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Interplay between k‑core 
and community structure 
in complex networks
Irene Malvestio1, Alessio Cardillo2,1,3* & Naoki Masuda4,5,1*

The organisation of a network in a maximal set of nodes having at least k neighbours within the 
set, known as k-core decomposition, has been used for studying various phenomena. It has been 
shown that nodes in the innermost k-shells play a crucial role in contagion processes, emergence 
of consensus, and resilience of the system. It is known that the k-core decomposition of many 
empirical networks cannot be explained by the degree of each node alone, or equivalently, random 
graph models that preserve the degree of each node (i.e., configuration model). Here we study the k
-core decomposition of some empirical networks as well as that of some randomised counterparts, 
and examine the extent to which the k-shell structure of the networks can be accounted for by the 
community structure. We find that preserving the community structure in the randomisation process 
is crucial for generating networks whose k-core decomposition is close to the empirical one. We also 
highlight the existence, in some networks, of a concentration of the nodes in the innermost k-shells 
into a small number of communities.

Whenever a system can be abstracted as a set of units (nodes) interacting in pairs (edges), we can describe it as a 
network (also called a graph). Network analysis has proven to be a valuable framework to aid us to understand 
a plethora of phenomena taking place in many complex systems. Examples include cascades and collective 
behaviour in socio-technical systems, the emergence of cognitive functions in neural systems, the stability of 
chemical/biological systems, and the shape of spatially embedded systems, to cite a few1–3.

One of the advantages of the network representation is the possibility to probe the system in a coarse-grained 
manner, going beyond dyadic interactions by identifying high-order structures of the network4,5. Examples 
include tightly connected groups of nodes, i.e., communities6, multiscale coarse-grained structures7, core-periph-
ery structure8–10, nested assembly of nodes11, rich clubs12,13, and the k-core14,15.

The k-core decomposition of a network is the maximal set of nodes that have at least k neighbours within 
the set14,15. The algorithm to extract the k-core consists in recursively removing the nodes having less than k 
connections. A k-shell is defined as the set of nodes belonging to the kth core but not to the (k + 1)th core15. The 
k-core decomposition has proven to be useful in a variety of domains such as identifying and ranking the most 
influential spreaders in networks, identifying keywords used for classifying documents, and in assessing the 
robustness of mutualistic ecosystem and protein networks16,17.

Models to generate random networks with specific features should help us to understand how the mechanisms 
governing the establishment of edges account for properties of empirical networks. Despite the vast range of 
applications of the k-core decomposition, to the best of our knowledge, there have been only few attempts to build 
models to generate networks with a given k-core structure. One indirect attempt to generate networks with a 
given k-core decomposition is the so-called brite model18. Originally, this model sought to replicate the features 
(including the k-core) of the Internet network at the Autonomous System (AS) level by mixing the mechanism of 
growth with preferential attachment19,20 and that of adding edges between already existing nodes. Another model 
aimed at generating networks with a k-core structure akin to an empirical one by leveraging the information 
stored in the so-called core fingerprint21. The core fingerprint corresponds to knowing the number of nodes in 
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each k-shell, the number of intra-shell edges (i.e., those connecting nodes belonging to the same k-shell), and 
the number of inter-shell edges (i.e., those connecting nodes belonging to different k-shells) of a given network. 
Moreover, the authors qualitatively compared the Internet AS networks and synthetic networks preserving the 
core fingerprint of the original networks using several indicators21. More recently, models based on modified 
versions of the so-called configuration model have been proven to be effective in generating networks with  
k-core structure akin to that of empirical networks22,23. In a nutshell, in these models the edge stubs attached 
to each node are divided into two groups: red and blue. Red stubs can create any edges regardless of the k-shell 
structure. Blue stubs only form edges connecting nodes belonging to distinct k-shells. Among the possible pairs 
of stubs’ colours, only the blue-blue pair is forbidden.

As mentioned above, another type of mesoscale structure is communities. Although there is not a univocal 
definition of what a community is, in general the community refers to a group of nodes that are more tightly 
connected between each other than with the other nodes of the network6. Communities are also defined by the 
concept of stochastic equivalence, i.e., nodes in the same group/community interact, on average, with nodes in 
other groups in the same way24. Methods based on different definitions of communities may return different 
partitions of the node set. However, there is often some consistency between those partitions, which indicates the 
presence of groups of nodes acting like the building blocks of communities25. The presence of communities is an 
important large-scale characteristic of many empirical networks because a system’s different functions tend to be 
located in different communities (e.g., in functional brain networks26 and protein-protein interaction networks27). 
Moreover, it has been proven that communities play a role in the resilience of the system28 and the presence of 
triangles29, as well as in the emergence of collective behaviour including synchronisation30, the emergence of 
cooperation31,32, spreading of a pandemic33, and the attainment of consensus34,35.

