Rockman, 2013). In the context of the AP evolutionary theory 180 

of aging and the present work, pleiotropic effects can be divided into agonistic and 181 

antagonistic with relation to their effects on the diseases under study and lifespan. For 182 
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each SNP, the same allele may increase susceptibility to the disease and decrease 183 

lifespan (referred to as agonistic pleiotropy) or decrease the susceptibility to the 184 

disease while shortening lifespan (antagonistic pleiotropy). Since SNPs are binary in 185 

nature (one allele mirroring the effect of the other) and because we always referred to 186 

the derived allele, we included in the antagonistic category not only those SNPs having 187 

a derived allele that decreased the susceptibility to disease and decreased lifespan but 188 

also those ancestral alleles reported increase disease susceptibility while lengthening 189 

lifespan.  190 

We also used the ρ‐HESS software to estimate genetic correlations based on smaller 191 

LD-based segments of the genome (Shi et al., 2017). For all ρ‐HESS analyses, we 192 

used the 1000 Genomes Project Phase 3 European reference panel and reported the 193 

number of genomic regions displaying significant local genetic correlations after 194 

correction for the total number of partitions (1655, after MHC removal). We assumed 195 

no sample overlap between the two psychiatric disorders and PLS. To further 196 

investigate the causal effect of SCZ on PLS we performed two-sample Mendelian 197 

Randomization (MR) using SCZ GWAS (Pardiñas et al., 2018) as exposure and PLS 198 

GWAS (Timmers et al., 2019) as outcome. Effect estimates and standard errors were 199 

extracted for each variant from the GWAS summary statistics and used to estimate 200 

inverse variance weighted (IVW) effect estimates (Hemani et al., 2018). Heterogeneity 201 

in the IVW estimates was tested using the Cochran’s Q test. For the analyses we used 202 

the TwoSampleMR R package (https://github.com/MRCIEU/TwoSampleMR). 203 

We evaluated whether molecular signatures of natural selection were different between 204 

the loci showing agonistic and antagonistic effects in SCZ and PLS. For each identified 205 

SNP, standard precomputed statistics for recent positive selection (XP-EHH, iHS) and 206 

local genetic adaptation (FST) were obtained from the 1,000 Genomes Selection 207 

Browser (http://hsb.upf.edu/hsb_data). The XP-EHH and iHS tests search for long 208 

range haplotypes with relatively high frequencies, a signature that is not expected 209 

under neutrality, but easily observed during and after a recent classical selective 210 

sweep. The XP-EHH statistic explores the integrated extended haplotype 211 

homozygosity profiles between two populations at the same SNP and is expected to be 212 

especially informative when alleles under selection are close to fixation in one of the 213 

populations (Sabeti et al., 2007). Absolute values of iHS can be used to evaluate the 214 

strength of ongoing positive selection signals at a particular locus in a given population 215 

(Voight et al., 2006). Whereas the signal of the XP-EHH statistic indicates whether 216 

selection have occurred on the tested or reference population, the signal of the iHS 217 

indicates in which particular allelic background selection is occurring. As for the FST 218 

https://github.com/MRCIEU/TwoSampleMR
http://hsb.upf.edu/hsb_data
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fixation index (Weir and Cockerham, 1984), it is a measure of population differentiation 219 

that allows detecting extremely differentiated adaptive variants resulting from 220 

geographically restricted selective pressures when comparing populations living in 221 

contrasting environments. Both XP-EHH and FST were obtained for the CEU population 222 

using the Yoruban population as reference. We also investigated the strength of 223 

background (purifying) selection through the B-statistic score, which was obtained for 224 

each SNP by linear interpolation when the corresponding genomic position did not exist 225 

in the original data from Huber et al. 2016. Finally, data on allele frequency and the 226 

derived alleles were obtained from Ensembl (www.ensembl.org). 227 

Impact of loci on lifespan: variance explained 228 

We calculated the lifespan variance explained (LVE) for each SNP as 2pqa2, where p 229 

and q are the frequencies of the reference alleles in the PLS GWAS (Timmers et al., 230 

