
mathematics

Article

The Non-Smooth and Bi-Objective Team
Orienteering Problem with Soft Constraints

Alejandro Estrada-Moreno 1,2 , Albert Ferrer 3 , Angel A. Juan 2,4,* , Javier Panadero 2,4

and Adil Bagirov 5

1 Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain;
alejandro.estrada@urv.cat

2 Internet Interdisciplinary Institute (IN3), Computer Science Department, Universitat Oberta de Catalunya,
08018 Barcelona, Spain; jpanaderom@uoc.edu

3 Department of Mathematics, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain;
alberto.ferrer@upc.edu

4 Department of Data Science, Euncet Business School, 08225 Terrassa, Spain
5 School of Engineering, Information Technology and Physical Sciences, Federation University,

Ballarat 3350, Australia; a.bagirov@federation.edu.au
* Correspondence: ajuanp@uoc.edu

Received: 8 August 2020; Accepted: 25 August 2020; Published: 1 September 2020
����������
�������

Abstract: In the classical team orienteering problem (TOP), a fixed fleet of vehicles is employed,
each of them with a limited driving range. The manager has to decide about the subset of customers
to visit, as well as the visiting order (routes). Each customer offers a different reward, which is
gathered the first time that it is visited. The goal is then to maximize the total reward collected
without exceeding the driving range constraint. This paper analyzes a more realistic version of the
TOP in which the driving range limitation is considered as a soft constraint: every time that this range
is exceeded, a penalty cost is triggered. This cost is modeled as a piece-wise function, which depends
on factors such as the distance of the vehicle to the destination depot. As a result, the traditional
reward-maximization objective becomes a non-smooth function. In addition, a second objective,
regarding the design of balanced routing plans, is considered as well. A mathematical model for this
non-smooth and bi-objective TOP is provided, and a biased-randomized algorithm is proposed as a
solving approach.

Keywords: team orienteering problem; soft constraints; non-smooth optimization; multi-objective
optimization; biased-randomized algorithms

1. Introduction

In the classical team orienteering problem (TOP), a fixed fleet of vehicles have to service a selection
of customers, each of them offering a different reward [1]. A driving range constraint per route has
to be strictly respected (hard constraint), and the goal is then to maximize the total reward collected.
Hence, the manager has to select the nodes to be serviced as well as the order in which these nodes are
visited. In this paper, we analyze a more realistic version of the TOP in which the hard constraint is
substituted by a soft one, i.e., whenever the driving range limitation is violated, a piece-wise penalty
cost is triggered, which might imply dealing with a non-smooth objective function. This variant
is motivated by a recent experience related to the use of the TOP for modeling hospital logistics
during the pandemic generated by the COVID-19 virus. Everyday during the months of March,
April, and May 2020, hundreds of volunteers in the province of Barcelona (Spain) were producing
sanitary masks and other items using home 3D printers. A reduced number of volunteer drivers

Mathematics 2020, 8, 1461; doi:10.3390/math8091461 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-9767-2177
https://orcid.org/0000-0002-1005-9570
https://orcid.org/0000-0003-1392-1776
https://orcid.org/0000-0002-3793-3328
https://orcid.org/0000-0003-2075-1699
http://www.mdpi.com/2227-7390/8/9/1461?type=check_update&version=1
http://dx.doi.org/10.3390/math8091461
http://www.mdpi.com/journal/mathematics

Mathematics 2020, 8, 1461 2 of 16

were responsible to pick up sanitary items from a selected set of particular houses, and then bring
these items to consolidation centers, where they were tested for quality, packed, and shipped to the
corresponding hospitals. Each house produced a specific number of items per day, and the added
value (reward) that was provided by each item unit was evolving during the pandemics (as inventories
of some items were increasing). In this context, assuming a hard constraint for the number of driving
hours (e.g., 6 h per day) was not fully realistic: sometimes, it could pay-off for the drivers to do a little
extra effort in driving times, if, in return, this could lead to a noticeable increase in the aggregated
reward of the items that were eventually delivered to the hospitals. In addition, while supporting this
logistics process, we were asked to keep the work distribution across drivers as balanced as possible
(to avoid an unfair distribution of the work load), thus transforming the optimization problem into
a multi-criteria one [2]. A noticeable characteristic of this experience is that the details of the TOP
were varying almost every day: the set of customers with available items were different (hence their
locations and the travel time matrices were varying each day), the reward per item unit were also
dynamic, as inventories of some items were more urgently needed depending on the daily evolution
of the pandemics, sometimes there were priority constraints (e.g., one node had to be visited before
others), customers were provided to us in a pre-clusterized format (e.g., by postal code or drivers’
preferences), etc. For this reason, we needed a flexible solving approach, i.e.: a methodology that could
be easily adapted to the different TOP variants that were emerging day after day. At the same time,
our approach had to be ‘agile’, in the sense that effective and efficient results were expected in a few
minutes of computation, including aspects, such as the generation of the travel times for the daily set
of customers. Based on our previous experience on related vehicle-routing optimization problems [3],
we decided to develop a metaheuristic algorithm to solve the problem.

Recent applications of the TOP include the routing of unmanned aerial vehicles, or self-driving
vehicles, to perform surveillance tasks [4]. The problem can be described, as follows: (i) consider
an origin node, a destination node, a set of potential customers to be visited; (ii) consider a set of m
vehicles, initially located at the origin, with a limited driving range capacity; and, (iii) the first time a
customer is visited, a reward score is obtained. Under these circumstances, a solution to the problem
is a set of m routes, connecting the origin node with the destination node, with each of these routes
visiting a series of customers. The main goal is to maximize the total reward that was collected by the
aforementioned routes without exceeding the driving-range capacity of any vehicle. This driving-range
constraint usually refers to a maximum distance or time threshold (in the latter case, it can also include
the servicing time at each customer). Due to this constraint, and to the fact that a reward is collected
just the first time a customer is visited, any customer will be visited only once or not visited at all.
Because the TOP can be seen as an extension of the well-known vehicle routing problem, it is also an
NP-hard problem [5]. Therefore, the efficiency of exact methods is limited as the size of the problem
grows, and it becomes necessary to employ metaheuristics to solve large-sized TOP instances. To the
best of our knowledge, this is the first work discussing a non-smooth version of the TOP. Figure 1
provides an illustrative example of the considered non-smooth TOP, which considers two objectives:
reward maximization and route balancing.

