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Background
In recent years, mass spectrometry imaging (MSI) has become an important analyti-
cal technique because of its capacity to spatially localize a wide range of biomolecules 
from plant, animal and human tissues [1]. The main advantage of MSI is its high speci-
ficity, which makes it possible to identify endogenous and exogenous compounds such 
as metabolites, lipids, peptides and proteins. Consequently, a considerable number of 
advanced data analysis tools have emerged as proprietary or open source software, with 
a tendency towards data format standardization [2].

However, the most common MSI instruments and sample preparation protocols have 
difficulty in acquiring high spatial resolution images. The spatial resolution of current 
acquisitions is limited to a few micrometres, which prevents the detailed molecular char-
acterization at the micron scale so necessary for the study of microorganisms and cells 
[3]. Thus, it was suggested that the molecular images produced by MSI could be com-
bined with images obtained by other high spatial resolution techniques. Several studies 
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proposed correlating MSI with optical or fluorescence images [4–6] or with molecular 
images of spectroscopic techniques such as Fourier Transformed-Infrared Spectros-
copy (FTIR) [7, 8] and Raman Spectroscopy imaging [9–17]. The combination of MSI 
and Raman imaging is becoming increasingly popular for exploring biological tissues 
because Raman is a non-destructive label-free technique which characterizes tissues at a 
submicron lateral resolution. Moreover, Raman imaging provides MSI proteomic studies 
with complimentary information about the chemical composition of the sample, such as 
lipid-to-protein ratio or changes in lipid content [10].

Nonetheless, collecting molecular information for sample characterization with two 
analytical instruments means that there are two different data formats, which need two 
different software to visualize and analyse the two datasets. A unified data format, com-
mon to all spectral imaging techniques, would benefit and promote the development 
of multimodal imaging applications. So far, only a few studies have visualized and ana-
lysed datasets using techniques such as spectroscopic, mass spectrometric, and X-ray 
diffraction data within the same software [18–20]. However, the data format supported 
in these cases was common text (.txt) which is not suitable for MSI datasets because it 
cannot encode a complete MSI dataset in a text file because of its large data size. The 
standard data format adopted by the MSI community to exchange and process data is 
imzML [21]. Currently instrument manufacturers and the scientific community are not 
using a standard file format for Raman imaging data. Due to the similarities between 
MSI and Raman imaging data structure, we suggest adapting Raman imaging datasets to 
the standardized open format imzML. In this way, MSI and Raman imaging data can be 
explored with the same software, so that data from different imaging experiments can be 
visualized more straightforwardly.

Here, we present Raman2imzML, an open-source data converter distributed as an R 
package which converts Raman data acquired with Renishaw and WITec instruments 
to imzML. We converted Raman imaging datasets collected from mouse brain tissue, 
and then visualized them with commonly used MSI software tools. The Raman2imzML 
package together with its documentation is available online (githu b.com).

Implementation
Raman2imzML converts text files (.txt) exported from imaging data acquired using Ren-
ishaw and WITec Raman instruments to imzML format (Fig. 1). To convert the Raman 
data to imzML, the Raman text file (.txt) is parsed to extract the imaging information: 
number of pixels, pixel coordinates and number of data points in each spectrum. Then, 
the imaging information is used to calculate the binary offsets according to the imzML 
format specification and stored in an intermediate data structure. Immediately, the 
binary part of the imzML format is written by directly transferring each Raman spec-
trum to binary stream encoded as 32-bit floating-point numbers. Finally, the Raman-
2imzML converter uses the imzML parser in the rMSI package [22] to write the XML 
part of the imzML using the imaging information (metadata) stored in the intermediate 
data structure. The Raman2imzML converter is distributed as an R package and includes 
a converter function for each instrument manufacturer to simplify user access. A 
Raman2imzML R project that includes a markdown and a set of example measurements 
from Renishaw and WITec to test the package is available in Additional files 1 and 2.
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The imzML format was designed to store mass spectrometry data, so it has some limi-
tations when it is used for Raman data. Several specific words defined in the imzML 
ontology do not suit Raman experiments or do not exist. For example, “Raman Shift” 
units or diffraction grating definitions  (cm−1) are nonexistent in the imzML format. 
Therefore, after the conversion, only numeric imaging information such as pixel posi-
tion, intensity values and Raman shift axis values are preserved. It should also be pointed 
out that some information (integration time, excitation wavelength, etc.) is not pre-
served by the converter, as it is lost when the data is exported to text. Nevertheless, we 
suggest that the imzML specification be extended to handle imaging modalities other 
than MSI. This will enable future versions of Raman2imzML to perform data conversion 
without losing any information.

