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Abstract Linear information and rank inequalities as, for instance, Ingleton in-
equality, are useful tools in information theory and matroid theory. Even though
many such inequalities have been found, it seems that most of them remain undis-
covered. Improved results have been obtained in recent works by using the proper-
ties from which they are derived instead of the inequalities themselves. We apply
here this strategy to the classification of matroids according to their representa-
tions and to the search for bounds on secret sharing for matroid ports.
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1 Introduction

Some of the concepts appearing next are defined in Section 2. The reader is referred
to the books [47, 59] on matroid theory and [60] on information theory, and the
surveys [4, 48] on secret sharing for additional information about these topics.
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Fig. 1 A classification of matroids. Discussed in Section 2.

1.1 Matroid Representation

Relevant applications in information theory, especially in secret sharing and net-
work coding, brought to light the class of entropic matroids, which contains the
well-known class of linear matroids.

An entropic vector is formed by the joint Shannon entropies of all subsets of a
finite set of discrete random variables. Every entropic vector is the rank function
of a polymatroid. A polymatroid is entropic if its rank function is a multiple of an
entropic vector. Limits of entropic polymatroids are called almost entropic. Both
representation by partitions [38] and by almost affine codes [55] are characteriza-
tions of entropic matroids.

In the same way that linear matroids are defined from configurations of vectors
in a vector space, configurations of vector subspaces determine linear polymatroids.
A folded linear matroid is such that some multiple of its rank function corresponds
to a linear polymatroid. Folded linear matroids have been called multilinear or
multilinearly representable in the literature. Since no multilinear algebra is involved,
that terminology may be misleading. The name proposed here is motivated by the
analogy with folded Reed-Solomon codes.

It is well known that linear polymatroids and, consequently, folded linear ma-
troids are entropic. Frantǐsek Matúš [41] recently proved that algebraic matroids
are almost entropic.

Figure 1, an update of the corresponding diagram in [40], illustrates the current
knowledge about the connections between the aforementioned classes of matroids.
A detailed explanation is given in Section 2. There is a number of tools to deal with
that classification. Among them, linear information and rank inequalities are espe-
cially useful. Linear information inequalities, such as Zhang–Yeung inequality [62],
are the linear inequalities that are satisfied by the rank function of every entropic
polymatroid. The ones that, like Ingleton inequality [28], are satisfied by the rank
function of every linear polymatroid are called linear rank inequalities.
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Ingleton inequality was used to prove the existence of an infinite number of
excluded minors for the class of matroids that are linear over any given infinite
field [43]. That result has been extended to the class of folded linear matroids
over any given field and, by using Zhang–Yeung inequality instead of Ingleton
inequality, to the classes of almost entropic matroids and algebraic matroids [40].

1.2 Common Information

Besides Ingleton and Zhang–Yeung inequalities, many other linear information and
rank inequalities have been found [17, 19, 20, 33, 35, 39]. Nevertheless, only a few
techniques to derive such inequalities are known, and it appears that many more
inequalities remain unknown.

Linear information and rank inequalities are fundamental in the linear pro-
gramming technique that has been used to find bounds on the information ratio of
secret sharing schemes [7,8,37,45,49] and on the achievable rates in network cod-
ing [18,57,60]. An improvement to that technique has been recently proposed [23].
Specifically, instead of known inequalities, the properties from which most linear
information and rank inequalities are derived are used as constraints. The no-
tion of common information of two random variables is at the core of most of those
properties. Most of the known linear information inequalities are obtained from the
concept of AK-common information, derived from Ahlswede–Körner lemma [1,2,15],
or from the copy lemma [17,20]. According to [19], all linear rank inequalities that
were known in 2009 were derived from the common information property and, to the
best of our knowledge, that is still the case nowadays. Nevertheless, some restricted
linear rank inequalities have been presented since then. Namely, characteristic-

dependent inequalities [21, 51], which are satisfied by all polymatroids that are
linearly representable over fields of a given characteristic.