Regarding the main contributions of this paper, these can be stated as follows: (i) it proposes
a mathematical formulation for the non-smooth and bi-objective TOP; (ii) a flexible and agile
biased-randomized algorithm, which allows to solve the previously defined TOP; and, (iii) a series of
computational experiments that contribute to illustrate the main concepts related to the non-smooth
and bi-objective TOP. The rest of this manuscript is structured as follows: Section 2 offers a literature
review on non-smooth optimization as well as on the TOP. Section 3 describes, in more detail,
the specific version studied in this paper. The biased-randomized algorithm designed for solving
the non-smooth TOP is provided in Section 4. Section 5 contains several numerical experiments that
contribute to illustrate our methodology. Lastly, the main conclusions of this work, together with some
open research lines, are provided in Section 6.

Mathematics 2020, 8, 1461 3 of 16

Figure 1. The stochastic and non-smooth team orienteering problem with soft constraints (source:
own elaboration).

2. Related Work

This section briefly reviews related work on non-smooth optimization as well as on the team
orienteering problem.

2.1. Non-Smooth Optimization

‘Smooth’ objective functions and constraints are frequently assumed in the optimization literature.
When a function is smooth, it is a differentiable function with derivatives of all orders. Non-smooth
optimization problems contain an objective function without the previous properties. From a
combinatorial point of view, non-smooth optimization problems are similar to non-convex optimization
problems: finding the optimal or near-optimal solution might require high computational effort.
When no derivative information is available, determining the direction in which the function is
increasing or decreasing becomes a challenging task. One has also to notice that the solution space
might also have disjoint regions and, therefore, multiple local optima. In real-life applications, it is
quite frequent to encounter non-convex and/or non-smooth objective functions. Thus, for example,
Bagirov et al. [6] and by Karmitsa et al. [7] solve the minimum sum-of-squares clustering problem,
which is formulated as a non-smooth and non-convex optimization problem. Incremental algorithms
are employed as solving approaches. Actually, in the first paper a method based on the difference
of convex functions is employed. In the second paper, the authors make use of the limited-memory
bundle method. In order to test both solving methodologies and compare their efficiency, real-life data
sets are used. These papers also utilize difference of convex functions to solve the non-parametric
regression estimation problem. Their solving approach is based on the minimization of a non-convex
and non-smooth empirical L2-risk function.

Metaheuristic algorithms have been increasingly used to solve non-smooth and/or non-convex
optimization problems in different application fields [8]. Thus, for instance, Al-Sultan [9] employ a
tabu search algorithm to solve the clustering problem, while Oonsivilai et al. [10] use another tabu
search algorithm to solve an optimization problem in the area of telecommunication networks. Similarly,
Hemamalini and Simon [11] make use of an ant colony optimization approach for solving a non-smooth
economic load dispatch problem. The same problem has been also addressed by Niknam et al. [12] and
Basu [13], who propose the use of particle swarm optimization algorithms. In Schlüter et al. [14] and
Corazza et al. [15], the authors make use of both ant colony optimization and particle swarm optimization
to solve a non-smooth portfolio selection problem. Regarding the use of biased-randomized algorithms
for solving non-smooth optimization problems, Juan et al. [16] introduced the MIRHA algorithm for

Mathematics 2020, 8, 1461 4 of 16

solving the vehicle routing problem with soft constraints. Subsequently, Ferrer et al. [17] proposed a
biased-randomized approach for solving a non-smooth version of the well-known permutation flow-shop
problem. Likewise, De Armas et al. [18] used a biased-randomized algorithm to cope with the non-smooth
arc routing problem, while Estrada-Moreno et al. [19] developed a similar approach for the non-smooth
facility location problem. A recent review on the use of biased-randomized algorithms in non-smooth
optimization problems is also available [20]. These algorithms have been also employed in other smooth
optimization problems [21].

2.2. The Team Orienteering Problem

The orienteering problem was introduced by Golden et al. [22]. In its basic version, one vehicle
has to select both the set of customers to service and the visiting order. Typically, not all customers can
be visited due to the existence of a constraint that limits the maximum time or distance of the route.
Because the orienteering problem is NP-hard, most of the solving approaches in the literature make
use of metaheuristics. Gunawan et al. [23] provides an excellent overview of the many variations of
the orienteering problem. Chao et al. [1] introduced the team orienteering problem, which extends
the orienteering problem to the case in which several vehicles are considered. Once again, the goal is
to maximize the total collected reward by selecting a subset of customers for each vehicle, as well as
the visiting order. Additionally, a maximum time or distance per route is considered. The problem
can be seen as a multi-level optimization one, where the following structure: (i) determine the set of
customers to be visited; (ii) assign customers to the available vehicles in the fleet; and (iii) find the
shortest path for each vehicle around the assigned customers. For small- and mid-sized instances of
the TOP (up to 100 customers, approximately), it is usually possible to obtain the optimal solution [24].
Still, most authors propose the use of metaheuristic algorithms, such as the tabu search algorithms and
the variable neighborhood search algorithm introduced by Archetti et al. [25]. Dang et al. [26] proposed
a particle swarm optimization (PSO) algorithm. These algorithms simulate the collective behavior of
wild animals [27]. Lin [28] introduced a multi-start simulated annealing (SA) algorithm. By integrating
an SA step into a multi-start procedure, the algorithm reduces the chances of getting trapped into
a local optimum. An iterative procedure is activated, starting from a randomly generated solution.
In each iteration, a new solution is selected from the neighborhood of the current solution. As in most
SA algorithms, from time to time a worse solution is accepted as the new current (or base) solution.
While Ferreira et al. [29] propose a genetic algorithm for solving the TOP, Ke et al. [30] describe a
Pareto mimic algorithm. The latter employs a mimic operator to generate a new solution. It also
contains a swallow operator, which inserts an infeasible customer before repairing solution. Recently,
Panadero et al. [31] have employed a simheuristic algorithm to cope with a stochastic variant of the
TOP, while Bayliss et al. [4] have proposed a learnheuristic to solve a dynamic version of the same.

