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We consider the monoid T with the presentation 〈a, b; aab = aba〉 which is “close” to trace monoids. We prove two
different types of results. First, we give a combinatorial description of the lexicographically minimum and maximum
representatives of their congruence classes in the free monoid {a, b}∗ and solve the classical equations, such as
commutation and conjugacy in T. Then we study the closure properties of the two subfamilies of the rational subsets
of T whose lexicographically minimum and maximum cross-sections respectively, are rational in {a, b}∗.
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Introduction
Trace monoids are obtained from free monoids by allowing certain pairs of generators to commute, which
is the reason why they are also known as free partially commutative monoids. In this work, we investigate
a natural extension by imposing on these partial commutations to be controlled by the context, e.g., we
may specify that the letters a and b commute when preceded by the letter c but not by the letter d and
call them contextual trace monoids, abbreviated as c-trace monoids. The general problem is, we think,
out of reach in the near future as this theory has a degree of difficulty higher than that of the standard
trace monoids. Our purpose is to draw the attention to this challenging problem by illustrating it with an
intriguing special case which shows the richness of the field.

In terms of monoid presentations, the contextual trace monoids are defined by relators consisting of
pairs of words of length 3, i.e., with the above example, cab = cba would be a relator. There are other
natural monoids presented by sets of relators whose both handsides have the same length. Apart from the
trace monoids themselves, the plactic monoids originate from the rules of the jeu de taquin on a set of
finite elements – the generators – and their relators consist of pairs of words of length 3, see Chapter 5 of
[9]. An investigation of the fine structure of the recognizable subsets of the plactic monoid on two letters
is given in [2]. The braid monoid is also defined by relators containing partial commutations and pairs
of words of length 3. We believe that contextual monoids deserve more interest than they have raised so
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far. Observe that they are not cancellative which, in particular, rules out the possibility of resorting to
techniques inherited from Viennot’s heaps of pieces for enumerating them, see [1].

Here, we focus on the particular case of the monoid with two generators a and b which commute only
when preceded by an occurrence of a. This is equivalent to saying that the elements a and ab commute:
stated that way, we can view the c-trace monoid as “half” the two generator plactic monoid since the
latter is determined by the condition that both a and b commute with ab. We prove some combinatorial
properties of this structure. In particular, we state a factorization result where Łukasiewicz words are
involved, yielding a linear algorithm deciding the equivalence of two words; differently said, the word
problem is linear for congruences generated by the relation aab = aba. This result is instrumental for
solving equations and allows us to characterize the solutions of the elementary equations such as the
commutation and conjugacy equations. It also helps us compute the number of different elements of the
c-trace monoid of a given length.

The second type of contribution concentrates on the study of the family of rational subsets of c-trace
monoids. We are mainly concerned with the problem of determining under which choice of represen-
tatives, the cross-section is rational. We study two choices by taking the lexicographically minimal and
lexicographically maximal word in each congruence class. We characterize the rational sets of words
which are cross-sections in both cases. Then we investigate the closure properties of these two families.
Actually, this part is a bit disappointing since there exists only one nontrivial closure property, namely that
under product for the cross-section with lexicographically maximal word. As a last example of difference
between ordinary and c-traces, we show that the product of two recognizable subsets of contextual traces
need not be recognizable.

1 Preliminaries
1.1 Free monoids

Given a finite set Σ called an alphabet, whose elements are letters, we denote by Σ∗ the free monoid it
generates. An element u of Σ∗ is a word and its length, i.e., the number of occurrences of letters in u, is
denoted by |u|. The empty word is denoted by 1 and has length 0. A word u is a prefix of a word w if
there exists a word v such that w = uv. It is a proper prefix if v is nonempty which implies that the empty
word is a proper prefix of each nonempty word and that the empty word has no proper prefix. Given a
total ordering < on Σ, it extends to a lexicographical ordering of Σ∗, denoted u ≤lex v, by stipulating that
u is a prefix of v or that u = wax and v = wby holds for some words w, x, y and some letters a < b.

The Łukasiewicz language, denoted L, plays a crucial role in the study of the monoid of c-traces. We
recall that it is the unique fixed point in Σ∗ of the equation X = aXX + b. Equivalently, a word w over
the alphabet {a, b} belongs to the Łukasiewicz language if and only if |w|a + 1 = |w|b holds and for
all its proper prefixes v, i.e, all prefixes, including the empty word, that are different from w itself, we
have |v|a ≥ |v|b. Observe that L generates a free monoid which is prefix in the sense that u, uv ∈ L∗
implies v ∈ L∗ as a simple computation shows. When dealing with properties of Łukasiewicz words, it
helps bearing in mind the classical paths in the discrete plane, associated with a given word over the binary
alphabet {a, b}: start from the origin and move from the current point (x, y) to the next point (x+1, y+1)
in case an occurrence of a is read and to the point (x+ 1, y − 1) in case an occurrence of b is read. Then
a Łukasiewicz word is a word associated to a path which lies entirely in the positive quadrant except for
the last point which is below the x-axis. In particular, a nonempty word belongs to the monoid L∗ if the
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y-coordinate of the last point of the associated path is negative and is the unique minimum value. The
prefixity of the submonoid L∗ can also be interpreted in terms of paths.