Several new lower bounds on the information ratio of secret sharing schemes
have been obtained by using that improved linear programming technique [23].
For instance, by using the common information property, the exact values of the
optimal information ratios of linear secret sharing schemes for all access structures
on five players and all graph access structures on six players have been determined,
concluding the projects undertaken in [16, 30] when restricted to linear schemes.
Moreover, some of the existing lower bounds for general (that is, non-linear) secret
sharing schemes for those and other access structures have been improved by using
the AK-common information. The analogous application of the copy lemma has
been described in [27].

On the negative side, the application of that technique is currently limited
to solving linear programming problems that provide bounds for particular cases.
Moreover, because of the huge number of variables and constraints, only problems
with small size can be solved. In contrast, several general results, such as the best
known general lower bound for secret sharing [13], have been obtained from the
simpler technique involving only Shannon inequalities.

The search for new techniques to derive linear rank and information inequalities
and further improve the aforementioned linear programming technique is worth
undertaking. For example, the common information property is solely based on the
intersection of vector subspaces. It is possible that a deeper use of linear algebra,
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as in the search for characteristic-dependent linear rank inequalities [21, 51], will
provide some results.

1.3 Secret Sharing for Matroid Ports

A perfect secret sharing scheme is ideal if all shares have the same size as the
secret value, which is the smallest possible. The entropic vector given by the ran-
dom variables defining an ideal scheme determines an entropic matroid [12, 38].
The access structure is a port of that matroid [12,36]. As a consequence, the access
structures of ideal secret sharing schemes are precisely the ports of entropic ma-
troids, while the ports of folded linear matroids coincide with the access structures
of ideal linear secret sharing schemes.

The optimal information ratio of secret sharing schemes for the ports of a
matroid measures in some way how far it is from being entropic. This parameter
has been studied for the Vamos matroid [6,7,23,27,36,45], the first known example
of a non-entropic matroid [54], and also for other non-entropic matroids [23, 49].
For the ports of the Vamos matroid, the application of the linear programming
technique with the common information property yielded the exact value of the
optimal information ratio of linear secret sharing schemes [23]. Moreover, Gürpinar
and Romashchenko [27] recently obtained the current best lower bound for the
general case by using that technique with the copy lemma.

1.4 Our Results

We investigate the application of the improved linear programming technique in-
troduced in [23] to the classification of matroids according to the different repre-
sentations discussed in Section 1.1. First, we prove in Theorem 3.14 an interesting
consequence of the results by Nelson and van der Pol [46]. Namely, every almost en-
tropic sparse paving matroid must satisfy Ingleton inequality. Second, we present
an almost complete classification of the matroids on eight points. Our starting
point is the paper by Mayhew and Royle [44], in which the linear matroids on
eight points are determined. Specifically, up to isomorphism, there are exactly 44
matroids on eight points that are not linear. All of them are sparse paving ma-
troids. Exactly 39 of them do not satisfy Ingleton inequality, and hence they are
not almost entropic. Therefore, there are five sparse paving matroids that are not
linear but satisfy Ingleton inequality. We prove in Section 4.2 that exactly two of
them are folded linear matroids. They are the smallest folded linear matroids that
are not linear. Those two matroids were known to be algebraic. Unfortunately,
we could not determine whether or not the other three matroids are algebraic or
almost entropic. Some results about matroids on nine points are presented in Sec-
tion 4.4. Specifically, we found 171 that satisfy Ingleton inequality but do not have
the common information property. They are among the smallest matroids in that
situation. One of those examples is the tic-tac-toe matroid. Those 171 matroids
are not folded linear, but we could not determine whether or not they are algebraic
or almost entropic.