2019), and a is the SNP effect size in years of life. Then, lead SNPs at conjFDR<0.05 231 

for SCZ and PLS, as well as independent genome-wide significant SNPs associated to 232 

SCZ and BD (Pardiñas et al., 2018; Stahl et al., 2019) from latest GWAS were ordered 233 

by LVE and total LVE was calculated by summing SNPs with significant effects on 234 

lifespan. Significance was determined by setting an FDR threshold of 0.1. To test the 235 

effect direction on pleiotropic variants, the risk allele and the direction of the effects (z-236 

scores) were kept for each SNP. Disease-protective alleles were signed negatively 237 

when decreasing lifespan and positively when increasing lifespan, and vice versa for 238 

the alternative alleles. To compare with our results, we retrieved LVE for genome-wide 239 

significant disease SNPs from Timmers et al. 2019.  240 

Functional analysis 241 

All cross-phenotype-associated SNPs at conjFDR<0.05 were functionally annotated 242 

and mapped to closest genes with ANNOVAR using the default parameters in FUMA 243 

(Watanabe et al., 2017). Then, to explore the biological mechanisms underlying cross-244 

phenotype-associated genetic loci, enrichment analysis was performed with 245 

GENE2FUNC from FUMA. FDR was controlled using the Benjamini-Hochberg (BH) 246 

procedure. In all cases, the complete set of protein-coding genes was used as the 247 

background.  248 

 249 

Results  250 

Shared genetic architecture between SCZ, BD and PLS. 251 

file:///C:/Users/muntaneg/Dropbox/Papers/SCZ_Aging/www.ensembl.org
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Consistent with previous studies, SCZ and BD present a highly significant positive 252 

genetic correlation (r=0.67, P=4.87e-178, Cross-Disorder Group of the Psychiatric 253 

Genomics Consortium et al., 2019). In contrast, PLS was negatively associated with 254 

SCZ (r= -0.1, p= 0.0013), and no relationship was observed between PLS and BD (r= -255 

0.06, P=0.06). Again consistently with previous findings (Ole A. Andreassen et al., 256 

2013), both conditioning on BD and SCZ resulted in a strong deflection to the left when 257 

conditioning on the primary trait. Most of the 373 associated loci at conjFDR < 0.05 258 

(98.4%) harbor alleles that increase the risk for both SCZ and BD. Only 6 loci (1.6%) 259 

present alleles with opposing effects on SCZ and BD (Supplementary Figure 1 and 260 

Supplementary Table 1). 261 

Conditioning SCZ on PLS, Q-Q plots showed a stronger leftward deflection from the 262 

line of no association (blue line), with increasingly stronger association with PLS 263 

(Figure 1A). By contrast, BD showed weaker enrichment conditioning on PLS (Figure 264 

1B). The reverse conditional Q-Q plots, fixing PLS as the main trait of interest and 265 

conditioning on either SCZ or BD as secondary traits, provide corresponding results 266 

(Supplementary Figure 2). We did not find substantial changes in the enrichment 267 

pattern when including all SNPs mapping onto the MHC and 8p23.1 regions 268 

(Supplementary Figure 3). Testing the statistical significance of enrichment with the Q-269 

Q plot strata of psychiatric disorders as the primary trait, SCZ and BD, and PLS as the 270 

secondary trait, we detected an enrichment for SCZ given PLS (P=8.53e-13 and 271 

P=3.8e-04 conditioning on PLS p-value <1e-01 and <1e-02) and for BD given PLS 272 

(P=1.66e-07 and P=3.65e-03 conditioning on PLS p-value <1e-01 and 1e-02, 273 

Supplementary Table 2).  274 

A total of 39 near-independent genomic loci (r2 < 0.1) were jointly associated with SCZ 275 

and PLS at conjFDR < 0.05 (Figure 2A). It is worth mentioning that 29 of these loci 276 

were not identified in the original SCZ GWAS (Pardiñas et al., 2018), while, according 277 

to the GWAS Catalog (MacArthur et al., 2017), 12 of these 29 loci were previously 278 

reported at P<1e-05 in other SCZ studies, yielding a total of 17 novel SCZ risk loci 279 