1.2 Monoid presentation
A monoid presentation is a pair 〈Σ;R〉 where Σ is the set of generators and R ⊂ Σ∗ × Σ∗ is a set of
relators. An element of R is indifferently written as (u, v) or u = v, which is the traditional notation.
Denote by ∼R the congruence generated by R, by MR the monoid presented, i.e., the quotient of Σ∗

by ∼R and by φR : Σ∗ → MR the canonical morphism which assigns to every word w ∈ Σ∗ its class
in the congruence ∼R. We drop the index and simply write ∼, M and φ when R is understood. The
identity element of the monoid is denoted by 1. For example, a trace monoid has a presentation of the
form 〈Σ; {(ab, ba) | (a, b) ∈ I}〉, where I ⊆ Σ × Σ is a symmetric and irreflexive relation, [10, 5, 8,
Chapter 11].

Our notion of contextual trace monoid or simply c-trace monoid is defined as the quotient of Σ∗ by a
congruence generated by relators of the form cab = cba for some not necessarily different letters a, b, c
of Σ. Its elements are contextual traces. One of the simplest contextual monoids which is essentially
different from a trace monoid has the monoid presentation 〈a, b; aab = aba〉. We shall not consider other
c-trace monoids and denote by T this particular monoid throughout the paper. Therefore the congruence
∼ is generated by the single relator aab = aba. Finally, since the two hand sides of the relator have the
same length, two ∼-equivalent words have the same length. We may thus speak without ambiguity of the
length of an element of T as the common length of all its representatives.

1.3 Subfamilies of subsets of a monoid

We now briefly recall the classical definitions of the two major subfamilies of subsets of an arbitrary
monoid M .

The family Rat(M) of rational sets is the smallest collection of subsets containing the singletons,
the empty set and closed under the set union, the concatenation and the star. The family Rec(M) of
recognizable sets is the collection of subsets X ⊆ M for which there exists a morphism h from M onto
a finite monoid such that X = h−1h(X).

Equivalent definitions for rational and recognizable subsets are as follows. Consider a presentation
〈Σ;R〉 and identify each element of M with the corresponding ∼-equivalence class. Then a subset X ⊆
M is rational if it is possible to choose for each equivalence class of X some words (at least one, but not
necessarily exactly one) such that the set of all these words form a rational subset of Σ∗. Formally, there
exists Y ∈ RatΣ∗ such that X = φ(Y ). It is recognizable if the set of all words in all classes of X form
a rational subset of Σ∗. Formally, φ−1(X) ∈ RatΣ∗. For example with 〈a, b; ab = ba〉 the subset (ab)∗

is not recognizable since the set of words equivalent to some element in (ab)∗ is the set of words having
as many a’s as b’s.

We recall that if the monoid is finitely generated, which is the case of c-trace monoids, we have
Rec(M) ⊆ Rat(M), cf., [11, Theorem 2, p.1348] also [3, Proposition III.2.4].

2 Combinatorics
Here, we introduce the minimum necessary for the rest of the paper. We prove the existence of a unique
factorization of a contextual trace as a product of images, in the canonical morphism φ, of words related
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to the Łukasiewicz words and characterize the lexicographically minimum and maximum representatives
of a congruence class. This allows us to give a closed formula expressing the number of elements of T of
a given length.

2.1 Lexicographical representatives
The set of Łukasiewicz words is prefix (u, uv ∈ L implies v = 1) and complete in the sense that each
word either is a prefix of some word in L or has a prefix in L. Therefore, each word w can be factored
uniquely as

w = w1w2 · · ·wrwr+1, (1)

where w1, w2, · · · , wr are Łukasiewicz words and wr+1 is a proper prefix of a Łukasiewicz word. The
following lemmas show that an equivalence class of the ∼-congruence is uniquely determined by its
commutative image (i.e., the number of occurrences of each letter a and b) along with the sequence of
lengths of the Łukasiewicz factors. The first lemma is trivial since an occurrence of aab or aba cannot
overlap two consecutive Łukasiewicz factors.

Lemma 1 Let w = w1w2 · · ·wrwr+1 and u = u1u2 · · ·usus+1 be the factorizations of w and u as in
(1). Then w ∼ u holds if and only if r = s and for i = 1, . . . , r + 1 we have wi ∼ ui.

It thus remains to consider the conditions under which two prefixes of Łukasiewicz words are equiva-
lent.

