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Abstract: This paper focuses on the steady-behavior of a differential boost inverter used for generating
a sinewave AC voltage in rural areas. The analysis of its dynamics will be performed using an accurate
approach based on discrete time models and Floquet theory and adopting a quasi-static approximation.
In particular, the undesired subharmonic oscillation exhibited by the inverter will be analyzed and its
boundary in the parameter space will be predicted and delimited. Combining analytical expressions and
computational procedures to determine the quasi-static duty cycle, subharmonic oscillation is accurately
predicted. It is found that subharmonic oscillation takes place at critical values of the sinewave voltage
reference cycle, which can cause distortion to the input current and degrade the harmonic content of
the output voltage. The results provide useful information for the design of the boost inverter to avoid
distortion caused by subharmonic oscillation. Namely, the minimum value of the compensation slope
and the maximum proportional gain of the AC output voltage controller guaranteeing a pure sinewave
voltage and clean inductor current during the entire AC cycle will be determined. Numerical simulations
performed on the switched model implemented using PSIM© software confirm the theoretical predictions.

Keywords: differential boost inverter; current mode control; nonlinear behavior; subharmonic oscillation;
slope compensation

1. Introduction

DC-AC inverters find widespread usage in many residential, industrial and military applications.
With the ever-increasing development of the renewable energy technology, DC-AC inverters have become
one of the most attractive and viable solutions to the power conversion problem. They are extensively used
and play key roles in various actual applications of power electronics technologies for renewable energy
sources [1–3]. They are also used in motor drive [4,5] and DSTATCOM applications [6] as well as in many
uninterruptible power supply system applications such as plant facilities and factories, medical equipments
and centers in hospitals, airline computer and communication systems in server farms and web hosting
sites [7]. One of the important tasks in the design of DC-AC inverters is the control loop implementation
which must ensure a system free from any kind of instabilities. However, it is well known that this aim is
difficult to be achieved for all values of system parameters and that many undesired nonlinear phenomena
can arise in these kinds of indispensable parts of modern and emerging energy systems. These phenomena
can significantly jeopardize the system performance and can cause serious consequences on its reliability.
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Therefore, understanding these nonlinear phenomena, their analysis, prediction and control have
increasingly become of great concern of many researchers all over the world [8–22]. The major part of the
analytical results on subharmonic oscillation in power electronics converters has been achieved for DC-DC
converters [23–40]. DC-AC inverters are more difficult to deal with, since their dynamics is governed by
two vastly different frequencies, namely the high switching frequency and the low frequency of the output
voltage reference sinewave.

For reliable and desirable operation, the stability of the system must be guaranteed for the whole
range of its parameters. In [13], the dynamics behavior of an H-bridge under a digital Current Mode
Control (CMC) was investigated by using a one dimensional discrete time model. Different dynamical
behaviors for the system were revealed by varying the proportional gain of the current controller. In [14]
a similar approach was applied and it was demonstrated that different types of bifurcations (instabilities)
can take place such as period doubling leading to Subharmonic Oscillation (SO) and border collision
bifurcations leading directly to chaotic behavior.

Using the quasi-static approximation, in [15] the slow-scale and fast-scale instabilities in
a voltage-mode controlled H-bridge inverter are reported and analyzed using an averaged model and
a discrete-time model respectively. It is well known that conventional averaged model cannot predict
the fast-scale instability and for that the discrete-time model must be used. A closed form discrete time
model was used in [16] to predict both the slow-scale and the fast-scale instabilities in an H-bridge inverter
demonstrating that the system may undergo instability phenomenon when the proportional gain of
the voltage controller is increased. In an H-bridge digital-controlled grid-connected inverter system,
bifurcation behavior was investigated and loss of system stability was shown by increasing the current
controller gain [19] and it was shown that in this system only slow scale instability may take place leading
to low-frequency oscillation. The same system, but with double edge modulation, has been studied in [9]
using an analytical closed-form expression for predicting a period doubling phenomenon.

Single-stage grid-connected DC-AC conversion systems with boosting voltage capability have recently
attracted the attention of many researchers. Single-stage structures of inverters not only perform DC-AC
conversion but also perform voltage boosting. Moreover, differential inverter topologies seem to prevail
in price and size due to the utilization of small passive elements of DC-DC converters hence improving
the efficiency. In contrast to the conventional H-bridge inverter, the differential boost inverter is a flexible
DC-AC inverter topology providing voltage step-up capability and could be a potential candidate for
many DC-AC electrical energy conversion applications such as for power processing stage fuel-cell energy
system [41,42], for high quality sine wave generation with a high oscillation frequency [43], for AC-module
microinverters in PV systems such as in [44–46] among others.