Although k-core and communities are two ways of decomposing the same network, there may be overlaps or 
intricate relationships between them. In the present paper, we study the relation between the k-core decomposi-
tion and the community structures of several empirical and synthetic networks. In particular, we leverage the 
work of Alvarez-Hamelin et al.36 and confirm that the nodes’ degrees (i.e., their number of edges) alone are not 
capable of reproducing the network’s k-shell structure. We find that one has to include information about the 
community structure to obtain networks whose k-core decomposition looks sufficiently close to the empirical 
one. We also highlight the existence of a concentration-like phenomenon of the innermost k-shells into a small 
number of communities, which is stronger in some data sets than others.

Results
Degree‑based reconstruction of the k‑core.  As stated above, various studies on networks leverage the 
k-core decomposition to extract insightful information from networks. However, less studies have asked which 
mechanisms are sufficient for explaining generation of networks having empirically observed patterns of k-core 
decomposition. More specifically, Alvarez-Hamelin et al. found that networks generated using the configuration 
model37 having a Poisson or power-law degree distribution do not display a k-core structure similar to the one 
displayed by the AS network36. Using the results of Alvarez-Hamelin et al. as a starting point, given an empirical 
network G with N nodes, we check whether its k-core decomposition can be reproduced solely from the degree 
of each node i (i.e., the number of edges that node i has), denoted by ki . We generated random networks by a 
standard configuration model preserving the degree of each node of G, which we denote by deg (see “Methods” 
section for details).

We have analysed several empirical networks encompassing social, technological, linguistic, and transporta-
tion systems whose main properties are summarised in Table 1. In Fig. 1, we show the survival function of the 
probability distributions of the k-shell index, P≥(ks) (i.e., fraction of nodes whose k-shell index is larger than or 
equal to ks ), for a selection of data sets, compared across the original networks and their synthetic counterparts 
(see Supplementary Fig. S1 in SM for the other data sets). Figure 1 indicates that the degree of each node is not 
sufficient for reproducing the k-core structure of the original networks because P≥(ks) for deg considerably 
deviates from that for the original networks. This result is consistent with the previous results36. In fact, we find 
that fixing the degree of each node is sufficient to recover the k-core profile in some networks. For these net-
works the empirical and deg networks are not too different in terms of P≥(ks) (e.g., Facebook 2 and Cookpad 
networks). We point out two main differences in P≥(ks) between the empirical and deg networks. First, for 
most data sets, the largest ks value, which is denoted by D and called the degeneracy, is considerably smaller 
for the networks generated by deg than the original networks. Second, the P≥(ks) of some empirical networks 
have plateaus and abrupt drops in ks ≤ D . The plateaus imply that some of the k-shells are completely or almost 
empty, whereas the abrupt drops indicate that some k-shells are more densely populated than those adjacent to 
them. In contrast, P≥(ks) for the deg networks does not have a notable plateau or drop in ks ≤ D . Therefore, in 
the deg networks, all the k-shells up to ks = D are populated, and there is no k-shell that is substantially more 
populated than its adjacent k-shells.

A more quantitative comparison of distribution P≥(ks) between the empirical and deg networks may be 
done by, for example, the Kolmogorov-Smirnov (KS) test38. However, because a majority of the nodes usually 
belongs to outer k-shells, (i.e., set of nodes with small ks values) and Fig. 1 shows that the strongest discrepancies 
between the two distributions tend to occur at large ks values, the KS test fails to grasp the differences at large ks 
values that we are mostly interested in. Therefore, we compare the k-core decomposition of the empirical and 
deg networks using four indicators, i.e., the relative difference in the average k-shell index, �〈ks〉 , the relative dif-
ference in the network’s degeneracy, �D , the Jaccard score, J, and Kendall’s, τK of the nodes belonging to the top 
10% (i.e., innermost k-shells) of the P≥(ks) distribution. The average of each indicator over all the data sets for the 
networks obtained with the deg shuffling method is equal to ���ks�� = 0.052± 0.056 , ��D� = 0.302± 0.288 , 
�J� = 0.563± 0.194 , and �τK � = 0.763± 0.176 . The value of 〈�〈ks〉〉 indicates that 〈ks〉 is only ≈ 5% different 
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Table 1.   Main properties of the data sets used in the present study. N: number of nodes, L: number of edges, 
〈k〉 : average degree, kmax : maximum degree, 〈ks〉 : average value of the k-shell index, D: maximum value of the k
-shell index, NLvn