Lemma 2 Let w be a prefix of a Łukasiewicz word and w′ ∼ w. Then w′ is also a prefix of a Łukasiewicz
word. Furthermore, if w is a Łukasiewicz word so is w′.

Proof: The statement is true if w′ is obtained from w by the substitution of an occurrence of aab for an
occurrence of aba or vice versa. It follows by transitivity of the congruence relation. 2

Lemma 3 For each Łukasiewicz word w, we have

anbn+1 ∼ w ∼ (ab)nb,

where n = |w|a = |w|b − 1. Moreover, anbn+1 is the lexicographically minimum word equivalent to w
and (ab)nb is the maximum.

Proof: By repeated application of aab ∼ aba, we get anb ∼ aban−1 if n > 0. Consequently, if n ≥ p we
obtain

anbp ∼ aban−1bp−1 ∼ (ab)2an−2bp−2 ∼ · · · ∼ (ab)pan−p. (2)

Concerning the lexicographically minimum word equivalent to w, assume it has an occurrence of the
form ba. Then the word starts with a prefix of the form anbpa with n ≥ p. Applying equation (2) we get

anbpa ∼ (ab)pan−p+1 = (ab)pan+1−p ∼ an+1bp,

which yields a smaller lexicographically word equivalent to w. Consider now the maximum word equiv-
alent to w and assume by contradiction that it does not have the above form, i.e., it has an occurrence
of the form akb where k ≥ 2. Because of akb ∼ ak−2aba we get a lexicographically greater word, a
contradiction. 2
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As a consequence of the previous two lemmas we get a characterization of the lexicographically mini-
mum and maximum representatives of an equivalence class.

Corollary 4 With the word in (1), set ni = |wi|a for i = 1, · · · , r and |wr+1|a = nr+1 ≥ pr+1 =
|wr+1|b. The minimum and maximum words equivalent to the word (1) are respectively

an1bn1+1 · · · anrbnr+1anr+1bpr+1

and
(ab)n1b · · · (ab)nrb(ab)pr+1anr+1−pr+1 .

(3)

Corollary 5 Given two words u, v ∈ {a, b}∗ there exists a linear algorithm that decides whether or not
u ∼ v holds.

Proof: Indeed, factorize each word u, v as above and test that the sequence of the lengths of the factors
which are Łukasiewicz words are equal. Then it suffices to verify that the last factors as in (1), which are
proper prefixes of a Łukasiewicz word, have the same number of occurrences of a’s and b’s. These tests
can be executed in real time using a stack. 2

2.2 Enumeration and Möbius function
We recall that the Möbius function µ of T is the function of T into Z such that

∑
x∈M µ(x)x is the

inverse of the characteristic series
∑
x∈M x in the algebra Q〈〈T〉〉. As for trace monoids, the inverse of

the characteristic series of T is a polynomial.

Proposition 6 The Möbius function of T is the polynomial 1− φ(a)− φ(b) + φ(a2b)

Proof: Because of Corollary 4, we get that the set of lexicographically maximal representatives is equal
to ((ab)∗b)∗(ab)∗a∗. Now, the inverse of the series

(φ(b) + φ(ab))∗φ(a)∗ ∈ Q〈〈M〉〉

is the series
(1− φ(a))(1− φ(b)− φ(ab)) = 1− φ(a)− φ(b) + φ(a2b).

2

Denote by Tn the number of elements of length n of the monoid T. This number could be computed
by induction on the length via expression (3) but we will obtain it by using the previous proposition.

Lemma 7 Tn = −1 +
(5−
√
5)( 1−

√
5

2 )n+(5+
√
5)( 1+

√
5

2 )n

10 .

Proof: Consider the commutative image of the characteristic series of T by mapping φ(a) and φ(b) onto
the variable x. Then we obtain (∑

n≥0

Tnx
n
)
(1− 2x+ x3) = 1.

We compute the first three coefficients directly: T0 = 1, T1 = 2, T2 = 4 and more generally Tn =
2Tn−1−Tn−3 for n ≥ 3. This is equivalent to the conditions T0 = 1, T1 = 2 and Tn = 1+Tn−1 +Tn−2
for n ≥ 2. This sequence is similar to the Fibonacci sequence. The result follows from [7]. 2

It is worthwhile noticing that each of the integers Tn has as a Fibonacci bit-representation a prefix of
(10)∗ (no two consecutive 0’s or 1’s). E.g., we have T5 = 12 = 8+3+1 = 8 ·1+5 ·0+3 ·1+2 ·0+1 ·1.
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3 Equations
In this section we solve the equations which are classical in the free monoids: the simple equation xy = zt
known as Levi’s Lemma for free monoids and the conjugacy and commutation equations. We are able to
solve them by resorting to a natural factorization of the elements of the monoid T.