(Table 1).  280 

The observation of extensive pleiotropy naturally leads to the exploration of functional 281 

enrichment among the shared SNPs to better understand the underlying biology. The 282 

loci with conjFDR value <0.05 shared between SCZ and PLS (769 SNPs, 283 

Supplementary Table 3) were enriched in Acetylcholine Gated Channel complex 284 

(FDR=0.0002), Acetylcholine Receptor Activity (FDR=0.0004), and Permeable Nicotinic 285 

Acethylcholine Receptors (FDR=1.74e-05) among others (Supplementary Table 4). An 286 
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even higher enrichment pattern was found when only accounting for agonistic loci, 287 

while antagonistic loci showed enrichment in different pathways, such as Inositol 1,4,5 288 

trisphosphate binding (P=0.08, Supplementary Tables 5-6). The discovered smoking-289 

related pathways in our study were not amongst the most relevant in SCZ when 290 

evaluating GWAS associations (Pardiñas et al., 2018) with FUMA, but where present in 291 

PLS (Timmers et al., 2019).  292 

Findings for BD were scarcer, with only 8 loci shared between BD and PLS at a 293 

conjFDR<0.05 (Table 1 and Figure 2B), 7 of which were not identified in the original BD 294 

GWAS (Stahl et al., 2019). Among these 7 loci, one was previously associated with BD 295 

according to the GWAS Catalog, yielding a total of 6 novel risk loci for BD. Just as in 296 

SCZ, the inclusion of the MHC and 8p23.1 regions did not result in differences in the 297 

enrichment pattern (Supplementary Figure 3). Although, we did not observe the same 298 

degree of overlap between PLS and BD, we also carried out enrichment analysis for all 299 

SNPs with a conjFDR<0.05 (Supplementary Table 7) shared between BD and PLS 300 

(n=113), but no functional enrichment was obtained.  301 

Only two loci, corresponding to SYNE1 and HSPA9, were significant in both 302 

conjunctional analyses (SCZ or BD and PLS) and in the two instances, the alleles that 303 

increased the risk for both disorders, also decreased lifespan. Finally, using data from 304 

the GWAS catalog (MacArthur et al., 2017) we identified many SNPs (among all 305 

conjFDR<0.05) as pleiotropic with other traits/diseases such as lung cancer, smoking 306 

initiation, Parkinson’s Disease, and many cognitive abilities (Supplementary Table 8). 307 

To further explore the landscape of pleiotropic effects, we examined lead SNPs from all 308 

independent loci at conjFDR<0.05 and their effects (z-scores) in SCZ, BD and PLS. As 309 

denoted by the sign of the effect sizes, among the 39 loci identified in the conjunction 310 

approach, 26 (66.7%) showed agonistic evolutionary effects in SCZ and PLS with the 311 

alleles that increased the risk for developing the disease also shortening lifespan. The 312 

remaining pleiotropic variants (n=13, 33.3%) showed antagonistic effects, with opposite 313 

evolutionary effect directions. That is, alleles protecting from the disease also shorten 314 

lifespan (which means that the alternative alleles increase disease risk, while 315 

associating with longer lifespans), that were compatible with the AP theory of aging 316 

(Figure 3A). Finally, among the 8 loci shared between BD and PLS, we found 3 317 

(37.5%) with evolutionary antagonistic effects compatible with AP, while the rest 318 

increased the risk of BD and shortened lifespan (Figure 3B). Thus, the proportion of 319 

antagonistic variants in SCZ and BD with PLS was similar. Furthermore, the 320 

agonistic/antagonistic pattern was consistently observed for the SCZ and BD GWAS 321 
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genome-wide variants at different thresholds of association with PLS (Supplementary 322 

Figure 4). 323 

SNPs assigned to the antagonistic category presented differential molecular 324 

evolutionary signatures compared to the agonistic pleiotropic variants. First, agonistic 325 

loci in SCZ and PLS showed lower minor allele frequencies (MAF; Mann-Whitney (M-326 