3. Modeling the Bi-Objective Non-Smooth TOP (BONSTOP)

The BONSTOP model introduced in this section is based on the formulation proposed by
Mirzaei et al. [32], which we extend and adapt to the specific version considered in this paper.
Consider an undirected and weighted graph G := (V, E), being V := {1, 2, . . . , n} the set of
vertices or nodes, and E := {{i, j} ∈ P(V) : i 6= j} the set of edges, where P(V) is the set of all
subsets of V or powerset. Additionally, every edge, {i, j} ∈ E has a non-negative travel time
tij ≥ 0 associated with it. The travel time is assumed to satisfy the triangular inequality. In our
context, a route is a path with initial node 1 and final node n. A route, r, is described by its edges,
r := {{1, i1}, {i1, i2}, . . . , {is−1, is}, {is, n}}. Nodes, i1, i2, . . . , is, are named proper nodes. LetRs be the
set of all routes with s proper nodes. It is clear that the number of elements of Rs, |Rs|, equals the
number of s-permutations without repetition of the n− 2 elements in the set of proper nodes, Pn−2

s .
Hence, as shown in Equation (1), and proved in Appendix A, we have:

Mathematics 2020, 8, 1461 5 of 16

|Rs| = Pn−2
s =

(n− 2)!
(n− 2− s)!

= (n− 2)(n− 3) · · · (n− 2− s + 1). (1)

We indicate, by R, the set of all the routes on G. Notice that R =
⋃n−2

s=1 Rs and
|R| = ∑n−2

s=1 |Rs| = be(n− 2)!− 1c. A m-solution, S := {r1, r2, . . . , rm}, is a set of m ≥ 1 routes ri

with no proper nodes in common. Additionally, each node i ∈ V \ {1, n} is associated with a profit
pi > 0, while p1 := pn := 0. If the first route r1 contains s proper nodes, then the number of nodes yet
to be assigned to the remaining m− 1 routes (vehicles) is n− 2− s. The following inequality must be
verified: n− 2− s ≥ m− 1, i.e.: n−m− 1 ≥ s. As a consequence, the total number of routes that can
be used to obtain m-solutions is given by Equation (2):

n−m−1

∑
s=1

Pn−2
s = be(n− 2)!− 1c −

n−2

∑
s=n−m

Pn−2
s . (2)

Therefore, the growth of the solution space is factorial with respect to the number of nodes.
The first objective function, named benefit function, can be written as in Equation (3):

max
m

∑
k=1

n−1

∑
i=2

piyk
i , (3)

where yk
i is a binary decision variable that takes the value 1 if the vertex i ∈ V \ {1, n} belongs to route

rk (k = 1, . . . , m), and 0 otherwise. A second objective function, named balance function, is introduced
with the purpose of generating ‘balanced’ solutions (i.e., solutions with routes of similar characteristics).
In particular, the second objective consist in minimizing the difference between the highest and the
lowest reward obtained by any vehicle, as expressed in Equation (4):

min

{
max
k∈M

{
n−1

∑
i=2

piyk
i

}
−min

k∈M

{
n−1

∑
i=2

piyk
i

}}
. (4)

Our version of the TOP consist in determining a m-solution with m vehicles (routes), with each of
them completing the task on or before a predetermined time threshold, Tmax. This constraint might
cause some nodes not to be visited. The benefit function must be maximized, while the balance
function needs to be minimized. No capacity constraints are considered for the vehicles. In order to
describe the constraints, we define the binary decision variables xk

ij (k = 1, . . . , m), which take the value

1 if edge {i, j} ∈ E belongs to route rk, and 0 otherwise. Feasible m-solutions must satisfy a series of
constraints, as described next. The routes of a m-solution always start at node 1 and finish at node n:

m

∑
k=1

n

∑
j=2

xk
1j =

m

∑
k=1

n−1

∑
i=1

xk
in = m. (5)

Each node in V\{1, n} is, at most, a proper node of one route in a given m-solution:

m

∑
k=1

yk
i ≤ 1, for all i ∈ V \ {1, n}. (6)

In a m-solution, each proper node in a route belongs to exactly two edges in the route:

∑
{i,h}∈E

xk
ih = 2yk

h, for all h ∈ V \ {1, n}, k = 1, . . . , m. (7)

Mathematics 2020, 8, 1461 6 of 16

For each route, the time restriction is established:

Tk := ∑
{i,h}∈E

xk
ijtij =

n−1

∑
i=1

n

∑
j=i+1

xk
ijtij ≤ Tmax, k = 1, . . . , m. (8)

Finally, sub-tours are prohibited:

∑
i,j∈U,i<j

xk
ij ≤ |U| − 1, for all {U ⊆ V \ {1, n} : |U| ≥ 2}, k = 1, . . . , m. (9)

3.1. Soft Constraints

In many real-life applications, the possibility of violating certain constraints can be considered.
Generally, these ‘soft constraints’ imply the application of a penalty cost whenever a threshold is exceeded.
In our case, we will allow the vehicle to exceed the time-threshold Tmax if, after accounting for the
associated penalty cost, the value of the objective function is still improved. Therefore, constraints (8) will
be considered as soft ones. Accordingly, for a given route k, its basic cost fk := ∑n−1

i=2 piyk
i is extended,

as follows:

f ∗k :=

 fk if Tk ≤ Tmax
Tmax

(Tk + K)
fk otherwise,

(10)

where K ≥ 0 is an experimental design parameter. In particular, considering the variability of Tmax
for each instance of the selected benchmark, the value of K is set as a percentage of Tmax to illustrate
different degrees of flexibility: high flexibility (K = 0% of Tmax), medium flexibility (K = 10% of
Tmax), and low flexibility (K = 50% of Tmax).