Given a word w ∈ Σ∗ we denote by exc(w) = |w|a − |w|b the excess of the number of occurrences
of a’s over the number of occurrences of b’s (or simply its excess). If w is a representative of the c-trace
x ∈ T, then its length and its excess are invariants of its congruence class, so we may use the notations
|x| and exc(x).

Expression (1) shows that all words can be uniquely factored as a product of a word belonging to the
free monoid L∗ concatenated with a proper prefix of a word on L. We denote by L the image of L ⊆ Σ∗

in the monoid T. Let N be the set L∗ and let P be the set of images in the canonical morphism of all
proper prefixes of L. Consequently, every element of T can be uniquely written in the form np with
n ∈ N and p ∈ P which we call the np-factorization. (Considering the path associated with a word as
in paragraph 1.1 the symbol P is meant to suggest that the path lies entirely in the quadrant of the plane
with positive coordinates). Since equations involve products of elements, it is natural to determine the
factorization n3p3 of a product of two elements, knowing the factorizations n1p1 and n2p2 of these two
elements. If exc(p1) < −exc(n2) then the product has the decomposition

n3 = n1p1n2 and p3 = p2. (4)

More precisely, there exists a unique factorization n2 = n′2n
′′
2 with n′2, n

′′
2 ∈ L∗ such that [p1n

′
2] ∈ L,

where [p1n
′
2] expresses the fact that the product of p1 and n′2 is an element of L. If to the contrary,

exc(p1) ≥ −exc(n2) then we have

n3 = n1 and p3 = p1n2p2. (5)

The next paragraphs rely on these observations which are assumed in the proofs without explicit reference
to them.

3.1 Conjugacy equation
The classical notion of conjugacy of two elements of a group can be extended to monoids in two different
ways yielding a priori two different notions, which we call transposition and conjugacy. Two elements
x, y are transposed if there exist two elements u, v ∈ T such that x = uv and y = vu. We denote by T
this relation. Two elements x, y are conjugate if there exists an element z ∈ T such that xz = zy. We
denote by C this relation. The following observation is crucial: the submonoid L∗ is free and prefix in the
sense that

x, xy ∈ L∗ ⇒ y ∈ L∗. (6)

Indeed, let u, v and w be inverse images of x, y and xy in Σ∗. By Lemma 2, for some u′ ∈ Σ∗ we have
w ∼ u′v, u ∼ u′ and u′ ∈ L∗. Then w ∈ L∗ implies u′v ∈ L∗ and finally v ∈ L∗, i.e., y ∈ L∗. Therefore
the notation x−1y is unambiguous if x and y belong to L∗.

Theorem 8 In the monoid T we have C = T 2, i.e., x and y are conjugate if and only if there exists
z ∈ T, such that both x and y are transposed to z.
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Proof: We consider the equation xz = zy and the three decompositions x = n1p1, z = n2p2 and
y = n3p3. Using the decompositions (4) and (5) there are four different cases according to whether or not
exc(p1) < −exc(n2) holds and whether or not exc(p2) < −exc(n3) holds.

Case 1: exc(p1) < −exc(n2) and exc(p2) < −exc(n3). This implies

n1p1n2 = n2p2n3 and p2 = p3.

Decompose
n2 = n′2n

′′
2 , n3 = n′3n

′′
3 , n′2, n

′′
2 , n
′
3, n
′′
3 ∈ L∗ (7)

so that
n1[p1n

′
2]n′′2 = n2[p2n

′
3]n′′3 (8)

holds where the elements in brackets belong to L and n′2 ∈ L∗ (resp. n′3 ∈ L∗) is the unique prefix of n2
(resp. n3) such that p1n′2 ∈ L (resp. p2n′3 ∈ L).

Apply (6) to equation (8). Via simple considerations of lengths, n′2 is a prefix of n1. Cancel out the
prefix n′2 from the two hand sides of the above equation and observe that because of the above remark,
we have n′−12 n1 ∈ L∗. Then it holds

(n′2)−1n1[p1n
′
2]n′′2 = n′′2 [p2n

′
3]n′′3 .

Since all the above factors are in the free monoid generated by the prefix code L, we apply the result to
the conjugacy equation in free monoids and there exist u, v ∈ L∗ such that

(n′2)−1n1[p1n
′
2] = uv, [p2n

′
3]n′′3 = vu.

Since p1n′2, p2n
′
3 ∈ L this implies that they are the last and the first factor in L of the element v.

If v ∈ L then we obtain
(n′2)−1n1 = n′′3 = u, p1n

′
2 = p2n

′
3 = v

and we obtain
x = n′2(n′2)−1n1p1 = n′2up1,
y = n′3n

′′
3p2 = n′3up2

which shows that (x, y) ∈ T 2.