In stand-alone operation mode, the load is directly supplied by the inverter. Single-phase H-bridge
inverters are simple bidirectional converter topologies capable of handling both real and reactive power
having their performance evaluated in terms of power quality and stability. Therefore, generating a high
quality output voltage with low distortion and good voltage regulation is the main target. Other relevant
performance metrics include disturbance rejection, transient response, and insensitivity to load and system
parameter variations. These metrics can only be achieved with a design free from any kind of instability.

Since its introduction in [47], many studies have dealt with the control design of the differential boost
inverter using different approaches and strategies [44,45,47–49]. The focus in most of the works published
about this inverter is on the control design. However, the analysis of its nonlinear behavior has not been
addressed in the past. Namely, SO has not been studied in this kind of inverter. Therefore the aim of
this paper is to apply the Floquet theory for accurately predicting the onset of SO in a differential boost
inverter. In contrast to existing works on predicting such a complex behavior in DC-AC inverters based
mainly on numerical procedures, here both numerical and analytical approaches are combined to provide
a comprehensive study of the systems dynamical behavior.
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The prediction of this phenomenon is of high importance from both theoretical and practical points
of view because it leads to an increase in the ripple of the currents and voltages and this has a harmful
effect on the system performances since the overall losses become more significant. The power quality
can also be jeopardized if SO is more pronounced since it can increase the THD and the current stress on
the switches. Therefore, accurate modeling and stability analysis are necessary for exploring the dynamic
behavior and predicting the stability boundaries of DC-AC inverters.

The remaining of this paper is organized as follows. In Section 2, the system dealt with in this study
is described. In Section 3, the dynamic behavior of the system is explored revealing that the behavior of
the system waveforms is phase-dependent. The system is shown to exhibit local instability phenomenon
over a specific interval within the main sinusoidal cycle. The onset of the observed bubbling is associated
to a SO phenomenon taking place at the fast switching scale. The mathematical modeling is addressed in
Section 4 in the continuous-time domain. In order to analyze the observed phenomena in Section 3, Floquet
theory is applied to the derived model in Section 5. Thereafter, in Section 6, the stability boundaries in
terms of suitable parameters is reported. Finally, in Section 7 the results of the study are summarized.

2. Differential Boost Inverter under Two-Loop Control

The system under study in this paper consists of a differential boost inverter which is obtained by
connecting two identical DC-DC boost converters in parallel supplied from a common electrical energy
source and feeding a floating voltage load connected between the outputs of the two converters [47,50].
Its schematic diagram is shown in Figure 1. The current drawn by the input is shared properly between
the two boost converters by the action of a CMC scheme using the difference between the two inductor
currents, as will be detailed later. For that, two complementary control signals are considered to control
the switches of the differential inverter.

Let us denote the two connected converters as Converter 1 with inductor L1 and inductor current
i1 and Converter 2 with inductor L2 and inductor current i2. Both converters are controlled in a
complementary way using CMC via single Pulse-Width Modulation (PWM) scheme so that Converter 2
is phase shifted 2πD with respect to Converter 1 at the switching time scale, D being the operating duty
cycle. Namely, the difference between i1 and i2 (scaled by a sensing resistance rs) is controlled using a
conventional peak CMC by comparing the signal rs(i1 − i2) to the signal rsiref. A periodic ramp signal
vramp with amplitude VM and period T is subtracted from rsiref for slope compensation. The comparison of
the signal rs(i1 − i2) with the signal rsiref − vramp by using a comparator and a set-reset flip-flop generate
the high and low values of the pulses driving the switches as shown in Figure 1 where the block diagram
of the inner current control together with the outer voltage control are depicted.

The reference current for the difference between the two inductor currents is provided by an external
voltage loop. The activation of the switches Q1, Q2, Q3 and Q4 is carried out as follows: the signal
rs(i1 − i2) is connected to the non inverting pin of the comparator whereas the signal rsiref − vramp is
applied to the inverting pin. The output of the comparator is applied to the reset input of a set-reset
flip-flop and a periodic clock signal is connected to its set input, as shown in Figure 1, in such a way
that the switch Q2 and Q4 are ON at the beginning of each switching cycle and are turned OFF whenever
rs(i1 − i2) = rsiref − vramp. The state of the switches Q1 and Q3 are complementary to the switches Q2 and
Q4 respectively.