W) test, P=0.04), lower derived allele frequencies (DAF; one-sided M-W test, P=0.04), 327 

lower iHS (P=0.02), and lower absolute value of XP-EHH (P=0.004); which are all 328 

consistent with agonistic loci not presenting trade-offs with traits that would increase 329 

fitness. Although not significant, SNPs with antagonistic effects (n=13) were found in 330 

regions with weaker background selection, as measured with the B-statistic (M-W test, 331 

P=0.06). Population differentiation, measured by FST, did not show significant 332 

differences (M-W test, P=0.13) between either group of SNPs (Figure 4).  333 

Additionally, among the loci jointly associated with both psychiatric disorders and PLS, 334 

3 regions were found to be genetically correlated (P<0.05/1655) between SCZ and 335 

PLS using ρ‐HESS (Shi et al., 2017), and no regions between BD and PLS 336 

(Supplementary Table 9). We also aimed to find evidence for putative causal 337 

relationships between SCZ and PLS using ρ‐HESS and found not clear direction 338 

consistent with a putative causal relationship between both traits (Supplementary 339 

Figure 5).  340 

To further knowledge on the nature of pleiotropic relationships conducted an 341 

exploratory MR study of the causal effect of SCZ on PLS indicating no evidence of 342 

causality. The random effects of the inverse-variance weighted (IVW) estimate 343 

indicated that the Odds Ratio (OR) for PLS was 0.98 (95% CI of 0.96-1.00) per 344 

standard deviation increase in SCZ (P=0.15). In addition, there was strong evidence for 345 

heterogeneity amongst SNPs (Cochran’s Q value= 221, p=7.55e-17), indicating 346 

alternative pathways from some of the SNPs to the outcome, known as horizontal 347 

pleiotropy (Smith and Hemani, 2014), that is, true direct pleiotropic effects 348 

(Supplementary Table 10).  349 

To study the relative contributions of the discovered variants to PLS variance, we 350 

calculated the LVE of each locus. Altogether, the cumulative LVE sum of the 39 lead 351 

SNPs jointly associated with SCZ and PLS, and BD and PLS were 0.52 years2 and 352 

0.09 years2, respectively. Collectively, all SCZ and PLS antagonistic SNPs (n=13) 353 

explained 0.17 years2, while the agonistic SNPs (n=26) explained 0.35 years2 354 

(Supplementary Figure 6). To contextualize these results, we compared the impact of 355 

risk alleles for SCZ and BD on lifespan with the life-shortening impact of alleles 356 
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associated to other severe, life-threatening diseases. We evaluated the LVE explained 357 

by the genome-wide significant associated loci to SCZ (our filtered dataset contained 358 

110 out of the 145 associated variants in the original GWAS) and BD (which contained 359 

18 out of 30 associated variants), which explained up to 0.14 years2 and 0 years2, 360 

respectively. Indeed, for top SNPs associated with SCZ we observed more variation in 361 

lifespan than what is explained by genome-wide significant SNPs of Type 2 diabetes 362 

(0.04 years2) and all cancers, excluding lung cancer (0.12 years2); and slightly less 363 

LVE than smoking/lung cancer SNPs (0.15 years2, data obtained from Timmers et al., 364 

2019). 365 

Discussion  366 

Despite a growing body of empirical research on psychiatric disorders and the 367 

accompanied improvements in treatments, the mortality gap between people with SCZ 368 

or BD and the general population has widened (Hjorthøj et al., 2017; Lee et al., 2017; 369 

Saha et al., 2007). Recent findings suggest that this is not entirely due to disease-370 

associated causes, such as for instance suicide and medication, and that patients with 371 