Otherwise, v is a product of at least two elements in L which implies v = v1v
′v2 where v2 = [p1n

′
2]

and v1 = [p2n
′
3] i.e., (n′2)−1n1 = uv1v

′ and n′′3 = v′v2u. We obtain

x = n′2(n′2)−1n1p1 = n′2uv1v
′p1 = n′2up2n

′
3v
′p1,

y = n′3n
′′
3p2 = n′3v

′v2up2 = n′3v
′p1n

′
2up2,

and hence, (x, y) ∈ T .

Case 2: exc(p1) < −exc(n2) and exc(p2) ≥ −exc(n3). This implies

n1p1n2 = n2 and p2 = p2n3p3,
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i.e., x = y = 1.

Case 3: exc(p1) ≥ −exc(n2) and exc(p2) < −exc(n3). This implies

n1 = n2p2n3 and p3 = p1n2p2,

i.e., x = n1p1 = n2p2n3p1 and y = n3p3 = n3p1n2p2 which shows that (x, y) ∈ T .

Case 4: exc(p1) ≥ −exc(n2) and exc(p2) ≥ −exc(n3). This implies

n1 = n2 and p1n2p2 = p2n3p3.

This yields p1n1 ∈ P and therefore p3n3 ∈ P . Since furthermore p1n1 and p3n3 have the same length
and the same excess, we have p1n1 = p3n3, proving that (x, y) ∈ T 2.

The remaining inclusion follows, since T ⊆ C = C2. 2

The previous result deserves a few observations. The following is an immediate consequence.

Corollary 9 The conjugacy relation is symmetric and therefore, it is an equivalence relation.

Next we show that indeed, the two relations T and C are different, i.e., C = T 2 holds but C 6= T .

Proposition 10 C = T 2 holds but C 6= T .

Proof: In order to simplify the notations, we identify the letters with their images in the canonical
morphism. With x = abbabbab, z = abbabba, y = abbbabba we obtain xz = zy. Set x1 = abb,
x2 = abbab, y1 = abbb and y2 = abba. Then it holds x = x1x2 and y = y1y2. Furthermore we have
(abbab)(abb) = (abba)(abbb), i.e., x2x1 = y2y1.

We now verify that the elements are not transposed. Indeed, since the element abbabbab has a unique
representative, all its transposed are obtained by splitting the word x = uv (as a word) and by considering
the element of T represented by vu. The only possible way of obtaining y is by considering the decom-
positions of x where v begins with the letter a, which leaves only (abb)(abbab) and (abbabb)(ab). Then
we get (abbab)(abb) = abb.aabbb and (ab)(abbabb) = aabbb.abb. 2

Proposition 11 Let x be a c-trace with exc(x) = −k where k > 0. Then it is conjugate to a c-trace
y ∈ Lk.

All c-traces of fixed length and fixed positive excess define a unique conjugacy class.

Proof: Let w represent x and decompose it in w = w1w2 where w1 is the shortest prefix with exc(w1) =
−k. Then w2w1 ∈ Lk and its congruence class y is in Lk. If exc(w) ≥ 0 then the word w2w1 belongs
to P , and we know that all words in P of a fixed length and fixed excess are equivalent in the canonical
congruence. 2

Proposition 12 Given two c-traces x and y it can be tested in linear time whether they are conjugate.

Proof: By the previous proposition, we proceed as follows. We are given two c-traces x and y of the same
length and excess k. If k ≥ 0 we verify the equality of the two c-traces and we are done. Otherwise we
construct two c-traces x′, y′ ∈ L−k which are respectively conjugate to x and y. Consider the minimum
representatives u and v of x′ and y′. Then u and v are conjugate if and only if so are x and y. But
conjugacy can be tested in linear time in free monoids [4]. 2
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3.2 Factorization
Here we consider the problem of determining the relationship between two different factorizations of a
given element, which is known as Levi’s Lemma in the case of free monoids.

Theorem 13 Four elements x, y, s, t ∈ T satisfy the condition xy = st if and only if one of the following
two conditions hold

(i) there exists an element w ∈ T such that

x = sw, t = wy
or

s = xw, y = wt.

(ii) there exist five elements u, v1, v2, w1, w2 ∈ T such that v1w1 = v2w2 ∈ P

x = uv1, y = w1

s = uv2, t = w2.

Proof:
Because of the symmetry between left and right hand sides there are three cases to consider. We set

x = n1p1, y = n2p2, s = n3p3 and t = n4p4.

Case 1. exc(p1) ≤ −exc(n2) and exc(p3) ≤ −exc(n4). This implies

n1[p1n
′
2]n′′2 = n3[p3n

′
4]n′′4 , p2 = p4

for some n2 = n′2n
′′
2 , n4 = n′4n

′′
4 and p1n′2, p3n

′
4 ∈ L. If n1 = n3 then we have n′′2 = n′′4 which yields

a solution of the second form. Otherwise, assume without loss of generality that n1 is a proper prefix of
n3. Because all elements are in the free submonoid L∗, for some m ∈ L∗ we have n1p1n′2m = n3 and
n′′2 = m[p3n

′
4]n′′4 and therefore

x = n1p1, y = n′2mp3n4p2
s = n1p1n

′
2mp3, t = n4p4

which is of the first kind.