c  , QLvn : number of communities determined by the Louvain method and the corresponding 
modularity, respectively, NSBM

c  , QSBM : number of communities determined by the SBM and the corresponding 
modularity, respectively.

Data set N L 〈k〉 kmax 〈ks〉 D NLvn

c QLvn NSBM

c QSBM References

Facebook 1 4039 88234 43.691 1045 26.880 115 16 0.835 62 0.551 55,74

Facebook 2 6386 217662 68.168 930 35.712 56 19 0.419 198 0.158 56–58,75

Facebook 3 2235 90954 81.391 467 44.508 63 8 0.436 87 0.139 56–58,76

Facebook 4 11247 351358 62.480 415 32.413 63 10 0.438 274 0.193 56–58,77

Facebook 5 27737 1034802 74.615 2555 38.681 81 18 0.470 547 0.172 56–58,78

Twitter 81306 1342296 33.018 3383 17.762 96 73 0.808 510 0.511 55,79

Web-blogs 1490 16715 22.436 351 12.154 36 275 0.426 17 0.076 60,80

Emails 1005 16064 31.968 345 17.063 34 26 0.410 33 0.232 81–83

Cond. Matter 23133 93439 8.078 279 4.900 25 619 0.730 203 0.633 83,84

Comp. Science 317080 1049866 6.622 343 4.215 113 209 0.822 676 0.726 59,85,86

Global airline 3376 19179 11.362 248 6.123 31 26 0.665 40 0.311 61

Words 146005 656999 9.000 1008 5.289 31 378 0.759 548 0.583 59,87,88

Cookpad Greece 32235 745178 46.234 8196 23.709 158 40 0.166 76 0.020 –

Cookpad Spain 122158 1749751 28.647 12637 14.547 162 262 0.270 90 0.035 –

Cookpad UK 13758 47525 6.909 1880 3.558 33 199 0.350 8 0.114 –
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Figure 1.   Survival function of the probability distributions of the k-shell index, i.e., P≥(ks) as a function of 
ks for the original network (dotted line) and shuffled networks (solid line). Each panel corresponds to a data 
set, i.e., Facebook 1 (panel a), Facebook 2 (b), Facebook 4 (c), Twitter (d), Emails (e), Cond. Matter (f), Comp. 
Science (g), Global airline (h), and Cookpad Greece (i). The horizontal dashed lines indicate that P≥(ks) = 0.1 . 
Results are averaged over 10 different runs of each shuffling method, and the shaded areas (when visible) 
represent the standard deviations.
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between the original and deg networks on average. However, their degeneracy differs by ≈ 30% on average. 
The 〈J〉 and 〈τK 〉 values inform us that innermost k-shells of the original networks and those of the deg networks 
tend to share approximately half of the nodes, albeit their ranking seems to be fairly preserved. Supplementary 
Table S1 reports the values of each indicator.

Community‑aware reconstruction of the k‑core.  We have seen that the degree distribution by itself 
does not reproduce main features of the k-shell index distribution. An alternative feature that may explain the 
k-shell index distribution is the community structure. For this reason, we generated synthetic networks that 
preserve both the degree of each node and the community structure, C = {C1, . . . ,CNc } , where Nc is the number 
of communities of the original network. To account for the multiple definitions of what a community is, we 
identified the communities of each network using two methods: the Louvain method39, denoted by Lvn, and 
the degree-corrected stochastic block model40, denoted by SBM. In combination with each of the two community 
detection methods, we considered two rewiring methods preserving C and the degree of each node, denoted by 
commA and commB. Method commA preserves the exact number of inter- and intra-community edges at the 
level of single communities. Method commB preserves the number of inter- and intra-community edges for each 
node.