SCZ and BD show evidence of accelerated aging (Kirkpatrick et al., 2008; Kirkpatrick 372 

and Kennedy, 2017). Numerous physiological changes associated with normal aging 373 

occur earlier in people with SCZ, including the premature onset of other medical 374 

illnesses, shortened telomeres, increased inflammation and oxidative stress 375 

(Kirkpatrick and Kennedy, 2017). In the current study, we analyzed large GWAS 376 

datasets (Pardiñas et al., 2018; Stahl et al., 2019; Timmers et al., 2019) to dissect the 377 

genetic overlap between SCZ, BD, and PLS. Our analysis showed that large fractions 378 

of the genomic architectures underlying SCZ and BD also influence lifespan, especially 379 

in the case of SCZ. 380 

Beyond the overall evidence of shared genetic architecture, we identified 39 genomic 381 

loci jointly associated with SCZ and PLS and 8 loci jointly associated with BD and PLS. 382 

Among the shared loci, 17 are novel SCZ risk loci and six are novel BD risk loci, 383 

demonstrating the improved power gained by combining GWAS in a conjFDR 384 

approach for SNP discovery (Ole A. Andreassen et al., 2013). Furthermore, we used 385 

the ρ‐HESS method and identified genetic local correlations of 3 regions of the genome 386 

between SCZ and PLS. However, the SNPs associated with lifespan for both diseases 387 

did not fully overlap, in fact, only 2 loci were shared (corresponding to HSPA9 and 388 

SYNE1 genes), which was in contrast to their otherwise high degree of genetic overlap 389 

(Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics 390 
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Consortium, 2018). These divergent results highlight the unique genetic relationships 391 

between lifespan, SCZ and BD.  392 

As we have done here for the first time, uncovering shared mechanistic pathways is 393 

fundamental to understanding the relationship between mental disorders and lifespan 394 

(Kirkpatrick and Kennedy, 2017). The enrichment analysis of all SNPs having a 395 

conjFDR value < 0.05 in the loci shared between SCZ and PLS (n=769) implicated 396 

biological pathways associated with acetylcholine binding and nicotinic pathways. 397 

Interestingly, SCZ and lung cancer were previously found to be pleiotropic (Farré et al., 398 

2019) as exemplified by the locus on chromosome 15 including the CHRNA3 gene, 399 

that was strongly associated with lung cancer and SCZ (Zuber et al., 2018). Indeed, 400 

SCZ patients had a higher prevalence of a smoking history than the general population, 401 

which in turn is strongly associated with mortality (de Leon and Diaz, 2005). 402 

Remarkably, these enrichments were driven by the agonistic loci, while antagonistic 403 

loci showed enrichment in pathways related to inositol binding, although not significant 404 

after FDR correction. On the other hand, we were unable to identify any significant 405 

pathways for SNPs jointly associated with BD and PLS, probably because of the little 406 

statistical power afforded by the small number of loci identified (n=8). Interestingly, in 407 

SCZ, our preliminary MR and ρ‐HESS analyses to estimate the causal influence of one 408 

trait upon the other suggests that there is not causality between both traits, indicating 409 

that variants may have independent effects on SCZ and PLS. However, it is likely that 410 

disease risk-alleles may impact on lifespan through pleiotropic relationships increasing 411 

or reducing the risk of secondary comorbid conditions (p.e. smoking) with a final impact 412 

on lifespan. 413 

To date, inconsistent results have also been proposed to explain the high frequency of 414 

risk alleles for psychiatric disorders (Crespi et al., 2007; Pardiñas et al., 2018; Power et 415 

al., 2013; Shaner et al., 2004; Srinivasan et al., 2016). One of the proposed 416 

hypotheses is that causal genetic variants may not be completely deleterious and may 417 

also confer some benefits that maintain these variants at relatively high frequencies 418 

(Crespi et al., 2007). For instance, increased load of risk alleles may, in the absence of 419 

the disorder itself, confer reproductive advantages, thus offsetting the effects of 420 

negative selection. However, previous research suggested no strong evidence for this 421 

hypothesis (Escott-Price et al., 2019; Mullins et al., 2017). In contrast, while most 422 

identified SCZ (~66%) and BD risk alleles (~62%) were associated with reduced 423 

lifespan in our analyses, consistent with the observed premature mortality in these 424 

individuals, a substantial fraction of disease risk alleles (~35%) were associated with 425 

longer lifespan, providing some evidence for the existence of the AP theory of aging. 426 
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Among the genes fitting the antagonistic pleiotropy paradigm in our study, some genes 427 