Case 2. exc(p1) ≤ −exc(n2) and exc(p3) > −exc(n4). This implies

n1[p1n
′
2]n′′2 = n3, p2 = p3n4p4.

This yields
x = n1p1, y = n2p3n4p4
s = n1p1n2p3, t = n4p4

which is of the first kind.

Case 3. exc(p1) > −exc(n2) and exc(p3) > −exc(n4). This implies that p1n2 and p3n4 are prefixes of
L and thus so are p1n2p2 and p3n4p4. Furthermore, because of the unique np-factorization p1n2p2 =
p3n4p4 holds. We obtain a solution of the second kind. 2
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3.3 Commutation
The equation xy = yx is solved in this section.

Theorem 14 Two elements x and y commute if and only if one of the following two conditions holds

(i) there exists an element z ∈ T and two integers i and j such that x = zi and y = zj .

(ii) there exists n ∈ N , p1, p2 ∈ P where −exc(n) ≤ exc(p1), exc(p2) such that x = np1 and y = np2.

Proof: Because of the symmetry of the two hand sides there are three cases. We set x = n1p1 and
y = n2p2 as previously.

Case 1: exc(p1) < −exc(n2) and exc(p2) < −exc(n1). This implies

n1p1n2 = n2p2n1 and p1 = p2.

Because of the hypotheses we may write n1 = n′1n
′′
1 , n2 = n′2n

′′
2 with n′1, n

′′
1 , n
′
2, n
′′
2 ∈ L∗, p1n2 =

[p1n
′
2]n′′2 and p2n1 = [p1n

′
1]n′′1 with [p1n

′
2], [p1n

′
1] ∈ L.

If n1 = n2 then we get a solution of the first kind. Otherwise, without loss of generality we assume n1
is a proper prefix of n2. In the equation

n1[p1n
′
2]n′′2 = n2[p2n

′
1]n′′1 (9)

all elements belong to the free submonoid L∗. Now, since p1 = p2 and since [p1n
′
2], [p1n

′
1] ∈ L, both

n′1 and n′2 consist of the same number of elements of L. Because of equation (9) they are both prefixes
of the same element in L∗ and thus they are equal, implying [p1n

′
1] = [p2n

′
2]. We set p = p1 = p2 and

n′ = n′1 = n′2. After cancellation of the common prefix n′, equation (9) becomes

n′′1 [pn′]n′′2 = n′′2 [pn′]n′′1 .

All the above elements belong to the free submonoid L∗ and we know that the general solution of this
equation is of the following form where i, j, k are positive integers and u, v are arbitrary elements

n′′1 = (uv)iu, [pn′] = (vu)kv, n′′2 = (uv)ju.

The c-trace [pn′] belongs to L, thus j = 0. This yields

x = n′1(uv)iup = n′(upn′)iup = (n′up)i+1,
y = n′1(uv)jup = n′(upn′)jup = (n′up)j+1.

Denoting z = (n′up), we get that x = zi+1 and y = zj+1, which is a solution of the first kind.

Case 2: exc(p1) ≥ −exc(n2) and exc(p2) < −exc(n1) which yields n1 = n2p2n1 and p1 = p1n2p2.
This implies x = y = 1.

Case 3: exc(p1) ≥ −exc(n2) and exc(p2) ≥ −exc(n1). This implies

n1 = n2 and p1n2p2 = p2n1p1.

This solution is clearly of the second type. 2
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4 Rational subsets with rational cross-sections
We assume the reader has some familiarity with the theory of binary rational relations on Σ∗, which are
exactly the subsets of the product monoid Σ∗ × Σ∗ recognized by two-tape automata. We shall only use
the fact that given such a relation R and a rational subset X of Σ∗, the set

{v ∈ Σ∗ | (u, v) ∈ R for some u ∈ X}
is rational, see [6, Theorem IX. 3.1].

In this section we consider the problem of determining under which condition the set of representatives,
also known as a cross-section, of a rational subset of the c-trace monoid is a rational subset of Σ∗. We
investigate both the lexicographically minimal and maximal representatives. We recall that for ordinary
trace monoids, there are traditionally two main sets of representatives: the lexicographical and the Foata
normal forms. In both cases the set of representatives is rational. However, for arbitrary rational subsets
(i.e., different from the monoid itself), this is no longer true (when a and b commute, the set of lexico-
graphical normal forms of (ab)∗ is {anbn | n ≥ 0} with the ordering a < b and the set of Foata normal
forms of (aab)∗ is {(ab)nan | n ≥ 0}).