3.2. Considering a Weighted Combination of Objectives

In a multi-objective optimization the quality of a solution is determined by its ‘dominance’
in any of the dimensions (objectives) being considered. The non-dominated set of solutions define
the Pareto frontier, which is usually difficult to determine. In the case the different objectives are
measured in the same units (e.g., monetary value), one can also transform the multi-objective
function into a single-objective one by considering a weighted combination of the different objectives.
These weighted-sum methods tend to be simple, but they assume that an expert is able to define the
proper weight values. Hence, we can consider all of the constraints (5)–(9) and the following weighted
objective function, where α ∈ (0, 1):

max α
m

∑
k=1

n−1

∑
i=2

piyk
i + (1− α)

(
min
k∈M

{
n−1

∑
i=2

piyk
i

}
−max

k∈M

{
n−1

∑
i=2

piyk
i

})
. (11)

However, when constraints (8) are taken as soft ones, a penalty coefficient–given by (10)—is
added to the first term of the weighted objective function:

max α
m

∑
k=1

f ∗k + (1− α)

(
min
k∈M

{
n−1

∑
i=2

piyk
i

}
−max

k∈M

{
n−1

∑
i=2

piyk
i

})
. (12)

Therefore, in this second case, it is actually possible to violate constraints (8) by incurring in a
well-defined penalty cost. Notice that it is possible to consider a non-smooth version of the model with
continuous variables by substituting the binary ones yk

i , xk
ij ∈ {0, 1} by the constraints yk

i (1− yk
i) = 0,

xk
ij(1− xk

ij) = 0, and yk
i , xk

ij ∈ [0, 1].

Mathematics 2020, 8, 1461 7 of 16

4. A Biased-Randomized Algorithm for the BONSTOP

In this section, we propose a biased-randomized variable neighborhood search (BR-VNS) to solve
the BONSTOP model introduced before. These algorithms are efficient and they can work with a
reduced number of parameters (hence reducing the need for time-consuming fine-tuning processes).
This makes them an excellent option for solving non-smooth optimization problems [20]. Algorithm 1
depicts the main characteristics of the two-stage BR-VNS algorithms. The first stage (line 1) focuses on
generating a feasible initial solution initSol. This is achieved with the constructive heuristic described
in Panadero et al. [31], which extends to the TOP the concept of ‘savings’ introduced for the vehicle
routing problem [33]. This concept was adapted to the TOP properties, in particular: (i) there might
be different nodes to represent the origin and destination depots; (ii) it is not mandatory (or even
possible) to service all the customers; and, (iii) the collected reward—and not just the savings in time or
distance—must be also considered during the construction of the routing plan. Therefore, the savings
that are associated with an edge (i, j), where i, j are proper nodes, take into account the collected
reward as well as the required travel time associated with the edge connecting customers i and j.
Once the initial solution initSol is generated, it is copied into a baseSol and a bestSol.

The second phase in our approach aims at improving the initial solution by iteratively exploring
the search space. This phase combines a VNS metaheuristic with biased-randomization techniques.
This procedure consists in shaking the baseSol in order to generate a new solution newSol. Subsequently,
the neighborhood of this new solution is explored, trying to find an improved one. This procedure is
repeated until the stopping criterion is met. The intensity of the shaking operation depends upon the
size of the selected neighborhood k, which represents the percentage of the current solution that is
destructed (and, later on, reconstructed), during the shaking stage. The value of k can be modified in
each iteration. If a baseSol is updated, the value of k is reset to 1 and the temperature of the simulated
annealing component is set to 0. On the contrary, the k is increased in one unit. Biased-randomized
techniques induce a non-uniform random behavior in the heuristic by employing skewed probability
distributions. These techniques have been widely used to solve different combinatorial optimization
problems [34–36]. Thus, biased randomization allows for us to transform a deterministic heuristic
into a probabilistic algorithm without losing the logic behind the original heuristic. A Geometric
probability distribution with a parameter β ∈ (0, 1) controls the relative level of greediness present in
the randomized behavior of our algorithm. Through the different computational experiments carried
out, we conclude that a good performance was obtained for a β = 0.3. Hence, this value was used to
obtain our experimental results. Notice that biased randomization prevents the same solution from
being obtained at every iteration.

Afterwards, the algorithm starts a local search procedure around the newSol. This procedure
consists of several local search operators, which are executed sequentially. A well-known 2-opt local
search is the first one [37]. This localSearch1 is applied to each route until it cannot be further improved.
In this case, only intra-route movements are evaluated. A hash map data structure is employed to
save the best-found-so-far route, for a given set of nodes. The localSearch2 deletes a subset of nodes
from each route. From the total number of customers in a solution, a volume between 5% and 10% is
selected and then removed from the current solution. In each iteration, the algorithm randomly selects
one out of three different mechanisms for nodes to be removed: (i) nodes with the lowest rewards;
(ii) nodes with the highest rewards; and, (iii) randomly selected nodes. The localSearch3 is based on
a biased-insertion algorithm proposed by Tang and Miller-Hooks [38] and Dang et al. [26]. In our
case, this biased-insertion algorithm has been adapted to the characteristics of our problem. The main
objective is to try improve the routes that were obtained from localSearch2. The underlying idea of
this local search is to insert new non-serviced nodes to the current routes—as far as no constraint is
violated. For the selection of the nodes to insert, Equation (13) was taken into account. This equation
considers the rate between the added time and the reward obtained by inserting node i. In this
equation, we assume that node i is being inserted in a route between nodes j and h:

Mathematics 2020, 8, 1461 8 of 16

(tji + tih − tjh)/ui. (13)

However, instead of selecting the node that minimizes the value of Equation (13), as usual,
we apply a biased-randomized selection process. For this, another Geometric distribution is employed.
A newSol is returned when no more improvements are achieved. If this newSol improves the objective
function of the bestSol, then the latter is updated and k is reset to 1. With the purpose of diversifying the
search, the algorithm can accept solutions that are worse than the current one. This acceptance criterion
is typical in most simulated annealing approaches [39], and it is regulated by a temperature parameter,
temperature. This parameter can be updated in each iteration. A maximum time of 600 s was employed
in our experiments as the stopping criterion. Finally, note that some lines in Algorithm 1 are only
executed when constraints (8) are considered as soft ones. This is equivalent to remove constraints (8)
from our model and consider the objective function provided in (12). Actually, by adding these lines,
Algorithm 1 considers hard constraints for the first 1000 iterations. However, every 1000 iterations it
allows Tmax to be violated by an additional 10%. That is, Algorithm 1 considers that time restriction is
T′max instead of Tmax.