Figure 1 indicates that preserving the community structure in addition to the degree of each node improves 
the similarity in P≥(ks) between the empirical and synthetic networks, especially at large ks values, which cor-
respond to inner k-shells. In particular, commA and commB generate networks whose D value tends to be closer 
to the empirical value than deg does. Furthermore, P≥(ks) for commA and commB tends to have plateaus and 
abrupt drops at ks ≤ D similarly to the empirical networks. Overall, synthetic networks preserving the SBM com-
munity structure have a k-core decomposition more akin to the empirical one than those preserving the Lvn 
community structure. This observation is quantitatively supported by the values of the four indices reported in 
Supplementary Table S1.

To obtain an overview of the performances of different network randomisation methods, in Fig. 2 we show 
the fraction of data sets, fX , for which a certain shuffling method generates a k-core decomposition that is the 
most similar to that of the empirical network according to each indicator. The figure indicates that commB-SBM 
(i.e., the commB shuffling method that preserves the community structure determined by SBM) performs the best 
in mimicking the k-shell index features for approximately 65–80% of the data sets, depending on the indicator. 
Detailed results for the performance of each method for each empirical network are shown in Supplementary 
Fig. S2 and Supplementary Table S1.

One issue of Lvn is that it cannot discover small communities6,41. One way to mitigate this limitation is to 
introduce in Lvn a resolution parameter, r ∈ (0, 1] , regulating the resolution scale. It is possible to detect small 
communities when r is small, whereas the original Lvn corresponds to r = 142. We denote by LvnR the Louvain 
method with r < 1 , i.e., with a resolution higher than that used by Lvn. In Sect. 2 of SM we report whether 
preserving the communities found using LvnR instead of Lvn improves our ability to reproduce the k-core 
decomposition of the original network. We found that LvnR performs better than Lvn (Supplementary Figs. S3 
and S4) but worse than SBM in general (Supplementary Fig. S5).

Imposing the simultaneous conservation of each node’s degree and community structure may result in syn-
thetic networks that are not substantially different from the original ones. To exclude this possibility, we computed 
the Jaccard score, J(L,L′) , (see Eq. (3)) for the sets of edges, L and L′ , of the original and shuffled networks, 
respectively. The values of J approximately fall between 0.01 and 0.5, confirming that the set of edges – hence, 
the networks – are considerably different.

∆〈ks〉 ∆D J τK
0.0

0.2

0.4

0.6

0.8

1.0
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deg

commA-Lvn
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Figure 2.   Performances of different shuffling methods in terms of four indicators. We report the fraction of 
data sets for which a given combination of the shuffling method and the community detection method yields 
an indicator’s value closest to that for the original network. Each bar refers to an indicator, i.e., average k-shell’s 
difference, �〈ks〉 , degeneracy’s difference, �D , Jaccard score, J, and Kendall’s tau, τK.
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The results presented so far suggest that preserving the community structure improves the preservation of the 
k-core decomposition of the original network. Therefore, the mere presence of a community structure may be 
enough to preserve the main features of the k-core decomposition of the original networks. To test this possibility, 
we applied the k-core decomposition to networks with communities generated using the LFR model43 (see Sect. 3 
of SM). The plots of P≥(ks) shown in Supplementary Figs. S7–S10 indicate that the presence of a community 
structure alone is not sufficient for producing major features of the k-core structure of the empirical networks. 
Specifically, the P≥(ks) of the networks generated by the LFR model is always smooth and shows neither plateaus 
nor abrupt drops as ks increases. Moreover, with the LFR, ks is narrowly distributed, i.e., max(ks)−min(ks) ≈ 10 . 
These differences between the k-core structure of the LFR model and that of empirical networks are not sensitive 
to the value of the mixing parameter, µ , of the LFR model, which controls how distinct the communities are. It 
should also be noted that for the LFR model, as for the empirical network, the commB-SBM generates networks 
that are the most similar to the original LFR networks among the different shuffling methods in terms of P≥(ks).