Here we consider the sets of lexicographically minimal and maximal representatives. We set for all
integers k ≥ 0, Hk = {aibi+1 | 0 ≤ i ≤ k} and H =

⋃
k≥0Hk. We let K be the set of proper prefixes

of H , i.e., prefixes of H which are not in H . We introduce two new subfamilies of rational subsets of T.

Definition 15 The family Fmin (resp. Fmax) is the family of rational subsets of T whose minimal (resp.
maximal) representatives form a rational set of Σ∗.

Then the set of minimal representatives of the monoid T is H∗K which is clearly not rational, since
its intersection with the rational set a+b+a is the set {aibja | 0 ≤ i < j}. The set of all maximal
representatives is the rational set (ab, b)∗a∗. This shows that T does not belong to Fmin but it belongs to
Fmax. We tackle the general problem of an arbitrary rational subset of T.

We start with a simple observation. Let M be a finitely generated submonoid of a free monoid Σ∗

and let X ∈ Rat(Σ∗) be a subset of M . The following more or less trivial lemma shows that X is
actually in Rat(M). Consequently, there is no distinction between the expression “a rational subset of
the submonoid M of Σ∗” and “a rational subset of Σ∗ that is contained in M”.

Lemma 16 Let M be a finitely generated submonoid of Σ∗ and let X ∈ Rat(Σ∗) be a subset that is
contained in M . Then X is in Rat(M).

Proof: Denote by G a set of generators of M . Let Q be the set of states of a deterministic automaton
recognizingX , q0 its initial state and F its set of final states and denote by q ·a the transition defined from
the state q when reading the letter a. Consider the following two-tape automaton: the set of states is the
direct product of Q with the set P of all proper prefixes of G, the initial state is the pair [q0, 1], the set of
final states is the set F ×{1} and the set of transitions is the set of quadruples ([q, u], a, 1, [q ·a, ua]) if ua
is a proper prefix of some word in G, and ([q, u], a, ua, [q · a, 1]) if ua ∈ G. This automaton recognizes
all pairs (x, x) where x ∈ X . By erasing all first components of the labels of the automaton we get an
automaton whose labels are in G ∪ {1} completing the proof. 2

The following result concerning the bounded rational subsets is folklore. It will be used later.

Lemma 17 Let Σ and ∆ be two disjoint alphabets. Then every rational subset of (Σ ∪ ∆)∗ that is
contained in Σ∗∆∗ is a finite union of products of the formXY whereX ∈ Rat(Σ)∗ and Y ∈ Rat(∆)∗.
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4.1 Lexicographically minimal cross-sections
The following characterizes the lexicographically minimal cross-sections in Σ∗ which are rational.

Proposition 18 A subset X ⊆ H∗K is rational in {a, b}∗ if and only if there exists an integer k such that
X is a finite union of subsets of the form AB where A is a rational subset of the monoid generated by Hk

and B ⊆ a∗b∗ is in Rat{a, b}∗.

Proof: It is clear that the condition is sufficient. Let us prove that it is necessary and observe that if X is
rational then so areX ∩a∗b∗ = X \Σ∗baΣ∗ andX \a∗b∗. Thus we assume thatX ∩a∗b∗ = ∅. Consider
the following three rational functions and relators which extract specific factors of a word in {a, b}∗.
When applied to a word in H∗K defined by its decomposition as in (3), these factors are respectively
the longest prefix in HH∗0 , an arbitrary maximum factor in HH∗0 and the prefix of the word when the
maximal final factor in a∗b∗ is deleted.

h(ubav) = {ub | u ∈ a∗b+},
g(w) = {avb | w = ubavbaz and v ∈ a∗b∗},
f(ubav) = {ub | v ∈ a∗b∗}.

Then, for all subsets X ⊆ H∗K we have

h(X), g(X) ⊆ {aibj | 0 ≤ i < j} = HH∗0 .

Now, if X is rational, by the pumping Lemma there exists an integer k such that h(X), g(X) ⊆ {aibj |
0 ≤ i ≤ k, i ≤ j − 1} = HkH

∗
0 holds and thus f(X) ⊆ HkH

∗
0 too. Since f(X) is in Rat{a, b}∗,

this implies f(X) ∈ Rat(H∗k) by Lemma 16. Consider the right syntactic congruence of the rational
set X , let A1, . . . , Ap be its (rational) equivalence classes and let B1, . . . , Bp be the corresponding right
contexts, i.e., for all u ∈ Ai and for all v ∈ Σ∗ we have uv ∈ X if and only if v ∈ Bi. We have

X =

p⋃
i=0

(f(X) ∩Ai)Bi

which completes the proof via Lemma 17. 2

The closure properties of the family Fmin are straightforward. Given a subset X ⊂ T, we denote by
min(X) the set of all lexicographically minimal representatives of the elements in X .