Algorithm 1 Biased-randomized variable neighborhood search (BR-VNS) metaheuristic

1: initSol ← genInitSol(Inputs) . First stage (Savings-based heuristic)
2: baseSol ← initSol
3: bestSol ← baseSol
4: nIter ← 0
5: ε← 0
6: while (time ≤ maxTime) do . Variable Neighborhood Search
7: nIter ← nIter + 1
8: if nIter ≡ 0 (mod 1000) then
9: ε← ε + 0.1

10: T′max ← Tmax + ε · Tmax

11: end if
12: k← 1
13: while (k ≤ Kmax) do
14: newSol ← shaking(baseSol, k) . Biased Randomization
15: newSol ← localSearch1(newSol)
16: newSol ← localSearch2(newSol)
17: newSol ← localSearch3(newSol)
18: if ((ObjFunct(newSol)−ObjFunct(baseSol)) > 0) then
19: baseSol ← newSol
20: bestSol ← newSol
21: k← 1
22: else . Simulated Annealing
23: temperature← computeTemperature()
24: if (temperature ≥ randomNumber) then
25: baseSol ← newSol
26: k← 1
27: else
28: k← k + 1
29: end if
30: end if
31: end while
32: end while
33: return bestSol

Mathematics 2020, 8, 1461 9 of 16

5. Computational Experiments

Our BR-VNS metaheuristic was implemented as a Java application. All of the experiments in this
section have been run on an Intel Core i7 @ 2.9GHz with 4GB RAM. Java has been employed since
this programming language offers an excellent trade-off between development speed and execution
speed. The set of classical benchmark instances proposed in Chao et al. [1] were adapted to consider
soft constraints. The base instances have been widely employed in the literature in order to test the
performance of algorithms whose purpose is to solve the classical version of the TOP. This benchmark
set is divided into seven different subsets, which include a total of 320 instances. For our experiments,
we have selected 10 instances from each of the 7 subsets. The last row in Table 1 contains the number
of nodes, n, in each instance of the corresponding subset. For all instances inside the same subset,
the node locations and rewards are constant values. However, both the number of vehicles, m, as well
as the time threshold, Tmax, can vary. The nomenclature pa.b.c of each instance is described, as follows:
a represents the identifier of the subset; b is the number of vehicles m, which varies between 2 and 4;
finally, c denotes an alphabetical order for each instance.

Table 1. Classical team orienteering problem (TOP) instances from Chao et al. [1] used in our experiments.

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 Subset 6 Subset 7

p1.4.i p2.4.b p3.4.k p4.4.k p5.4.q p6.3.j p7.4.k
p1.4.j p2.4.c p3.4.l p4.4.l p5.4.r p6.3.k p7.4.l
p1.4.k p2.4.d p3.4.m p4.4.m p5.4.s p6.3.l p7.4.m
p1.4.l p2.4.e p3.4.n p4.4.n p5.4.t p6.3.m p7.4.n

p1.4.m p2.4.f p3.4.o p4.4.o p5.4.u p6.3.n p7.4.o
p1.4.n p2.4.g p3.4.p p4.4.p p5.4.v p6.4.j p7.4.p
p1.4.o p2.4.h p3.4.q p4.4.q p5.4.w p6.4.k p7.4.q
p1.4.p p2.4.i p3.4.r p4.4.r p5.4.x p6.4.l p7.4.r
p1.4.q p2.4.j p3.4.s p4.4.s p5.4.y p6.4.m p7.4.s
p1.4.r p2.4.k p3.4.t p4.4.t p5.4.z p6.4.n p7.4.t

32 21 33 100 66 64 102

In order to test our algorithm in the classical TOP version, we initially solved the model when
considering hard constraints in (5)–(9) and an objective function given by (11) with α = 1 (i.e., only reward
maximization is accounted for in the objective function). As it is usual in the TOP literature, each instance
was executed 5 times using a different seed in each run. The best-known solution (BKS) provided in
Ke et al. [30] for the classical TOP is compared against our best one (OBS). According to the results that
are shown in Figure 2, even using short computational times (a maximum time of 2 min. per instance
was set), we obtain an average value of 675.2, which is virtually the same as the one provided by the BKS
(678.3). This illustrate the effectiveness of our approach when employed in the basic version of the TOP,
which is a necessary step before solving the more advanced BONSTOP model. Figure 2 also shows that,
as the value of α is reduced (i.e., less weight is given to the reward and more weight is assigned to the
route balancing), the value of the objective function diminishes.

The next step is then solving the BONSTOP model when considering soft constraints. For K = 0.5,
Figure 3 shows that in this S05 soft constraint scenario it is possible to enhance the objective
function for α = 1 by slightly violating the driving time constraints (i.e., the penalty cost incurred is
overcompensated by the associated increase in total reward). Again, as α diminishes, the objective
function value is reduced.

For soft constraint scenarios with a lower k (k = 0.1 and k = 0.0), Figures 4 and 5 show—even
clearer than before—that some benefits can be obtained by violating the driving time constraint when
α = 1. This observation might be quite interesting for a manager, since, as discussed in the Introduction,
in real-life is frequent to find constraints with a certain degree of flexibility.

Finally, Figure 6 shows how the average value of the objective function varies as we move across
different scenarios (with α = 1 in all cases). One can notice that, in effect, the more ‘soft’ the scenario,

Mathematics 2020, 8, 1461 10 of 16

the higher the benefits that can be achieved. Hence, the average value is 705.3 for scenario S00 (the most
flexible one), while it reduces to 676.2 for the hard scenario.

Figure 2. Results for dif9ferent alpha values under the hard constraint scenario (source: own elaboration).

Figure 3. Results for different alpha values under the soft constraint scenario with k = 0.5 (source:
own elaboration).

Mathematics 2020, 8, 1461 11 of 16

Figure 4. Results for different alpha values under the soft constraint scenario with k = 0.1 (source:
own elaboration).

Figure 5. Results for different alpha values under the soft constraint scenario with k = 0.0 (source:
own elaboration).

Mathematics 2020, 8, 1461 12 of 16

Figure 6. Results for different values of k with alpha a = 1 (source: own elaboration).

6. Conclusions

We studied a realistic non-smooth and bi-objective version of the team orienteering problem (TOP).
Instead of assuming hard constraints on the maximum time a vehicle can drive, these driving-range
limitations can be exceeded to some extent, i.e., they are soft constraints. However, when these
constraints are violated, a penalty cost has to be paid. This penalty cost has to be considered in the
weighted objective function, which aims at both minimizing total cost as well as to maximize the
balance across routes (in terms of obtained reward) in the final solution. In our experiments, the penalty
cost is given by a piece-wise function, which introduces a non-smooth component into the objective
function. This, in turn, limits the efficiency of exact methods to solve the associated version of the TOP.