In addition, by using the improved linear programming technique, we find
new lower bounds on the information ratio of secret sharing schemes for several
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matroid ports. By combining our bounds for matroids on eight points with the
results in [46], we present in Theorem 5.1 lower bounds that apply to every sparse
paving matroid that does not satisfy Ingleton inequality. We found a lower bound
on the information ratio of linear secret sharing schemes for the ports of the tic-
tac-toe matroid and some of the aforementioned 171 related matroids. Finally, we
determined the exact value of the optimal information ratio of linear secret sharing
schemes for a port of the tic-tac-toe matroid.

In this work, we used the GurobiTM optimizer for solving the linear program-
ming problems, and the SageMath matroid package for specific matroid operations.
The code we used is available at
https://github.com/bmilosh/Common-Information-and-Matroid-Ports.

2 Preliminaries

The number of elements of the finite set X is denoted by |X| and P(Q) denotes
the power set of Q. For a positive integer m, we notate [m] = {1, . . . ,m}. We use
a compact notation for set unions, that is, we write XY for X ∪ Y and Xy for
X ∪ {y}. In addition, we write X r Y for the set difference and X r x for X r {x}.
The reader should be aware that a slightly different operation symbol is used in
expressions like M \ B or Γ \ B to denote operations that will be defined later in
this section, namely, deletion in polymatroids or, respectively, access functions.

2.1 Matroids and Polymatroids

Definition 2.1 Given a finite set Q and a function f : P(Q) → R, the pair (Q, f)
is called a polymatroid if the following properties are satisfied for all X,Y ⊆ Q.

(P1) f(∅) = 0.
(P2) f(X) ≤ f(Y ) if X ⊆ Y .
(P3) f(X ∩ Y ) + f(X ∪ Y ) ≤ f(X) + f(Y ).

The set Q and the function f are, respectively, the ground set and the rank function

of the polymatroid. The rank function of an integer polymatroid only takes integer
values. A matroid is an integer polymatroid (Q, r) such that r(X) ≤ |X| for every
X ⊆ Q.

Some additional terminology and properties about matroids are needed. Let
M = (Q, r) be a matroid. The independent sets of M are the sets X ⊆ Q with
r(X) = |X|. Every subset of an independent set is independent. The bases of M
are the maximal independent sets, and the minimal dependent sets are the circuits.
All bases have the same number of elements, which equals r(Q), the rank of the

matroid. A set X ⊆ Q is a flat of M if r(Xx) > r(X) for every x ∈ Q r X. The
flats with rank r(Q) − 1 are called hyperplanes. In addition to the one given in
Definition 2.1, there are other equivalent sets of axioms characterizing matroids
which are stated in terms of the properties of the independent sets, the circuits,
the bases, or the hyperplanes.

In a simple matroid, all sets with one or two elements are independent. A
matroid of rank k is paving if the rank of every circuit is either k or k − 1. It is
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sparse paving if, in addition, all circuits of rank k − 1 are flats, which are called
circuit-hyperplanes. The dual of M = (Q, r) is the matroid M∗ = (Q, r∗) with
r∗(X) = |X| − r(Q) + r(QrX) for every X ⊆ Q. Equivalently, M∗ is the matroid
on Q whose bases are the complements of the bases of M .

We introduce next the operations that are used to define minors of matroids
and polymatroids. For a polymatroid M = (Q, f) and a set B ⊆ Q, the deletion

M \ B of B from M is the polymatroid (Q r B, f̂) with f̂(X) = f(X) for every
X ⊆ Q r B, while the contraction M/B = (Q r B, f̃) of B from M is defined by
f̃(X) = f(XB) − f(B) for every X ⊆ Qr B. Every polymatroid that is obtained
from M by applying deletions and contractions is called a minor of M . Finally,
observe that minors of matroids are matroids.