To fulfill the requirements of the underlying electronic application, a DC-AC inverter has to produce
a periodic sinewave-shaped output voltage under normal operational conditions. Let vref(t) be the voltage
reference that can be expressed as vref(t) = Vref sin(2π fgt) = Vref sin(ϕ), where ϕ = 2π fgt ∈ (0, 2π),
Vref is the peak value of the output voltage reference, ω0 its angular frequency and ϕ its phase angle.
In practical applications, the switching frequency is much higher than the AC output voltage frequency.
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This condition is met in this paper and it allows the use of quasi-static approximation. The error voltage
vref − vo is the input signal to the voltage controller of which the task is to make the output voltage of the
inverter an AC sinusoidal signal with zero DC component. Therefore, the load connected between the
converters outputs will be subjected to an AC sinusoidal voltage with a zero DC component. This control
strategy is different from the one used in most of the published works about this inverter topology such
as [44,45,47] where the control is performed such that each boost converter generates a DC bias and an AC
component. In the low frequency averaged sense, the AC component of each converter is out of phase
regarding the other converter. The DC component is the same for both converters.

The voltage controller is conventionally a PI regulator aiming to make the load voltage vo to accurately
track the sinewave voltage reference vref. Its transfer function can be expressed as Hpi(s) = kp(τs+ 1)/(sτ),
where kp is its proportional gain and τ is its time constant.
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Figure 1. The differential boost inverter under two-loop control.

3. Behavior of the Differential Boost Inverter

The dynamical behavior of the boost inverter is explored in this section with the aim to gain insight
on suitable ways of obtaining an appropriate model that can be used for its accurate stability analysis.
The system is first studied through simulations using the full-order switched model of the inverter
implemented using PSIM© software by varying suitable system parameters. The focus is first on system
stability in terms of the time varying voltage reference. The fixed parameter values used for the rest of the
study are reported in Table 1. Many time-domain waveforms have been computed to get a clear view of
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the system behavior and only representative results are shown below. The simulation is run for sufficiently
long time to allow the system to reach its steady-state. The data obtained during time transient within the
startup phase and during the transient regime of the regulation phase are fully eliminated. Only the last
two cycles of the output voltage reference are plotted.

Table 1. The used parameters for the DC-AC differential boost inverter.

Parameter Value

Inductance L1 = L2 100 µH
Resistance r1 = r2 0.1 Ω
Capacitance C1 = C2 22 µF
Input voltage vg 200 V
Load resistance R 100 Ω
Time constant of the voltage controller τ 1 ms
PWM switching frequency fs 100 kHz
RMS value of the reference voltage vref 230 V
Frequency of the reference voltage vref 50 Hz
Current sensor gain rs 0.1 Ω

Figure 2 shows the system waveforms when the system is stable. The figure shows the time-domain
waveforms of the reference voltage vref and the output voltage vo, the capacitor voltages vo1 and vo2,
the inductor currents i1 and i2 and the control signal rs(i1 − i2) and the signal rsiref − vramp. It is worth
noting that the output voltage cannot be distinguished from its reference signal vref due to the practically
zero amplitude and phase errors. Note also that the state variables and the control signal oscillate at
two main frequencies, the switching frequency (100 kHz) and the reference voltage frequency (50 Hz).
From a practical point of view, the output voltage is characterized by a low value of THD as required in
any application.

As parameters are varied, the state variables undergo a sudden distortion by exhibiting SO at the fast
switching scale as shown in Figure 3 for kp = 0.4. This phenomenon takes place when the proportional
gain kp gradually increases and reaches a critical value close to 0.22. As shown in Figure 3, it can be
observed that the inductor currents i1 and i2 exhibit SO leading to disrupting bubbling phenomenon of
the waveforms. In particular, when kp ≈ 0.22, the fast-scale instability develops in all the state variables
but it is more visible and pronounced in the inductor current waveforms i1 and i2 and their combination
rs(i1 − i2). As stated before, such behavior manifests itself as a period-doubling phenomenon at the fast
switching scale [9,51]. It can also be noticed in Figure 4 that the phenomenon already becomes visible in
the capacitor voltages and the output voltage hence it can deteriorate the performance of the inverter and
therefore its prediction is an important task from a practical point of view.
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Figure 2. Steady-state response of boost inverter with kp = 0.2 and VM = 2 V. (a) Capacitor voltages
vo1 and vo2, output and reference voltages vo and vref. (b) Inductor currents i1 and i2 and control signals
rs(i1 − i2) and rsiref − vramp. For each subplot, traces correspond to the shown voltages in [V] and currents
in [A].
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Figure 3. Steady-state response of boost inverter with kp = 0.4 and VM = 2 V. (a) Capacitor voltages
vo1 and vo2, output and reference voltages vo and vref. (b) Inductor currents i1 and i2 and control signals
rs(i1 − i2) and rsiref − vramp. For each subplot, traces correspond to the shown voltages in [V] and currents
in [A].
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Figure 4. Steady-state response of boost inverter with kp = 0.8 and VM = 2 V. (a) Capacitor voltages
vo1 and vo2, output and reference voltages vo and vref. (b) Inductor currents i1 and i2 and control signals
rs(i1 − i2) and rsiref − vramp. For each subplot, traces correspond to the shown voltages in [V] and currents
in [A].