The family is closed under intersection, because min(X ∩ Y ) = min(X) ∩min(Y ) holds, and under
subset subtraction because of min(X \ Y ) = min(X) \min(Y ) but not under complement (min(Σ∗) is
not rational). It is not closed under product or star. Indeed, consider min(X) = a∗ and min(Y ) = (ab2)∗.
If we intersect min(XY ) with a∗b∗, then we get the subset {am+nb2n | m ≥ n−1}, which is not rational.
Concerning the star, if min(X) = {ab}, we have min(X∗) = {aibi | i ≥ 0}.

4.2 Lexicographically maximal cross-sections
The following characterizes the lexicographically maximal cross-sections in Σ∗ which are rational. We
denote by max(X) the set of lexicographically maximal representatives of the subset X ⊆ T. We already
observed that max(T) = {ab, b}∗a∗ holds.
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Proposition 19 A subset X ⊆ {ab, b}∗a∗ is rational if and only if it is a finite union of products of the
form Y Z where Y ∈ Rat{ab, b}∗ and Z ∈ Rat{a}∗.

Proof: Only one direction need be proven. Consider the right syntactic congruence of the rational set
X . Let A1, . . . , Ap be its (rational) equivalence classes whose corresponding right contexts B1, . . . , Bp
are contained in a∗ and thus contained in Rat{a}∗. Then we obtain Ai ⊆ {ab, b}∗ and thus Ai ∈
Rat{ab, b}∗. Finally, we have

X =

p⋃
i=0

AiBi

which completes the proof. 2

Proposition 20 The family Fmax is closed under the Boolean operations.

Proof: Indeed, we have max(T \ X) = max(T) \ max(X). Now, max(T) and max(X) are rational
subsets of {ab, b}∗{a}∗, thus their difference is a rational subset of {a, b}∗. 2

The family Fmax is not closed under star. Indeed, consider the subset X , which is a singleton, whose
representative is (ab)a. Then the subset of maximal representatives of X∗ is the nonrational subset
{(ab)nan | n ≥ 0}. However it is closed under product as shown in the next theorem.

Theorem 21 The family Fmax is closed under concatenation.

Proof: By Proposition 19, it suffices to prove the case of (XY )(ZT ) with X,Z ∈ Rat {ab, b}∗ and
Y, T ∈ Rat {a}∗. It suffices further to show that max(Y Z) is of the right form. A further simplification
allows us to consider the cases where Y = {a} and where Y = (ak)∗, since all rational subsets of
Rat {a}∗ are finite unions of products of subsets of these two types.

Let us first settle the case Y = {a} and let us verify that max(aZ) is actually the image of Z under a
rational function. Consider the rational function defined by

f(ubv) = uabv, where u ∈ (ab)∗,
f(uv) = uav, where u ∈ (ab)∗, v ∈ a∗

then max(aZ) = f(Z).
The second case is a bit more technical. The idea is as follows. A lexicographically maximum word

has a unique factorization of the form

u1bu2 . . . unba
λ, ui ∈ (ab)∗, i = 1, . . . , n. (10)

The idea is to replace the pk initial occurrences of b (each following some ui) in the above factorization
by ab, for all possible integers p ≥ 0. If pk > n then pk − n occurrences of a’s are added after the last
occurrence of b. Formally, the set of words associated with the word (10) where n = qk + r, 0 < r ≤ k
is described as follows. It contains all the words

u1(ab)u2 . . . usk(ab)usk+1b . . . unba
λ, for some 0 ≤ s ≤ q

and all the words in the subset
u1(ab)u2 . . . un(ab)aλ+k−r(ak)∗.

This is clearly achieved by a rational relation proving that max((ak)∗Z) is a rational subset of Σ∗. 2
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4.3 Recognizable subsets
In this last paragraph we show that the class of recognizable subsets of the c-trace monoid is not closed
under product. As observed in paragraph 1.3, X ⊆ T is recognizable if and only if φ−1(X) is recogniz-
able where φ is the canonical morphism from Σ∗ onto T. Now consider the two recognizable subsets of
T, X = a∗ and Y = (abb)∗. Then we know that the set of maximal representatives of the product is (this
is a special case of the construction in Theorem 21)

(abab)∗a∗ ∪ (abab)∗(abb)∗.

Denote by P2 and L2 respectively, the set of prefixes of the Łukasiewicz language having an even number
of occurrences of b’s and the set of Łukasiewicz words having an even number of occurrences of b’s. Then
we have

φ−1(XY ) = P2 ∪ L2(abb)∗.

In particular, if a word in φ−1(XY ) is a product of Łukasiewicz words, then all its factors, except maybe
the first one, are equal to abb. Let n be the number of states of an automaton recognizing φ−1(XY ).
Consider a Łukasiewicz word having a factor of the form bn. An easy application of the pumping lemma
leads us to a contradiction.
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