Let S = (Sx)x∈Q be a discrete random vector, that is, a finite sequence of
discrete random variables. For every X ⊆ Q, take h(X) = H(SX), the Shannon
entropy of the discrete random variable SX = (Sx)x∈X . Then (h(X))X∈P(Q) is the
entropic vector associated to S. Because of the basic properties of Shannon entropy,
every entropic vector is the rank function of a polymatroid [24,25]. A polymatroid
is entropic if its rank function is a multiple of an entropic vector. The closure in
RP(Q) of the set of entropic vectors is a convex cone [60]. Each element in this
convex cone is the rank function of an almost entropic polymatroid.

We introduce next some notation that is motivated by this connection between
Shannon entropy and polymatroids. By analogy with the conditional mutual in-
formation, for a polymatroid (Q, f) and sets X,Y, Z ⊆ Q, we write

f(Y :Z|X) = f(XY ) + f(XZ)− f(XY Z)− f(X)

and, in particular, f(Y :Z) = f(Y :Z|∅) = f(Y ) + f(Z) − f(Y Z) and f(Y |X) =
f(Y :Y |X) = f(XY )− f(X).

Consider a field F, a vector space V with finite dimension over F and a collection
(Vx)x∈Q of vector subspaces of V . It is clear from basic linear algebra that the
map f defined by f(X) = dim

∑
x∈X Vx for every X ⊆ Q is the rank function of a

polymatroid. Every such polymatroid is said to be linearly representable, or simply
linear, over F. For a positive integer k, a k-folded F-linear matroid (Q, r) is such
that the polymatroid (Q, kr) is F-linear. As we mentioned in the Introduction,
folded linear matroids are also called multilinear or multilinearly representable in
the literature.

Suppose now that F is a finite field and take the dual vector space V ∗. The
uniform probability distribution on V ∗ and the projections V ∗ → V ∗x for x ∈ Q

determine a discrete random vector (Sx)x∈Q. Such random vectors are called linear.
The entropic vector h associated to S satisfies h(X) = f(X) log |F| for every X ⊆ Q.
Since every linear polymatroid admits a linear representation over some finite
field [52], linear polymatroids and folded linear matroids are entropic.

Consider a field extension K/F and a finite collection (vx)x∈Q of elements in
K. For every X ⊆ Q, let r(X) be the transcendence degree of the field extension
F({vx}x∈X)/F. Then r is the rank function of a matroid M with ground set Q. In
this situation, M is algebraic over F and (vx)x∈Q is an algebraic representation of

M .

Given a positive integer m, a collection (Ai)i∈[m] of subsets of a finite set Q,
and I ⊆ [m], we notate AI =

⋃
i∈I Ai. A linear information inequality, respectively

linear rank inequality, on m variables consists of a collection (αI)I∈P([m]) of real
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numbers such that
∑

I∈P([m]) αIf(AI) ≥ 0 for every entropic, respectively lin-

ear, polymatroid (Q, f) and for every collection (Ai)i∈[m] of subsets of Q. Since
every linear polymatroid is entropic, every information inequality is also a rank
inequality.

Shannon information inequalities are those that are derived from the polyma-
troid axioms in Definition 2.1. Ingleton inequality [28], which can be written in a
compact form as

f(A2 :A3) ≤ f(A2 :A3|A1) + f(A2 :A3|A4) + f(A1 :A4) (1)

was the first known example of a non-Shannon linear rank inequality. The infor-
mation inequality

2f(A2 :A3) ≤ f(A1 :A4) + f(A1 :A2A3) + 3f(A2 :A3|A1) + f(A2 :A3|A4) (2)

which was presented by Zhang and Yeung [62], was the first known example of a
non-Shannon linear information inequality.

Folded linear matroids are entropic. Every linear matroid is algebraic [47]. It
has been recently proved that every algebraic matroid is almost entropic [41].
Vamos matroid is not almost entropic because it does not satisfy Zhang–Yeung
inequality. Non-Pappus matroid is a folded linear matroid that is algebraic but
not linear [47,55]. Two examples of almost entropic matroids that are not entropic
were given in [40, Remarks 4, 5]. Only one of them is algebraic. A folded linear
matroid that is not algebraic was presented in [9]. It is not known if there exist
entropic matroids that are not folded linear. These facts are illustrated in Figure 1.