By carefully examining the waveforms, the following statements can be made:
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• By increasing progressively the proportional gain and when this parameter reaches the critical value,
SO oscillation starts first occurring in a very limited number of switching cycles during the first half
cycle of the sinewave signal eventually in the neighborhood to the quarter of the cycle where the
sinewave signal is maximum.

• The number of the switching cycles, during which SO is exhibited, gets larger and the fast-scale SO is
more pronounced when the proportional gain kp is increased.

• At the left and at the right of the maximum values during the same half cycle, one has the same
values of quasi-steady-state duty cycles and therefore, theoretically, a perfect symmetry is expected in
the critical phase angles at which SO takes place. However, an asymmetry can take place because the
slope of the reference sinewave signal at the left of the peak point is positive while it is negative at the
right side.

• The SO interval is repetitive from a sinewave cycle to the next one and the study of SO phenomenon
can be restricted to one sinewave cycle in terms of the phase angle ϕ as a slowly varying parameter in
the range ϕ ∈ (0, 2π).

• Apparently, if SO is avoided for the first half cycle of the sinewave signal, it will also be avoided for
the second half cycle. Therefore, the numerical and the analytical studies to be presented later will be
restricted to the first half cycle of the sinewave signal for ϕ ∈ (0, π), i.e., only within the duty cycle
range D ∈ (0.5, 1).

A powerful tool for clearly illustrating the SO phenomenon is by using the sampled waveforms.
In order to clearly appreciate the change in the behavior of the system, sampled steady-state values of
the state variables at time instants t = nT (n ∈ N) are obtained. Therefore, the state variables are sampled
at every clock instant and then plotted in the time domain. A priori, any one of the state variables can
be used for illustrating the behavior of the system. However, as observed in the previous time domain
numerical simulations, SO is more pronounced in some state variables than others. An interesting and
naturally sampled variable for which SO is well noticed is the duty cycle of the binary signal u.

Figure 5 shows the waveforms of the duty cycle d(nT) (n ∈ N) during one complete sinewave cycle
for four different values of the proportional gain kp. The duty cycle waveforms are plotted in terms of
the phase angle within the interval (0, 2π). For kp = 0.2, the system exhibits a stable periodic regime
in steady-state, the duty cycle does not present any disruption and its samples represent a clean and
smooth waveform. When the SO regime starts taking place, one gets a different picture. For instance,
for kp = 0.4, it can be clearly seen that there is a certain phase interval within the first half of the sinewave
cycle during which the duty cycle waveforms is disrupted. Namely, within the phase interval defined
by two critical phase angles, two different branches of duty cycle values appear instead of one a kind of
bubble emerges [18]. It can be observed that the onset of bubbling phenomenon depicted in Figure 5 is
gradual. First, for a relatively small value of the parameter kp, the cycle is smooth, then, for increasing kp,
it becomes disrupted in a small phase interval. Thereafter, as kp is further increased, the interval (ϕ1, ϕ2)

of ϕ during which SO takes place grows up as can be seen in Figure 5. If the proportional gain is further
increased, this interval gets wider and the phenomenon usually spreads through the whole line cycle.
Figure 5 also shows that successive period doubling inside the SO interval may also take place in the
first half cycle where the voltage reference is positive, i.e., when D > 0.5. When kp becomes even larger,
the bubbles start appearing even in the second half cycle of voltage reference where D < 0.5. Therefore,
even for D < 0.5, the voltage loop may have a destabilizing effect since when the proportional gain kp is
increased beyond a critical value kp ≈ 0.8, SO and the associated bubbling starts appearing for D < 0.5
and even in the presence of slope compensation. Therefore, the ramp slope needed for eliminating SO
is larger than the one obtained when ignoring the effect of the voltage loop. This destabilizing effect of
the voltage loop is similar to the one reported in [27] for the buck converter and in [24] for the boost
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converter. Similar behaviors have been obtained when other parameters such as the input voltage Vg or
the inductance L are varied.
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(a) kp = 0.2. (b) kp = 0.4.