Overlap between communities and k‑core.  Preserving the community structure in addition to the 
node’s degree can lead to preservation of features of the k-core structure possibly because nodes with high values 
of ks form a k-core which tend to belong to the same community. To examine this possibility, we show the num-
ber of communities to which the nodes of a given k-shell belong, nC(ks) , in Fig. 3 (see Supplementary Fig. S11 
for the other data sets). Although each data set shows a distinct pattern, for many data sets, inner k-shells (i.e., 
nodes with large ks values) are concentrated into one or a few communities. The concentration effect is particu-
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Figure 3.   Number of different communities, nC(ks) , that the set of nodes of a given k-shell value, ks , overlaps. 
The horizontal dashed line is a guide to the eyes showing nC(ks) = 1 . Each panel accounts for a different data set 
(see the caption of Fig. 1 for the details). For each data set, we show the results corresponding to the community 
structure obtained using either Lvn or SBM.
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larly noticeable for some data sets, e.g., Facebook 1 and Twitter. To check whether the number of communities 
per k-shell is merely a byproduct of the random combinatorial effect owing to the number of communities, the 
distribution of the community size, and the distribution of ks , we computed a random assignments of the nodes 
to communities and then calculated nC(ks) for each ks value (see Sect. 4 and Supplementary Fig. S12 of the SM). 
We have found that the nodes in each k-shell are almost always more concentrated into a smaller number of 
communities than what is expected by the random assignment of the nodes to communities for all the data sets 
and community detection methods, with the only exception of SBM for Cookpad’s data sets. This finding is in 
agreement with the previous result that nodes with high ks tend to belong to the same community, which has 
been observed in networks embedded into hyperbolic spaces44,45. In particular, we observe a strong concentra-
tion of the k-shells into a few communities for the Facebook 1, Twitter, Cond. Matter, Comp. Science, and Words 
networks, which are those showing a more pronounced difference in the values of D between the original and 
deg networks.

Discussion
The information encoded in the degree of each node is not sufficient for generating networks with a k-core 
structure that is similar to those of empirical networks36. This gap of knowledge calls for the design of genera-
tive models of networks beyond the configuration model. Such models are expected to be useful to generate 
benchmark networks and to understand the mechanisms behind the emergence of the k-core. To the best of our 
knowledge, few models are available to generate networks with a given k-core decomposition21–23.

In the present study, we investigated how much the combination of the nodes’ degrees and community struc-
ture accounts for k-core structure of empirical networks. Given a network G, we randomly shuffled G’s edges to 
generate its synthetic counterparts preserving each node’s degree and/or community structure of G. We found 
that randomised networks preserving the community structure obtained through a stochastic block model 
showed a k-shell index distribution that was reasonably similar to the distribution for the original networks. The 
success of the stochastic block model in mimicking the features of the k-core decomposition might be due to its 
ability to approximate the mesoscale structures of networks with a good accuracy24,46, including communities. 
We also sought to understand more the relationship between k-core and communities by studying networks 
generated by the LFR model which enables us to control the extent to which the communities are distinguished 
from each other. However, regardless of whether or not different communities are relatively distinguished from 
each other in a network, the k-shell index distribution of LFR networks does not show the same features as those 
observed in the empirical networks. Finally, we have investigated the overlap between communities and k-shells 
and found that, in some empirical networks, the nodes in inner k-shells are concentrated into a small number of 
communities much more so than a randomised counterpart. This result is in agreement with the observations 
made for networks embedded in hyperbolic spaces44,45. Up to our numerical efforts, the concentration is observed 
if and only if the empirical network and its deg counterpart are substantially different in terms of their k-core 
decomposition. The concentration suggests that inner k-shells may perform specific functions in such networks, 
corresponding to the functions of the communities they belong to as observed in, for instance, functional brain 
networks26 and protein-protein interaction networks27.

The “community aware” rewiring mechanisms introduced in this paper can be used for assessing whether 
or not a given property of a network is a direct expression of its community structure. One example of such an 
approach is given in47, where the authors have improved the robustness against attacks on a network while keep-
ing its community structure. In that case, the method only preserves the communities and alters the connectivity 
pattern by increasing the density of intra-community edges as well as changing the edges between communities. 
It may be interesting, instead, to check whether the robustness of the network can be improved even when one 
also preserves the degree of the nodes using our community-aware rewiring mechanisms.

One viable extension of our work is to the case of k-peak graph decomposition method48. In Ref.48, the authors 
argue that for networks with communities, the k-core decomposition should be performed locally rather than 
globally, thus returning the k-peak decomposition of each of the system’s regions. The rationale behind this 
approach is to avoid that, if the network contains regions with different densities of edges, the standard k-core 
decomposition would fail to recognise local core nodes in sparser regions. Studying the evolution of the k-peak 
decomposition in response to the rewiring of the connections may unveil salient features of complex systems. 
Another possible direction of research is to concatenate the information encoded into the k-shell index, ks , with 
the one provided by the so-called onion decomposition (OD)49. The OD is an extension of the k-core decompo-
sition where a node is labelled with both its ks and its layer index. The layer of a node i represents the iteration 
number with which node i is removed in the recursive pruning process of the k-core decomposition. The OD 
provides a further characterisation of the structure of the network than the k-core, revealing, for example, how 
tree-like the network is.