For every positive integer k and any field F, the class of k-folded F-linear
matroids is closed by duality [29,47]. It is unknown whether or not this is the case
for the classes of algebraic or entropic matroids. Remarkably, Kaced [32] recently
proved that the class of almost entropic matroids is not closed by duality. An
explicit counterexample is presented in [14].

Every minor of an F-linear polymatroid is F-linear. That is, the class of F-
linear polymatroids is closed under minors. The same applies to the class of al-
most entropic polymatroids [42, Lemma 1]. The classes of linear, folded linear,
algebraic [47, Corollary 6.7.14], and almost entropic matroids are closed under
minors.

2.2 Secret Sharing

Definition 2.2 An access function on a finite set P is a map Γ : P(P ) → R satis-
fying the following properties.

1. Γ (∅) = 0 and Γ (P ) = 1.
2. Γ (X) ≤ Γ (Y ) if X ⊆ Y ⊆ P .

An access function is perfect if its only values are 0 and 1. The qualified and
forbidden sets of the access function Γ are the ones with Γ (X) = 1 and, respectively,
Γ (X) = 0.
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Definition 2.3 For a polymatroid (Q, f) and a point po ∈ Q with f(po) > 0 and
f(Qr po) = f(Q), the port of the polymatroid (Q, f) at po is the access function Γ

on the set P = Qr po defined by

Γ (X) =
f(X :po)

f(po)
.

The dual Γ ∗ of an access function Γ on P is defined by Γ ∗(X) = 1−Γ (P rX)
for every X ⊆ P . If Γ is the port of a matroid M at po, then its dual Γ ∗ is the
port of the dual matroid M∗ at po. Consider an access function Γ on P and a
subset B ⊆ P . If Γ (P r B) = 1, the access function Γ \ B on P r B defined by
(Γ \ B)(X) = Γ (X) is the deletion of B from Γ . If Γ (B) = 0, the access function
(Γ/B) with (Γ/B)(X) = Γ (XB) is the contraction of B from Γ . Every access
function that is obtained from Γ by deletions and contractions is a minor of Γ . If
Γ is the port of a polymatroid M = (Q, f) at po and B ⊆ P = Q r po, then the
minors Γ \B and Γ/B are the ports of M \B and, respectively, M/B at po.

Definition 2.4 Let P be a finite set of players and Q = Ppo with po /∈ P . Let Γ be
an access function on P . Let S = (Sx)x∈Q be a discrete random vector and (Q,h)
the entropic polymatroid determined by S. Then S is a secret sharing scheme on
P with access function Γ if the following properties are satisfied.

1. h(po) > 0 and h(P ) = h(Ppo).
2. Γ is the port of (Q,h) at po.

The random variable Spo corresponds to the secret value, and the share for a
player x ∈ P is given by the random variable Sx. Linear secret sharing schemes
are those defined by linear random vectors. A secret sharing scheme is perfect if
its access function is perfect. The information ratio of a secret sharing scheme is
maxx∈P h(x)/h(po), that is, the ratio between the maximum length of the shares
and the length of the secret.

Only perfect secret sharing schemes are going to be considered in this work.
Perfect access functions are also called access structures. Each of them is determined
by its minimal qualified sets. An access structure is connected if every player is in
some minimal qualified set. All access structures in this paper are supposed to
be connected. In a perfect scheme, h(x) ≥ h(po) for every x ∈ P . A perfect secret
sharing scheme is ideal if h(x) = h(po) for every x ∈ P . The optimal information ratio

σ(Γ ) of an access structure Γ is the infimum of the information ratios of the secret
sharing schemes for Γ , while λ(Γ ) is the corresponding value when restricting the
optimization to linear secret sharing schemes.