(c) kp = 0.6. (d) kp = 0.8.

Figure 5. Waveforms of the duty cycle d(nT) at steady-state operation in terms of the phase angle in [◦] for
different values of kp and for VM = 2 V.

4. Continuous-Time Modeling of the Differential Boost Inverter

4.1. Quasi-Steady-State Analysis

From the simulation results presented in the previous section, it has been observed that SO takes
place when suitable parameters are varied. One of the widespread tools to analyze and to investigate
this kind of nonlinear behavior is Floquet theory [52,53]. Considering the switched model of the system,
one can identify possible periodic orbits, their stability as well as several other important aspects of the
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dynamical behavior. To apply this theory, the mathematical model is first derived. By applying KVL and
KCL, the switched model of the differential boost inverter can be expressed as follows

di1
dt

=
1
L1

(Vg − vo2(1− u))− r1

L1
i1, (1)

di2
dt

=
1
L2

(Vg − uvo2)−
r2

L2
i2, (2)

dvo1

dt
=

1
C1

((1− u)i1 +
vo1 − vo2

R
), (3)

dvo2

dt
=

1
C2

(ui2 −
vo1 − vo2

R
), (4)

where L1 and L2 are the inductance of the inductors of the differential boost inverter with stray resistances r1

and r2 respectively, C1 and C2 are the capacitances of their capacitors. Vg is the DC input voltage and R is the
AC load resistance. All other parameters appearing in (1)–(4) are shown in Figure 1. The quasi-steady-state
average values of the state variables are related to the quasi-steady-state duty cycle D by the following
expressions:

I1 =
Vg(2D− 1)
RD(1− D)2 , I2 = − Vg(2D− 1)

RD2(1− D)
(5)

Vo1 =
Vg

1− D
, Vo2 =

Vg

D
(6)

These expressions have been obtained by using the averaged model of the inverter within a switching
period. Using (6) and the fact that vo = vo1 − vo2, the voltage gain of the differential boost inverter can be
expressed as follows

M(D) :=
vref
Vg

=
2D− 1

D(1− D)
(7)

The inverter gain M(D) reaches its maximum value Mmax = Vref/Vg when the voltage reference vref
reaches its peak value Vref. From the expression of M(D), the steady-state value of the duty cycle can be
derived and this can be expressed as follows

D(t) =


1
2
− Vg

vref
+

√
4V2

g + v2
ref

2vref
if vref(t) > 0,

1
2
− Vg

vref
−

√
4V2

g + v2
ref

2vref
if vref(t) < 0.

(8)

In terms of the phase angle ϕ, the quasi-steady-state duty cycle can be expressed as follows

D(ϕ) =


1
2
− 1

Mmax sin(ϕ)
+
√

Mmax +
1
4 if ϕ ∈ (0, π),

1
2
− 1

Mmax sin(ϕ)
−
√

Mmax +
1
4 if ϕ ∈ (π, 2π).

(9)

4.2. The State-Space Switched Model

Let x = (i1, i2, vo1, vo2, )ᵀ be the vector of the state variables of the power stage of the inverter.
The system can be described by a piecewise linear switched model as follows
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ẋ = A1x + B1Vg, for u = 1, (10)

ẋ = A0x + B0Vg, for u = 0, (11)

v̇i = vref − (vo1 − vo2) = vref − Cᵀx (12)

where Cᵀ = (0 0 1 − 1) and vi :=
∫
(vref− vo)dt is the integral of the error signal vref− vo. A0 ∈ R4×4,

A1 ∈ R4×4, B0 ∈ R4×1 and B1 ∈ R4×1 are the system state matrices presented below. The variable vi
was deliberately separated from the rest of state variables to avoid matrix singularities appearing in the
expressions of the system trajectories and their steady-state values at the switching time instants [25,26].
The matrices A1, A0, B1 and B0 are as follows:

A1 =



− r1

L1
0 0 0

0 − r2

L2
0 − 1

L2

0 0 − 1
RC1

1
RC1

0
1

C2

1
RC2

− 1
RC2


, B1 =



1
L1
1
L2
0
0

 (13)

A0 =



− r1

L1
0 − 1

L1
0

0 − r2

L2
0 0

1
C1

0 − 1
RC1

1
RC1

0 0
1

RC2
− 1

RC2


, B0 =



1
L1
1
L2
0
0

 (14)

The output of the voltage PI voltage controller providing the current reference for the control signal
rs(i1 − i2) can be expressed as follows

rsiref = kp(vref − Cᵀx) + Wivi, (15)

Therefore, the switching condition when the signal rs(i1 − i2) reaches its peak value rsiref − vramp

within a switching cycle is given by

kp(vref − Cᵀx) + Wivi − (vramp(t) + rs(i1 − i2)) = 0, (16)

which can be expressed in the following form

kpvref + Kx(t) + Wivi(t)− vramp(t) = 0, (17)

where K = (−rs rs − kp kp) is the vector of feedback coefficients.