Results and discussion
Figure 2 illustrates how images produced by MSI and Raman imaging can be visual-
ized and explored using the same software. First, we used laser desorption/ionization 
(LDI) MSI and Raman to acquire molecular images from consecutive histological sec-
tions of a fresh-frozen mouse brain. For MSI (Fig.  2a), we placed the tissue section 
onto an ITO-coated glass slide and covered the surface of the tissue with a thin Au 
nanolayer by sputtering [23]. For Raman measurements (Fig. 2b), we placed the con-
secutive tissue slice onto a  CaF2 slide. Images were acquired using MALDI TOF/TOF 
UltrafleXtreme (50–1200  Da mass range, positive reflectron mode, large laser spot 
size, 500 shots per pixel, 20  μm lateral resolution) for MSI, and Renishaw (633  nm 
excitation wavelength, 50x objective, 2 s integration time, 50% laser power, 2 μm step) 
for Raman imaging. To explore both imaging datasets, we exported the MSI data 
using Bruker’s software flexImaging™ directly into imzML, and converted the Raman 
text data using Raman2imzML into the imzML format. Finally, we imported both 
imzML files independently, and visualized the molecular images using the rMSI pack-
age [22] although other MSI software can be used for data exploration: for example, 
open-source options such as Datacube Explorer [24], CARDINAL [25], MSiReader 
[26] and msiQuant [27] and commercial options such as SCiLS Lab and MALDIVi-
sion. For MSI (Fig. 2c), we showed the spatial distribution of ion m/z 850 (putatively 
annotated as a glycerophospholipid—phosphatidylcholine (38:3), experimental m/z 

Fig. 1 Data conversion from Raman *.txt files (exported from datasets collected with Renishaw and WITec 
spectrometers) into the imzML format. Coloured arrows indicate how and where the information is stored in 
the imzML format
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850.58 as [M + K]+ adduct, mass error 9 ppm) [28] on the whole mouse cerebellum. 
For Raman (Fig. 2d) we chose to illustrate the band at 2850 cm−1 Raman shift, which 
is specific for lipids [29] on one specific nerve tract in the cerebellum. The possible 
merger of the two molecular images (Fig. 2c and d) is shown in Fig. 3. The high spatial 

Fig. 2 Imaging mouse brain sections: MSI (a) and Raman imaging (b) sample preparation steps and 
visualization within the same open‑source software (rMSI) of each dataset (c and d); rMSI: R package for MSI 
data handling and visualization, Copyright© 2014 Pere Rafols Soler

Fig. 3 Merged molecular images collected from MSI (20 μm lateral resolution) and Raman (2 μm lateral 
resolution). Molecular images are the same as Fig. 2
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resolution image from Raman clearly enhances the low-resolution image obtained 
with MSI. When co-registration strategies are used together with multimodal imag-
ing techniques it can accurately coordinate the relationship between pixel position 
and information between the two images. This way Raman2imzML could also enable 
hyperspectral data analysis of Raman and MSI datasets within the same software.

Conclusion
The Raman2imzML converter was created so that the same software could be used to 
visualize different imaging datasets, and in particular to explore Raman images using 
MSI software tools.We demonstrated that the similarities between Raman imaging and 
MSI data structures favour the use of the same data visualization software. Therefore, 
we recommend that a comprehensive multimodal strategy be created to facilitate the 
combination of spectral imaging techniques such as Raman and MSI.We propose that 
imzML be used as a template for a standardized file format for Raman imaging and other 
spectral imaging techniques, and that specific Raman ontology be included in future 
imzML format iterations.

Availability and requirements

Project name: Raman2imzML.
Project home page: https ://githu b.com/LlucS F/Raman 2imzM L.
Operating system(s): Platform independent.
Other requirements: R, Rtools, RStudio.
Programming language: R and C++.
License: GNU GPL-3.0.
Any restrictions to use by non-academics: none.
The datasets generated and/or analysed during the current study are available in the 
GitHub repository, https ://githu b.com/LlucS F/Raman 2imzM L. The associated addi-
tional files contains the Raman2imzML R project that includes a markdown and a set 
of example measurements to test this package.

Supplementary information
Supplementary information accompanies this paper at https ://doi.org/10.1186/s1285 9‑020‑03789 ‑8.

Additional file 1. Example datasets collected with Renishaw and WITec Raman instruments as common text files.

Additional file 2. Markdown for using the Raman2imzML package.

Abbreviations
MSI: Mass spectrometry imaging; FTIR: Fourier transformed‑infrared spectroscopy; LDI‑MSI: Laser desorption/ionization 
mass spectrometry imaging.
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