A matroid is connected if every pair of points in the ground set lie in a common
circuit. All ports of a connected matroid are connected access structures. Moreover,
a connected matroid is determined by any of its ports.

Let S = (Sx)x∈Q be an ideal secret sharing scheme and let h be the entropic
vector associated to S. Then the polymatroid (Q, f) defined by f(X) = h(X)/h(po)
for every X ⊆ Q is a matroid [12]. As a consequence, the access structures of ideal
secret sharing schemes coincide with the ports of entropic matroids, and the ports
of folded linear matroids are precisely the access structures of ideal linear secret
sharing schemes.
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3 How to Use Undiscovered Information and Rank Inequalities

The title of this section is borrowed from [27]. It precisely describes the main
idea behind the technique introduced in [23], namely, using properties from which
information and rank inequalities have been derived instead of using known in-
equalities.

3.1 Common Information

We say that a random variable S3 conveys the common information of the random
variables S1 and S2 if H(S3|S2) = H(S3|S1) = 0 and H(S3) = I(S1 :S2). In general,
given two random variables, it is not possible to find a third one satisfying those
conditions [26]. Nevertheless, this is possible for every pair of random variables
in a linear random vector. Most of the known non-Shannon rank inequalities are
derived from this fact [19]. A combinatorial abstraction of the notion of common
information is given in the next definition.

Definition 3.1 Let (Q, f) be a polymatroid and let A,B ⊆ Q. Then every subset
Xo ⊆ Q satisfying

(C1) f(Xo|A) = f(Xo|B) = 0, and
(C2) f(Xo) = f(A:B)

is called a common information for the pair (A,B). If Xo = {xo}, then the element
xo is also called a common information for the pair (A,B).

Definition 3.2 Consider polymatroids (Q, f) and (Q′, f ′) with Q ⊆ Q′. We say
that (Q′, f ′) is an extension of (Q, f) if f(X) = f ′(X) for every X ⊆ Q. In this
situation we will generally use the same symbol for both rank functions.

Definition 3.3 A polymatroid (Q, f) is 1-CI-compliant if, for every pair (A,B)
of subsets of Q, there exists an extension (Qxo, f) such that xo is a common
information for the pair (A,B). Inductively, for every integer k > 1, a polymatroid
S = (Q, f) is k-CI-compliant if, for every pair (A,B) of subsets of Q, there exists
an extension (Qxo, f) such that xo is a common information for the pair (A,B)
and (Qxo, f) is (k − 1)-CI-compliant. A polymatroid is CI-complaint if it is k-CI-
compliant for every positive integer k.

Proposition 3.4 Let F be a field. Consider an F-linear polymatroid (Q, f) and a pair

(A,B) of subsets of the ground set. Then there exists an F-linear extension (Qxo, f)
such that xo is a common information for (A,B). As a consequence, linear polymatroids

and, in particular, folded linear matroids are CI-compliant.

Proof Consider a collection (Vx)x∈Q of vector subspaces providing an F-linear rep-
resentation of (Q, f). For every X ⊆ Q, put VX =

∑
x∈X Vx. Given a pair (A,B)

of subsets of Q, take Vxo = VA ∩ VB . Then (Vx)x∈Qx0
is an F-linear representation

of a polymatroid (Qx0, f) extending (Q, f) in which x0 is a common information
for (A,B). ut
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3.2 Ahlswede and Körner’s Information

Linear information inequalities can be derived from properties that are satisfied
by every almost entropic polymatroid. Specifically, all known linear information
inequalities have been derived from the copy lemma [62] and the Ahlswede–Körner
lemma [1,2, 15] as used in [35].

Definition 3.5 Let (Q, f) be a polymatroid, and let U, V, Z ⊆ Q. Then every subset
Zo ⊆ Q such that

(AK1) f(Zo|UV ) = 0,
(AK2) f(U |Zo) = f(U |Z) and f(V |Zo) = f(V |Z),
(AK3) f(UV |Zo) = f(UV |Z)

is called an AK-information for the triple (U, V, Z).