5. Accurate Stability Analysis Using Floquet Theory

The differential equations describing the dynamics of switching converters are time periodic with the
switching period T determining the periodicity of solutions at the fast switching scale. DC-AC inverters
are also time periodic with the switching period T and the voltage reference period Tg = 1/ fg. For such
time periodic systems Floquet theory can be used to study the stability of periodic orbits [53]. Here,
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this theory will be applied using a quasi-static approximation treating the DC-AC inverter as a DC-DC
converter with a slowly varying reference voltage and duty cycle. With this approximation, the reference
voltage vref is considered constant within a switching cycle.

Floquet theory has been widely used in the analysis of stability of dynamical systems [53] in general
and switching converters in particular [38–40]. For DC-DC converters, the stability dynamics at the fast
switching cycle can be accurately predicted by analyzing the stability of the fixed points of the Poincaré
map of the system using its Jacobian matrix or using Floquet theory combined with Filippov method which
leads to the same results as the Poincaré map [38]. The main tool for studying the stability of periodic
orbits using Floquet theory is the principal fundamental matrix or the monodromy matrix M. This matrix
plays a key role in the accurate stability analysis of switching systems [38–40,53]. The monodromy matrix
is such that the dynamics in the vicinity of a quasi-static periodic orbit can be expressed as follows

x̂(t + T) = Mx̂(t) ∀t (18)

where the overhat stands for small signal variations. Its eigenvalues are called the characteristic multipliers
or Floquet multipliers and it can be seen that they determine the amount of contraction or expansion near a
periodic orbit and hence they determine the stability of these periodic orbits.

Let us start by finding the monodromy matrix M. Let x(t) ≈ x(t + T) the quasi-steady-state value
of the state vector. Let x(DT) = (I−Φ)−1Ψ ≈ x(t) ≈ x(DT) be the value of x(t) at time instant DT,
where Φ = Φ1Φ0, Φ1 = eA1DT , Φ0 = eA0(1−D)T , Ψ1 = (eA1DT − I)A−1

1 BVg, Ψ0 = (eA0(1−D)T − I)A−1
0 BVg,

Ψ = Φ1Ψ0 + Ψ1. Let m1(x(t)) = A1x(t) + B1Vg and m0(x(t)) = A0x(t) + B0Vg be the vector fields for
u = 1 and u = 0 respectively. Let us define the augmented state vector xa = (i1, i2, vo1, vo2, vi)

ᵀ. Let Aa1,
Aa0, Ba1, Ba0, wa and Ka be, respectively, the associated augmented state matrices, input vectors, vector of
external parameters and vector of feedback coefficients that are expressed as follows

Aa1 =

(
A1 0
−1 0

)
, Ba1 =

(
B1 0
0 1

)
(19)

Aa0 =

(
A0 0
−1 0

)
, Ba0 =

(
B0 0
0 1

)
(20)

Ka =
(

K Wi

)
, wa =

(
Vg

vref

)
(21)

Let us also define the augmented state transition matrices Φa1 = eAa1DT and Φa0 = eAa0(1−D)T

and the augmented vector fields ma1(xa(t)) = Aa1xa(t) + Ba1wa and ma0(xa(t)) = Aa0xa(t) + Ba0wa.
Then, the full-order monodromy matrix can be expressed as follows [38]

M = Φa0SΦa1, (22)

where S is the saltation matrix adapted from [38] as follows

S = I +
(ma0(xa(DT))−ma1(xa(DT)))Kᵀ

a
Wi(vref − vo(DT)) + Kᵀm1(x(DT))−mramp −mref

. (23)

where mramp = VM/T is the slope of the ramp compensator and mref = kpVref2π fg cos(2π fgDT) is the
slope contributed by the time variation of the sinusoidal voltage reference. The expression of vi(DT),
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the third component of xa(DT), can be obtained from (17) in steady-state which gives the following
expression for vi(DT)

vi(DT) =
1

Wi
(mrampDT −Kᵀx(DT)− kpvref) (24)