Summing up, in this work we have analysed the interplay between the k-core decomposition and community 
structure of networks. Understanding such a relationship is useful not only owing to the broad range of applica-
tions of k-core decomposition, but also to inform the design of models capable of generating networks with both 
a community structure and k-core’s features beyond those explainable by the degree distribution. Such models 
may stand on, for instance, the stochastic block model40, the enhanced configuration model based on maximum 
entropy50, or the hierarchical extension of the LFR model51. Alternatively, models based on microscopic growth 
mechanisms such as triadic closure52,53 or modified preferential attachment54 may deserve further investigation.
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Methods
Data.  We have considered networks corresponding to systems of different types: from social to technologi-
cal, from semantic to transportation. Table 1 summarises main properties of such networks. Except for Cookpad 
networks, all the data sets are publicly available and have been retrieved from the Stanford Large Network data 
set Collection55 (Facebook 1, Twitter, Emails, and Cond. Matter), the Network Repository56–58 (Facebook 2, 3, 
4, and 5), the Koblenz Network Collection (KONECT)59 (Comp. Science, and Words), Mark E. J. Newman’s 
personal network data repository60 (Web-blogs), and the OpenFlights data repository61 (Global airline). In the 
following text, we provide a brief description of each data set.

Facebook and Twitter These networks describe social relationships. Nodes are people. Edges represent their 
friendship relations.

Web-blogs This network is composed of the hyperlinks (edges) between weblogs on US politics (nodes) 
recorded in 2005.

Emails This is a network of email data from a large European research institution. Nodes are people. Edges 
connect pairs of individuals who have exchanged at least one e-mail.

Cond. Matter and Comp. Science The former network is the co-authorship network of the authors of preprint 
manuscripts submitted to the Condensed Matter Physics arXiv e-print archive from January 1993 to April 
2003. The latter network is similarly defined using manuscripts appearing in the DBLP computer science 
bibliography, using a comprehensive list of research papers in computer science. The submission time of the 
papers of the DBLP collection is unavailable. A node is an author. An edge represents the existence of at least 
one manuscript co-authored by two authors.

Global airline In this network nodes are airports across the globe. An edge indicates direct commercial flights 
between two airports.

Words This network accounts for the lexical relationships among words extracted from the WordNet data 
set. Nodes are English words. Edges are relationships (synonymy, antonymy, meronymy, etc.) between pairs 
of words.

Cookpad These networks are extracted from the Cookpad online recipe sharing platform62. Users can post 
and browse recipes, as well as interact with other users through recipes in multiple ways including liking, 
sharing, and posting a comment. The platform is present in many countries (e.g., Japan, Indonesia, United 
Kingdom, and Italy). Here, we consider the data collected from September to November of 2018 in Greece, 
Spain, and the United Kingdom, separately for each country. In the three networks, nodes are users. An edge 
between a pair of users exists if one or more of the following types of events takes place: like or follow a user, 
viewing, bookmarking, commenting, or making a cooksnap of another user’s recipe.

All the networks considered in this work are treated as undirected and unweighted, even when the original data 
contains more information. Finally, we also consider synthetic networks, generated using the LFR (Lancichi-
netti–Fortunato–Radicchi) model43 (see Sect. 3 of SM for details).

Network shuffling.  Given a network, G, with N nodes and L edges, we generate a randomised counterpart, 
G′ , that has the same nodes and the same number of edges by shuffling the edges of G. We consider three shuf-
fling methods denoted by deg, commA, and commB; each shuffling method preserves different properties of G. 
The shuffling consists in selecting uniformly at random two edges (a, b) and (c, d), and replacing them with, e.g., 
(a, c) and (b, d), if the swapping of the edges is accepted. An attempt to swap edges is accepted, in which case 
we call the swapping effective, if and only if it respects the rule of the specific shuffling method and the swap-
ping does not generate self-loops or multiple edges. We continued the shuffling until we carried out 2L effective 
swaps, such that an edge was swapped four times on average.