(SDCCAG8, PLCL1, ERBB4 and UFM1) have been previously suggested to undergo 428 

positive selection in humans (Abdellaoui et al., 2013; Barreiro and Quintana-Murci, 429 

2010; Pickrell et al., 2009; Schlebusch et al., 2012; Williamson et al., 2007). Although 430 

our analysis focused on sub-GWAS associations we also demonstrated that the same 431 

pattern of agonist and antagonist pleiotropy with lifespan is observed in significant 432 

GWAS SCZ and BD hits, providing stronger evidence for the pattern here uncovered in 433 

both disorders. 434 

In this context, risk alleles for these diseases can be divided in, at least, two different 435 

categories: risk alleles with agonistic negative effects on other traits; and risk alleles 436 

with antagonistic (beneficial) effects on other traits. Thus, alleles with negative fitness 437 

consequences early in life that are partially offset by positive fitness consequences on 438 

other traits (reducing all-cause mortality and affecting longevity), may help explaining 439 

the persistence of these susceptibility alleles in the population. This mixture of 440 

directional effects is both, fitting to the absence or near absence of genetic correlations 441 

between the traits, and consistent with the idea that antagonistic pleiotropy may be 442 

more widespread than typically considered (Rodríguez et al., 2019, 2017).  443 

It has also been recently proposed that risk variants for SCZ are enriched in regions of 444 

strong background selection (Pardiñas et al., 2018). However, these two classes of 445 

variants (agonistic and antagonistic with lifespan) may not undergo the same adaptive 446 

pressures and may be detectable using evolutionary tests. We found that SNPs with 447 

antagonistic effects tend to be in regions with patterns of variation more closely 448 

resembling those expected under positive selection than the SNPs with agonistic 449 

effects. Moreover, they also tend to be in regions with weaker background selection 450 

relative to SNPs with agonistic effects. Although these results are not conclusive, given 451 

the small number of variants used, they suggest that SCZ risk variants compatible with 452 

the AP theory of aging can reach higher frequencies, perhaps reflecting the 453 

antagonistic compensatory effects between disease risk and lifespan. Also, it suggests 454 

that extending such analyses to the study of other diseases will help on understanding 455 

its evolutionary and genetic trade-offs. 456 

Finally, the LVE by all significant loci (conjFDR < 0.05) in SCZ and PLS was 0.52 457 

years2 (0.4% of the total LVE) but was much more modest in BD (0.09 years2). 458 

Surprisingly, in SCZ these SNPs show greater variance than the largest LVE SNPs for 459 

known life-shortening diseases (Timmers et al., 2019). Together, loci explaining the 460 

most lifespan variance are agonistic (loci containing disease-risk alleles decreasing 461 
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lifespan and their reverse, disease-protective alleles that increase lifespan), with a 462 

cumulative contribution to variance of 0.35 years2. This is consistent with the premature 463 

mortality observed in SCZ patients (Olfson et al., 2015; Roshanaei-Moghaddam and 464 

Katon, 2009; Walker et al., 2015). Thus, reflecting that in addition to suicide, 465 

medication and other intrinsic factors, underlying genetic factors such as the smoking-466 

related pathways can be added as one of the factors determining shorter lifespan in 467 

SCZ patients. Also, the genome-wide significant SNPs associated with SCZ, coming 468 

from the latest GWAS, explained 0.14 years2 (0.11% of total LVE), more than SNPs 469 

associated to Type 2 Diabetes (0.04 years2) and cancers (other than smoking cancer, 470 

0.11 years2).  471 

Some limitations need to be mentioned. Given the very low heritability explained by the 472 

PLS GWAS, in accordance with low lifespan heritability estimates of 0.07-0.12 473 

(Graham Ruby et al., 2018; Kaplanis et al., 2018) and the indirect use of parent 474 

genotypes, our study can capture only tiny amounts of parental longevity variation. 475 