Now that the expression of the monodromy matrix was derived, hereinafter, we will pay special
attention to the movement of the Floquet multipliers as the voltage reference vref varies quasi-statically.
This is equivalent to changing the phase angle ϕ or the quasi-steady-state duty cycle D. We will also study
the movement of the Floquet multipliers when the proportional gain kp of the controller or the amplitude
of the ramp compensator VM are varied. Any crossing from the interior of the unit circle to its exterior
indicates a lost of stability of the desired orbit. The system becomes unstable, if at least one root of the
Floquet multiplier leaves the unit circle, which is equivalent to an eigenvalue M leaving the unit circle.
Thus, for the stability boundary |λ| = 1 for at least one eigenvalue of M holds. In particular, if a real
characteristic multiplier goes through −1 as it moves out of the unit circle, SO at the fast switching scale
takes place.

To locate the boundary of SO, the Floquet multipliers are obtained. By varying the quasi-steady-state
duty cycle D, the operating point x(DT) was first calculated and the monodromy matrix was obtained for
two different values of the proportional gain kp. At a point where a subharmonic regime emerges, one of
the eigenvalues is equal to −1. Figure 6 shows the Floquet multipliers loci in the complex plane when
the quasi-steady-state duty cycle varies. The duty cycle D was varied by varying the voltage reference
between 0 and its maximum values giving rise to D ∈ (0.5, 0.68). As it can be observed from Figure 6a,
for kp = 0.2 all the eigenvalues remain inside the unit circle for the full considered range of the duty cycle.
Then, the gain kp was fixed at kp = 0.24 then the reference voltage was varied in the same range as before
and the results are depicted in Figure 6b. It can be observed that one of the eigenvalues of the monodromy
matrix crosses the unit circle from the point (−1, 0) in the complex plane indicating SO at a certain value of
vref very close to its maximum value. The critical value of kp at which this starts taking place is kp ≈ 0.22
which is in a remarkable agreement with the time-domain numerical simulations presented in Section 3.
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Figure 6. Cont.
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Figure 6. Floquet multipliers loci by varying the quasi-steady-state duty cycle D for two different values of
the proportional gain kp.

6. Stability Boundaries in the Parameter Space

If SO boundary is of concern, the expression of the characteristic equation det(M− λI) = 0 can be
used by imposing that an eigenvalue λ = −1 and solving the resulting equation in a suitable projection of
the parametric space. Therefore, to determine the boundary of SO, the following equation is solved for a
certain system parameter after fixing the other ones

det(M + I) = 0 (25)

The great advantage of using (25) is that only this equation has to be solved without the need of computing
all eigenvalues of M explicitly. Therefore, instead of solving for all eigenvalues of M, only (25) is solved,
hence, the saving of computational load is significant when the stability boundary is to be determined.

Figure 7 shows the stability boundary resulted from solving (25) with respect to the proportional
gain kp for values of the duty cycle within the operating range (0.5, 0.68) and for a value of the ramp
compensator amplitude VM = 2 V. Within one sinewave signal one has 2000 switching cycles. Therefore,
the plot was generated using 1000 values of the duty cycles and the critical values of kp were registered in
terms of D. In particular, for VM = 2 V, the critical value of the proportional gain guaranteeing that all
the eigenvalues lie inside the unit circle for all values of the operating duty cycle is about 0.2. This is in
perfect agreement with the numerical simulations presented in Section 3. If VM is increased, the critical
value of the proportional gain also increases and the stability region gets wider as depicted in Figure 8.
In particular, for VM = 3 V, the critical value of the proportional gain is about 0.73, for VM = 4 V, is about
1.28 and for VM = 5 V, it is about 1.82. Notice that for a fixed switching period T, changing the ramp
amplitude is equivalent to changing its slope.
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Figure 7. Stability boundaries in terms of the proportional gain kp and the quasi-steady-state duty cycle D
and for VM = 2 V.

0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68
0

0.5

1

1.5

2

2.5

Figure 8. Stability boundaries in terms of the proportional gain kp and the quasi-steady-state duty cycle D
for different values of the ramp amplitude VM.