In the following text, we provide the details of each shuffling method. Assume that network G partitions into 
communities such that the set of the communities is C = {C1, . . . ,CNc } , where Nc is the number of communities. 
Furthermore, let g(i) ∈ C, i = 1, . . . ,N , be the community to which the ith node belongs and ki be the degree 
of node i. We have:

Degree-preserving shuffling (deg) This method preserves degree ki of each node i and is equivalent to the 
configuration model37.

Community-preserving shuffling of type A (commA) On top of the degree of each node, this method preserves 
the total number of edges within each community and between each pair of communities. In attempts to swap 
edges, we replace two randomly selected edges (a, b) and (c, d) by (a, c) and (b, d) if and only if an end node of 
edge (a, b) and an end node of edge (c, d) belong to the same community (i.e., if g(b) = g(c) or g(a) = g(d)).

Community-preserving shuffling of type B (commB) Like commA, this method preserves the degree of each 
node and the number of edges within each community and between each pair of communities. In contrast 
with commA, the commB method preserves the numbers of edges within and across communities for each 
node, and not only for each community or pairs of communities. Given two selected edges (a, b) and (c, d), 
we replace them with (a, c) and (b, d) if and only if the two new edges connect the same community pairs as 
before the swapping (i.e., g(b) = g(c) and g(a) = g(d)).
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Comparison of the k‑core decomposition.  To assess the similarity between the k-core decomposition 
of the original network, G, and of its shuffled counterpart, G′ , we used four indicators: the average k-shell index, 
〈ks〉 , the network’s degeneracy, D, the Jaccard score, J, and the generalised Kendall’s tau, τK . The indicator 〈ks〉 
explicitly depends on all the nodes in the network, whereas D, J and τK only depend on the nodes belonging to 
the innermost k-shell(s). We use the latter three indicators because, although a majority of nodes tends to belong 
to outer k-shells, it is a difference in the tails of the ks distributions that often affect functions of networks such 
as the impact of influencers in contagion processes63. The four indicators are defined as follows.The average of 
the k-shell index, 〈ks〉 , is equal to

where ks(i) is the k-shell index of node i. The degeneracy, D, of a network G is given by64

Rather than using these raw indicators, to compare across the different data sets, we compute their relative 
difference between the empirical network and its shuffled counterpart given by �X = |XG − XG′ |/XG , where 
X ∈ {�ks�,D}.

To compute J and τK , we need to define a criterion to select nodes belonging to the innermost k-shells. We 
decided to confine the comparison to the nodes whose ks falls within the top 10% among the N nodes. The hori-
zontal lines in Fig. 1 indicate the threshold values of k⋆s  such that P≥(k⋆s ) = 0.1 . In the same manner, we define k⋆s

′ 
such that P≥(k⋆s

′) = 0.1 in network G′ . To calculate J and τK , we use the nodes belonging to k-shells with ks ≥ k⋆s  
in G and the nodes belonging to k-shells with ks ≥ k⋆s

′ in G′ without duplication of the nodes. There are several 
remarks. First, it may hold that k⋆s  = k⋆s

′ . Second, the value of k⋆s
′ varies from one combination of a run of shuf-

fling and community detection to another. Third, as in the case of the Facebook 2 data set, k⋆s
′ sometimes does 

not even exist. In such a case, we set k⋆s
′ = D and select all the nodes belonging to the innermost k-shell although 

they constitute more than 10% of the nodes in the network. Fourth, additional tests using different threshold 
percentages, 5% and 20%, instead of 10%, did not qualitatively change the results. Fifth, while the Jaccard score 
simply compares the nodes belonging to two sets, the generalised Kendall’s tau, τK compares ranked sets. In our 
case, the node’s rank is equivalent to the ks value.

Given two sets A and B , the Jaccard score quantifies their overlap and is given by

The Jaccard score ranges between 0 and 1. A value of 1 indicates the complete overlap between the two sets (i.e., 
the sets are the same), whereas a value of 0 indicates that the sets are completely different.