Therefore, a metaheuristic algorithm is proposed to solve this non-smooth TOP. It is based on
a variable neighborhood search framework, which also integrates biased-randomization techniques.
The numerical experiments illustrate the efficiency of our approach. It produces competitive solutions
to the hard-constrained TOP. Moreover, for moderated levels of these penalty costs, our approach is
able to provide solutions that outperform the hard-constrained optimal ones. In other words, we show
that, under some circumstances, it might be worthy to exceed the driving-range limitations and cover
the associated cost of this action. For example, a transportation company might be interested in paying
some overtime to a driver if this allows the driver’s route to include new customers with high rewards
that compensate the increase in cost. These numerical results support with data what we observed
during the daily logistics planning that motivated this work: it was frequently worthy to extend
somewhat the length of the planned routes—which were computed using hard constraints on the
maximum time a driver can operate. By doing this, a noticeable increase in the added value of the
sanitary items to be collected was usually obtained. Hence, the utilization of soft constraints, which has
been rarely analyzed in the scientific literature on the TOP, is fully justified in real-life practice and
it can lead to solutions outperforming the ones that are constrained by hard (and often unrealistic)
thresholds. The experimental results also support the use of metaheuristic algorithms as an effective
and efficient solving procedure to deal with the extraordinary complexity of the resulting optimization
problem—which becomes non-smooth with the introduction of the piece-wise penalty cost functions
associated with the soft constraints. This is especially the case when reasonably short computing times

Mathematics 2020, 8, 1461 13 of 16

are required by managers and when different criteria are considered—e.g., reward maximization as
well as balanced routing plans.

The current work still considers several simplifying assumptions, e.g.: both reward values as
well as travel times are assumed to be deterministic and well-known in advance. Hence, no stochastic
variables, reliability issues on the routing plans, or dynamic conditions are taken into account in our
study. As potential research lines to be explored in future work, we can highlight the following ones:
(i) the hybridization of our BR-VNS algorithm with the ECAM global optimization algorithm [40]—in
particular, the former could be used to explore the solution space while the latter could help to intensify
the search in a promising region; (ii) an extended version of the problem in which the optimal number
of vehicles (fleet size) is also a decision variable to be set as part of the optimization process; and,
(iii) the extension of our metaheuristic into a simheuristic [41], so it can also deal with stochastic
customers’ rewards or travel times. The introduction of random travel times might arise complex
reliability and availability issues on the planned routes and their assigned vehicles, especially when
electric vehicles—with limited driving ranges—are employed. Simulation-based approaches can also
help to deal with these issues [42].

Author Contributions: Data curation, J.P.; Formal analysis, A.E.-M., A.F. and A.B.; Methodology, A.F., A.A.J., J.P.
and A.B.; Software, A.E.-M. and J.P.; Supervision, A.A.J.; Writing–review & editing, A.A.J. All authors have read
and agreed to the published version of the manuscript.

Funding: This work has been partially supported by the Spanish Ministry of Economy and Competitiveness &
FEDER (SEV-2015-0563), the Spanish Ministry of Science (PID2019-111100RB-C21, RED2018-102642-T), and the
Erasmus+ Program (2019-I-ES01-KA103-062602).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Let Rs be the set of all routes with s proper nodes. Notice that the number of elements of Rs,
named |Rs|, equals the number of s-permutations without repetition of the n− 2 elements in the set of
proper nodes, Pn−2

s . Hence, we have:

|Rs| = Pn−2
s =

(n− 2)!
(n− 2− s)!

= (n− 2)(n− 3) · · · (n− 2− s + 1). (A1)

We indicate by R the set of all the routes on G. Notice that R =
⋃n−2

s=1 Rs and
|R| = ∑n−2

s=1 |Rs| = be(n− 2)!− 1c. Next, we will prove the last equality.

Proposition A1. For any positive integer n, the following expression is true: ∑n
s=1 Pn

s = ben!− 1c.

Proof. If n = 1, then ∑1
s=1 P1

s = P1
1 = 1 = be− 1c. Thus, from now on we consider n ≥ 2.

1 +
n

∑
s=1

Pn
s = 1 +

n

∑
s=1

n!
(n− s)!

=
n!
n!

+
n

∑
s=1

n!
(n− s)!

=
n

∑
s=0

n!
(n− s)!

= n!
n

∑
s=0

1
(n− s)!

(A2)

Mathematics 2020, 8, 1461 14 of 16

Considering Maclaurin series for the exponential function at x = 1, we have:

e =
1
0!

+
1
1!

+
1
2!

+ . . . =
n

∑
s=0

1
(n− s)!

+
1

(n + 1)!
+

1
(n + 2)!

+ . . . (A3)

If we substitute the previous result in Equation (A2), and after proper rearrangement,
the following result is obtained:

1 +
n

∑
s=1

Pn
s = n!

(
e−

(
1

(n + 1)!
+

1
(n + 2)!

+ . . .
))

= en!−
(

1
(n + 1)

+
1

(n + 1)(n + 2)
+ . . .

)
(A4)

Let us denote by f (n) the expression between parentheses, i.e.,

f (n) =
1

(n + 1)
+

1
(n + 1)(n + 2)

+
1

(n + 1)(n + 2)(n + 3)
+ . . . , (A5)

then, the following expression can be deduced:

f (n) <
1
n
+

1
n2 +

1
n3 + . . . (A6)

Using the formula for the sum of a geometric series, we have:

f (n) <

1
n

1− 1
n

=
1

n− 1
(A7)

Since n ≥ 2, we deduce that 0 < f (n) < 1. By Equation (A4) we have:

1 +
n

∑
s=1

Pn
s = en!− f (n), (A8)

and, considering that 0 < f (n) < 1, it is possible to deduce the following:

en!− 1 < 1 +
n

∑
s=1

Pn
s < en!. (A9)

As a consequence, we have:

en!− 2 <
n

∑
s=1

Pn
s < en!− 1. (A10)

Since
n

∑
s=1

Pn
s is an integer, and it belongs to the interval]en!− 2, en!− 1[of length 1, the following

can be concluded:
n

∑
s=1

Pn
s = ben!− 1c. (A11)

Corollary A1. For any integer n ≥ 3, we have that |R| = ∑n−2
s=1 |Rs| = be(n− 2)!− 1c.