As stated previously, in DC-AC inverters, the reference voltage is a time varying sinusoidal signal
and accordingly the steady-state quasi-static duty cycle D is given by (8). In such a situation, the phase ϕ

is a quasi-static parameter like D. Solving (9) in terms of the phase angle ϕ, one gets two critical values of
the phase angle that can be expressed as follows

ϕ1 = sin−1(
Vg(2D− 1)

VrefD(1− D)
) (26)

ϕ2 = π − sin−1(
Vg(2D− 1)

VrefD(1− D)
) (27)
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These closed expressions for the critical phase angles at which SO develops explain the observation made
in Section 3. In terms of the inverter gain M(D) and its maximum value Mmax, the expressions of the
phase angles are given by

ϕ1 = sin−1(
M(D)

Mmax
) (28)

ϕ2 = π − sin−1(
M(D)

Mmax
) (29)

The stability boundary of the system is plotted in Figure 9, in terms of the proportional gain kp

of the voltage controller and the phase angle ϕ ∈ (0, π). Vertical dashed lines in Figure 9 indicate this
theoretical critical value for the set of parameter values shown in Table 1. For each specific union of ϕ1

and ϕ2 curves, it can be noted that there is a turning point at the left side of the union. The system will be
stable at the left of the turning point and will exhibit an SO phenomenon at its right side. For instance, let
kp = 0.2; the system is stable during the entire sinewave cycle as already observed in Figure 5a. When the
proportional gain kp is increased beyond its critical value, SO takes place within a certain phase interval,
the length of which is determined by the intersection points between vertical lines corresponding to specific
values of kp and the two curves of ϕ1 and ϕ2. Notice that the length of the SO interval gets larger when
the proportional gain increases. For instance, for kp = 0.4, it is expected from Figure 9 that the system will
exhibit SO in the phase interval (ϕ1, ϕ2) = (46◦, 134◦) which is in close agreement with the numerical
simulation depicted in Figure 5b. For kp = 0.6, the expected SO interval is (ϕ1, ϕ2) = (24◦, 156◦) which is
in close agreement with Figure 5c and for kp = 0.8, the expected SO interval is (ϕ1, ϕ2) = (7◦, 173◦) which
is in close agreement with Figure 5d.

0 0.2 0.4 0.6 0.8 1
0
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40

60

80

100

120

140

160

180

Figure 9. Critical phase angles in [◦] defining the SO interval in terms of the proportional gain kp.

The estimated values of the critical phase angles from Figure 9 defining the SO interval differ slightly
from the numerical simulation result in Figure 5. The discrepancies between the theoretically predicted
values in Figure 9 and the ones obtained from numerical simulations depicted in Figure 5 can be attributed
to two main factors. The first one is the use of the quasi-static approximation. The second one is the
fact that at the point where bubbling develops its amplitude is extremely small making it invisible in
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the scale used for representing the complete waveforms of the duty cycle during one entire sinewave
cycle. By zooming close the critical values of ϕ, more accurate data can be obtained and discrepancies
decrease significantly.

As has been shown in Figure 8, the maximal value of the proportional gain kp guaranteeing stability
during the entire the sinewave cycle depends on the ramp amplitude VM. Therefore, the critical phase
angle curves depicted in Figure 9 are also obtained for different values of VM and the results are depicted
in Figure 10. For each ramp amplitude VM, a value of the proportional gain kp selected at the left of the
corresponding turning point will guarantee no presence of SO during the entire sinewave cycle. Note that
as the ramp amplitude VM increases the maximal value allowed for the proportional gain kp also increases.

0 0.5 1 1.5 2 2.5
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40

60

80

100

120

140

160

180

Figure 10. Critical phase angles in [◦] defining the SO interval in terms of the proportional gain kp for
different values of the ramp amplitude VM.

7. Conclusions

This paper has focused on the subharmonic oscillation boundary leading to bubbling phenomenon
in a single-phase DC-AC differential boost inverter with a linear resistive load. This work has provided
a comprehensive study of the system and stability problems of the system were discussed in order to
determine stabilizing parameter space. This facilitates convenient selection of parameter values to avoid
distortion due to subharmonic oscillation instability in some intervals of the sinewave voltage reference.
Therefore, the results are useful for practical design of DC-AC inverters to ensure a stable operation and
hence maintain a high power quality and ensuring low and acceptable values of THD. By using time
domain waveforms computed from the circuit-level switched model of the system, it was shown that
the differential boost inverter could exhibit subharmonic oscillation instabilities at the fast switching
scale. Stable and unstable zones of operation, critical parameter values and stability boundaries have
been determined. Floquet theory combined with quasi-static approximation has been used resulting in
accurately locating the critical values of the system parameters. The theoretical predictions are in perfect
agreement with the results obtained from numerical simulations performed on the circuit-level switched
model of the inverter. The methodology presented in this study can be applied to other inverter topologies.
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