Similarly, the effects on lifespan of the reported variants derive, in any case, from 476 

variants that explain only a small portion of the variance in each disorder. At the same 477 

time, the GWAS power for BD (n = 51,710) is below that of SCZ (n = 105,318), which 478 

limits the validity of comparing the present findings for the two disorders. Still, our study 479 

provides strong evidence of shared genetic architecture between both disorders and 480 

lifespan. Also, the PLS GWAS excluded individuals whose parents died before the age 481 

of 40 (Timmers et al., 2019), which involves a lack of young onset disease alleles that 482 

may bias the results. Finally, as in all GWAS results, an SNP represents through LD a 483 

region containing several possible causal variants, even if both, trans-ethnic studies 484 

(Marigorta and Navarro, 2013) and Massively Parallel Reporter Assays (van 485 

Arensbergen et al., 2019) suggest that SNPs usually tag a single causal variant. 486 

Further research is therefore needed to determine the true underlying causal variants 487 

between the detected associations. 488 

In conclusion, our study demonstrates, for the first time, overlapping genetic 489 

architecture between PLS and the psychiatric disorders SCZ and BD, providing a 490 

molecular framework for the accelerated aging hypothesis leading to the observed 491 

premature mortality (Kirkpatrick et al., 2008; Kirkpatrick and Kennedy, 2017). We 492 

detect novel associations for both, SCZ and BD, and pinpoint genetic variants 493 

consistent with the AP theory of aging bearing molecular signatures suggestive of the 494 

action of natural selection. Our findings suggest that the genetic relationships between 495 

SCZ, BD, and lifespan are more complex than what is expressed by their overall 496 

genetic correlations, arising from a combination of agonistic and antagonistic effects, 497 
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which may help explaining the increased mortality observed in these groups of patients 498 

and, at the same time, the persistence of some risk variants in the population.  499 
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Table legend 1021 

Table 1. List of loci jointly associated with SCZ and PLS; and BD and PLS.  1022 
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Figure legends 1023 

Figure 1. Conditional Q-Q plots of nominal versus empirical (-log10) p-values 1024 

(corrected for inflation) between SCZ (left, A) and BD (right, B), as a function of 1025 

significance with PLS, at the level of p<10-1 (red line), p<10-2 (yellow line), and p<10-3 1026 

(purple line), respectively. The blue line indicates the standard enrichment of the main 1027 

trait of interest (SCZ and BD) including all SNPs, irrespective of their association with 1028 

the secondary trait (i.e., PLS). The gray dashed line indicates the null distribution of p-1029 

values.  1030 

Figure 2. Manhattan plot for independent (r2 < 0.1) loci associated with both A) SCZ, 1031 

and B) BD and PLS, as defined by conjunction false discovery rates (conjFDR) after 1032 

excluding single nucleotide polymorphisms in the MHC and 8p23.1 regions. Gene 1033 

labels are annotated as the nearby genes to the independent lead SNPs by FUMA. 1034 

The dashed black line represents the conjFDR threshold of 0.05. 1035 

Figure 3. Pleiotropic plot. For those lead SNPs that were conjFDR<0.05 (n=39 for SCZ 1036 

and n=8 for BD), the conjFDR values and the direction of the effects (z-scores) of the 1037 

derived alleles are plotted for PLS (x-axis) against A) SCZ or B) BD (y-axis). Gene 1038 

labels are annotated as the nearby genes to the independent lead SNPs by FUMA. 1039 

Graph regions whose effects are consistent with the AP theory of aging are shadowed 1040 

in yellow.  1041 

Figure 4. Boxplots of minor allele frequencies (MAF), iHS statistic, XP-EHH statistic, 1042 

derived allele frequencies (DAF), FST statistic, and B-statistic measure of background 1043 

selection, between the lead SNPs showing agonistic (n=26) and antagonistic effects 1044 

(n=13) from SCZ and PLS (conjFDR<0.05). P-values from the corresponding Mann-1045 

Whitney test are shown in the corner of each plot. 1046 