Mathematics 2020, 8, 1461 15 of 16

References

1. Chao, I.M.; Golden, B.; Wasil, E. The team orienteering problem. Eur. J. Oper. Res. 1996, 88, 464–474.
[CrossRef]

2. Sawik, B. Application of multi-criteria mathematical programming models for assignment of services in a
hospital. In Applications of Management Science; Emerald Group Publishing Limited: Bingley, UK, 2013.

3. Gruler, A.; Fikar, C.; Juan, A.A.; Hirsch, P.; Contreras-Bolton, C. Supporting multi-depot and stochastic
waste collection management in clustered urban areas via simulation–optimization. J. Simul. 2017, 11, 11–19.
[CrossRef]

4. Bayliss, C.; Juan, A.A.; Currie, C.S.; Panadero, J. A learnheuristic approach for the team orienteering problem
with aerial drone motion constraints. Appl. Soft Comput. 2020, 106280. [CrossRef]

5. Belloso, J.; Juan, A.A.; Faulin, J. An iterative biased-randomized heuristic for the fleet size and mix
vehicle-routing problem with backhauls. Int. Trans. Oper. Res. 2019, 26, 289–301. [CrossRef]

6. Bagirov, A.M.; Taheri, S.; Ugon, J. Nonsmooth DC programming approach to the minimum sum-of-squares
clustering problems. Pattern Recognit. 2016, 53, 12–24. [CrossRef]

7. Karmitsa, N.; Bagirov, A.M.; Taheri, S. Clustering in large data sets with the limited memory bundle method.
Pattern Recognit. 2018, 83, 245–259. [CrossRef]

8. Sayah, S.; Zehar, K. Modified differential evolution algorithm for optimal power flow with non-smooth cost
functions. Energy Convers. Manag. 2008, 49, 3036–3042. [CrossRef]

9. Al-Sultan, K.S. A Tabu search approach to the clustering problem. Pattern Recognit. 1995, 28, 1443–1451.
[CrossRef]

10. Oonsivilai, A.; Srisuruk, W.; Marungsri, B.; Kulworawanichpong, T. Tabu Search Approach to Solve Routing
Issues in Communication Networks. Int. J. Electr. Comput. Energetic, Electron. Commun. Eng. 2009,
3, 1211–1214.

11. Hemamalini, S.; Simon, S.P. Artificial Bee Colony Algorithm for Economic Load Dispatch Problem with
Non-smooth Cost Functions. Electr. Power Compon. Syst. 2010, 38, 786–803. [CrossRef]

12. Niknam, T.; Mojarrad, H.D.; Meymand, H.Z.; Firouzi, B.B. A new honey bee mating optimization algorithm
for non-smooth economic dispatch. Energy 2011, 36, 896–908. [CrossRef]

13. Basu, M. Modified Particle Swarm Optimization for Non-smooth Non-convex Combined Heat and Power
Economic Dispatch. Electr. Power Compon. Syst. 2015, 43, 2146–2155. [CrossRef]

14. Schlüter, M.; Egea, J.A.; Banga, J.R. Extended ant colony optimization for non-convex mixed integer nonlinear
programming. Comput. Oper. Res. 2009, 36, 2217–2229. [CrossRef]

15. Corazza, M.; Fasano, G.; Gusso, R. Particle Swarm Optimization with non-smooth penalty reformulation,
for a complex portfolio selection problem. Appl. Math. Comput. 2013, 224, 611–624. [CrossRef]

16. Juan, A.A.; Faulin, J.; Ferrer, A.; Lourenço, H.R.; Barrios, B. MIRHA: Multi-start biased randomization
of heuristics with adaptive local search for solving non-smooth routing problems. Top 2013, 21, 109–132.
[CrossRef]

17. Ferrer, A.; Guimarans, D.; Ramalhinho, H.; Juan, A.A. A BRILS metaheuristic for non-smooth flow-shop
problems with failure-risk costs. Expert Syst. Appl. 2016, 44, 177–186. [CrossRef]

18. De Armas, J.; Ferrer, A.; Juan, A.A.; Lalla-Ruiz, E. Modeling and solving the non-smooth arc routing problem
with realistic soft constraints. Expert Syst. Appl. 2018, 98, 205–220. [CrossRef]

19. Estrada-Moreno, A.; Ferrer, A.; Juan, A.A.; Bagirov, A.M.; Panadero, J. A biased-randomised algorithm for
the capacitated facility location problem with soft constraints. J. Oper. Res. Soc. 2019, 1–17. [CrossRef]

20. Juan, A.A.; Corlu, C.G.; Tordecilla, R.D.; de la Torre, R.; Ferrer, A. On the use of biased-randomized
algorithms for solving non-smooth optimization problems. Algorithms 2020, 13, 8. [CrossRef]

21. Kizys, R.; Juan, A.A.; Sawik, B.; Calvet, L. A biased-randomized iterated local search algorithm for rich
portfolio optimization. Appl. Sci. 2019, 9, 3509. [CrossRef]

22. Golden, B.; Levy, L.; Vohra, R. The orienteering problem. Nav. Res. Logist. 1987, 34, 307–318. [CrossRef]
23. Gunawan, A.; Lau, H.; Vansteenwegen, P. Orienteering Problem: A survey of recent variants, solution

approaches and applications. Eur. J. Oper. Res. 2016, 255, 315–332. [CrossRef]
24. Butt, S.; Ryan, D. An optimal solution procedure for the multiple tour maximum collection problem using

column generation. Comput. Oper. Res. 1999, 26, 427–441. [CrossRef]