The generalised Kendall’s tau, τK , measures the consistency between two rankings by assigning penalties to 
pairs of elements on which the two rankings disagree65,66. Given two sets A and B having mA and mB elements, 
respectively, consider their associated ranking functions X  and Y . We denote with (z1, z2) an arbitrary pair of 
elements of A ∪ B . We assign a penalty Kz1,z2(X ,Y) = 1 to (z1, z2) if (a) the rankings of the two elements within 
each set are different (i.e., X (z1) ≷ X (z2) and Y(z1) ≶ Y(z2) ), (b) the element with the higher rank in one set 
is missing in the other set, i.e., X (z1) > X (z2) and z1 /∈ B (or X (z2) > X (z1) and z2 /∈ B ), or (c) both elements 
belong to one set each, which is not the same set, i.e., z1 /∈ B and z2 /∈ A (and vice-versa). In all the other cases 
Kz1,z2(X ,Y) = 0 , such that we do not penalise the (z1, z2) pair. Finally, we sum the penalties over all the possible 
pairs of elements and normalise it, thus obtaining the generalised Kendall’s tau:

Index τK ranges between 0 and 1. If τK = 1 , the two rankings are completely coherent. If τK = 0 , the two sets A 
and B have no pair of elements on which rankings X  and Y are coherent. The above formulation of the Kendall’s 
tau is the so-called optimistic approach65. This means that we do not penalise the case in which a pairs of ele-
ments is present in one set and not in the other set.

Community detection methods.  We considered two methods for community detection. The first is the 
Louvain method (Lvn)39, which is a heuristic greedy multiscale method that approximately maximises the mod-
ularity function. Given a network with N nodes distributed among Nc communities, the modularity, Q, reads

where ai,j is the element of the network’s adjacency matrix A; g(i) is the community to which the i-th node 
belongs ( 1 ≤ g(i) ≤ Nc ), and δ

(

g(i), g(j)
)

 is the Kronecker delta. A large value of Q implies a good partition-
ing. The Louvain method seeks the partitioning that maximises the modularity. Note that we obtain Q ≈ 0 for 
random assignment of nodes to communities and that we obtain Q ≈ 1 when the network is made of perfectly 
disjoint communities.

(1)�ks� =
1

N

N
∑

i=1

ks(i) ,

(2)D = max
i∈G

{ks(i)} .

(3)J(A,B) =
|A ∩ B|

|A ∪ B|
.

(4)τK (X ,Y) = 1−
1

mAmB

∑

z1,z2∈A∪B

Kz1,z2(X ,Y).

(5)Q =
1

2L

N
∑

i,j=1

[

ai,j −
kikj

2L

]

δ
(

g(i), g(j)
)

,
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The other community detection method that we used is the stochastic block model67. It uses the probabili-
ties P = {pCi ,Cj } with which there exists an edge (a, b) connecting an arbitrarily selected node a in community 
Ci (i.e., g(a) = Ci ) and an arbitrarily selected node b in community Cj (i.e., g(b) = Cj ). Different instances of 
probabilities P allow the description of different mixing patterns. When the diagonal entries of P predominate, 
we obtain the most usual community structure, whereas other instances yield other structures such as bipartite 
or core-periphery structure.

To find the optimal partition, one maximises the likelihood function with respect to {pCi ,Cj } corresponding 
to the partitioning C = {Ci} , where i, j ∈ 1, . . . ,Nc . The unnormalised log-likelihood, L , with which a partition 
of network G into Nc communities, C , is reproduced reads

where eij is the number of edges connecting community Ci and community Cj , and mi is the number of nodes 
belonging to Ci.

The above formulation, however, has one major limitation: it assumes that the degrees of the nodes are 
distributed according to a Poisson-like function. To account for the degrees’ heterogeneity, Karrer et al. have 
implemented the so-called degree corrected stochastic block model, in which the expected degree of each node is 
kept constant via the introduction of additional parameters40. Let ei be the sum of the node’s degree over all nodes 
in community Ci . Then, the unnormalised log-likelihood for the degree-corrected stochastic block model reads

Equations (6) and (7) depend on the number of communities Nc . Because the value of Nc is not known a priori, 
it is inferred through the minimisation of a quantity called the description length. The minimum description 
length principle describes how much a model compresses the data and allows us to find the optimal number 
of communities while avoiding overfitting68. In the present work we use the degree-corrected stochastic block 
model and its implementation available in the Python Graph-tool package69, which we refer to as SBM for brevity.

Data availability
The data sets on Cookpad™analysed in the current study are not publicly available due to exclusive ownership 
of Cookpad Limited. All the other data sets are available from the corresponding repositories listed in the 
bibliography.
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