http://dx.doi.org/10.1016/0377-2217(94)00289-4
http://dx.doi.org/10.1057/s41273-016-0002-4
http://dx.doi.org/10.1016/j.asoc.2020.106280
http://dx.doi.org/10.1111/itor.12379
http://dx.doi.org/10.1016/j.patcog.2015.11.011
http://dx.doi.org/10.1016/j.patcog.2018.05.028
http://dx.doi.org/10.1016/j.enconman.2008.06.014
http://dx.doi.org/10.1016/0031-3203(95)00022-R
http://dx.doi.org/10.1080/15325000903489710
http://dx.doi.org/10.1016/j.energy.2010.12.021
http://dx.doi.org/10.1080/15325008.2015.1076906
http://dx.doi.org/10.1016/j.cor.2008.08.015
http://dx.doi.org/10.1016/j.amc.2013.07.091
http://dx.doi.org/10.1007/s11750-011-0245-1
http://dx.doi.org/10.1016/j.eswa.2015.09.011
http://dx.doi.org/10.1016/j.eswa.2018.01.020
http://dx.doi.org/10.1080/01605682.2019.1639478
http://dx.doi.org/10.3390/a13010008
http://dx.doi.org/10.3390/app9173509
http://dx.doi.org/10.1002/1520-6750(198706)34:3<307::AID-NAV3220340302>3.0.CO;2-D
http://dx.doi.org/10.1016/j.ejor.2016.04.059
http://dx.doi.org/10.1016/S0305-0548(98)00071-9

Mathematics 2020, 8, 1461 16 of 16

25. Archetti, C.; Hertz, A.; Speranza, M.G. Metaheuristics for the team orienteering problem. J. Heuristics 2007,
13, 49–76. [CrossRef]

26. Dang, D.C.; Guibadj, R.N.; Moukrim, A. An effective PSO-inspired algorithm for the team orienteering
problem. Eur. J. Oper. Res. 2013, 229, 332–344. [CrossRef]

27. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International
Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

28. Lin, S. Solving the team orienteering problem using effective multi-start simulated annealing. Appl. Soft Comput.
2013, 13, 1064–1073. [CrossRef]

29. Ferreira, J.; Quintas, A.; Oliveira, J. Solving the team orienteering problem: Developing a solution tool using
a genetic algorithm approach. In Soft Computing in Industrial Applications; Advances in Intelligent Systems
and Computing: 223; Springer: Berlin/Heidelberg, Germany, 2014; pp. 365–375.

30. Ke, L.; Zhai, L.; Li, J.; Chan, F.T. Pareto mimic algorithm: An approach to the team orienteering problem.
Omega 2016, 61, 155–166. [CrossRef]

31. Panadero, J.; Currie, C.; Juan, A.A.; Bayliss, C. Maximizing Reward from a Team of Surveillance Drones
under Uncertainty Conditions: A simheuristic approach. Eur. J. Ind. Eng. 2020, 14, 1–23. [CrossRef]

32. Mirzaei, M.H.; Ziarati, K.; Naghibi, M.T. Bi-objective version of team orienteering problem (BTOP).
In Proceedings of the 2017 7th International Conference on Computer and Knowledge Engineering
(ICCKE), IEEE, Mashhad, Iran, 26–27 October 2017; pp. 1–7.

33. Clarke, G.; Wright, J. Scheduling of Vehicles from a central depot to a number of delivery points. Oper. Res.
1964, 12, 568–581. [CrossRef]

34. Estrada-Moreno, A.; Fikar, C.; Juan, A.A.; Hirsch, P. A biased-randomized algorithm for redistribution of
perishable food inventories in supermarket chains. Int. Trans. Oper. Res. 2019, 26, 2077–2095. [CrossRef]

35. Estrada-Moreno, A.; Savelsbergh, M.; Juan, A.A.; Panadero, J. Biased-randomized iterated local search for a
multiperiod vehicle routing problem with price discounts for delivery flexibility. Int. Trans. Oper. Res. 2019,
26, 1293–1314. [CrossRef]

36. Raba, D.; Estrada-Moreno, A.; Panadero, J.; Juan, A.A. A reactive simheuristic using online data for a real-life
inventory routing problem with stochastic demands. Int. Trans. Oper. Res. 2020, 27, 2785–2816. [CrossRef]

37. Croes, G.A. A Method for Solving Traveling-Salesman Problems. Oper. Res. 1958, 6, 791–812. [CrossRef]
38. Tang, H.; Miller-Hooks, E. Algorithms for a stochastic selective travelling salesperson problem. J. Oper.

Res. Soc. 2005, 56, 439–452. [CrossRef]
39. Pincus, M. Letter to the Editor—A Monte Carlo Method for the Approximate Solution of Certain Types of

Constrained Optimization Problems. Oper. Res. 1970, 18, 1225–1228. [CrossRef]
40. Ferrer, A.; Bagirov, A.M.; Beliakov, G. Solving DC programs using the cutting angle method. J. Glob. Optim.

2015, 61, 71–89. [CrossRef]
41. Gonzalez-Martin, S.; Juan, A.A.; Riera, D.; Elizondo, M.G.; Ramos, J.J. A simheuristic algorithm for solving

the arc routing problem with stochastic demands. J. Simul. 2018, 12, 53–66. [CrossRef]
42. Faulin, J.; Juan, A.A.; Serrat, C.; Bargueno, V. Predicting availability functions in time-dependent complex

systems with SAEDES simulation algorithms. Reliab. Eng. Syst. Saf. 2008, 93, 1761–1771. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10732-006-9004-0
http://dx.doi.org/10.1016/j.ejor.2013.02.049
http://dx.doi.org/10.1016/j.asoc.2012.09.022
http://dx.doi.org/10.1016/j.omega.2015.08.003
http://dx.doi.org/10.1504/EJIE.2020.108581
http://dx.doi.org/10.1287/opre.12.4.568
http://dx.doi.org/10.1111/itor.12668
http://dx.doi.org/10.1111/itor.12625
http://dx.doi.org/10.1111/itor.12776
http://dx.doi.org/10.1287/opre.6.6.791
http://dx.doi.org/10.1057/palgrave.jors.2601831
http://dx.doi.org/10.1287/opre.18.6.1225
http://dx.doi.org/10.1007/s10898-014-0159-1
http://dx.doi.org/10.1057/jos.2016.11
http://dx.doi.org/10.1016/j.ress.2008.03.022
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Non-Smooth Optimization
	The Team Orienteering Problem

	Modeling the Bi-Objective Non-Smooth TOP (BONSTOP)
	Soft Constraints
	Considering a Weighted Combination of Objectives

	A Biased-Randomized Algorithm for the BONSTOP
	Computational Experiments
	Conclusions
	
	References