We say that a polymatroid (Q, f) is 1-AK-compliant if, for every triple (U, V, Z)
of subsets of Q, there exists an extension (Qzo, f) such that zo is an AK-information
for the triple (U, V, Z). Analogously to the discussion on the common information
property, we can define k-AK-compliance for every k > 0 and also AK-compliance.
Next proposition was proved in [23] from [35, Lemma 5] and [31, Lemma 2]. As a
consequence, almost entropic polymatroids are AK-compliant.

Proposition 3.6 For every almost entropic polymatroid (Q, f) and sets U, V, Z ⊆ Q,

there exists an almost entropic extension (Qzo, f) such that zo is an AK-information

for the triple (U, V, Z).

As consequence of the following result from [23], k-CI-compliant polymatroids
are also k-AK-compliant.

Proposition 3.7 If xo is a common information for the pair (UV,Z), then xo is an

AK-information for the triple (U, V, Z).

3.3 Application to Secret Sharing

We describe next the linear programming technique that has been extensively
used (see the references in [23]) to find lower bounds in secret sharing and the
improvement on it proposed in [23].

Let (Sx)x∈Q be a secret sharing scheme with access structure Γ on the set
of players P = Q r po. Let (Q,h) be the entropic polymatroid determined by it
and take the polymatroid (Q, f) given by f(X) = h(X)/h(po). Then the vector
(f(X))X∈P(Q) satisfies the linear constraints

(N) f(po) = 1,
(Γ ) f(X :po) = Γ (X) for every X ⊆ P

and also the polymatroid axioms (P1)–(P3) in Definition 2.1. Therefore, the vector
f is a feasible solution of Linear Programming Problem 3.8.
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Linear Programming Problem 3.8 For an access structure Γ on the set P , the

optimal value of this linear programming problem is, by definition, κ(Γ ).

Minimize v

subject to v ≥ f(x) for every x ∈ P
(N), (Γ ), (P1), (P2), (P3)

Since this applies to every secret sharing scheme with access structure Γ and
the objective function equals the information ratio, the optimal value κ(Γ ) of this
linear programming problem is a lower bound on σ(Γ ). It is the best lower bound
that can be obtained by using only Shannon information inequalities [13,36]. That
linear program can be improved by adding non-Shannon information inequali-
ties [7, 45, 49] or, as proposed in [23], constraints derived from AK-information or
common information.

Linear Programming Problem 3.9 Consider an access structure Γ on a set P and

a pair (A0, A1) of subsets of P . The optimal value of this linear programming problem

is a lower bound on λ(Γ ).

Minimize v

subject to v ≥ f(x) for every x ∈ P
(N), (Γ )

(C1), (C2) for (A0, A1) and xo

(P1), (P2), (P3) on the set Qxo.

Linear Programming Problem 3.10 Let U, V, Z ⊆ P . The optimal value of this

linear programming problem is a lower bound on σ(Γ ).

Minimize v

subject to v ≥ f(x) for every x ∈ P
(N), (Γ )

(AK1), (AK2), (AK3) on z0 and (U, V, Z)

(P1), (P2), (P3) on the set Qzo.

These linear programming problems can be extended by adding the common
information or the AK-information for more pairs or, respectively, triples of sets.

3.4 Application to Classification of Matroids

Linear information inequalities provide necessary conditions for a matroid to be
almost entropic and, as a consequence of the result in [41], also to be algebraic.
The same applies to linear rank inequalities with respect to the class of folded
linear matroids. A polymatroid is Ingleton-compliant, respectively ZY-compliant, if
Ingleton inequality (1), respectivey Zhang–Yeung inequality (2), holds for every
collection (Ai)i∈[4] of subsets of the ground set. As a consequence of the proofs for
those inequalities [19,31,35], 1-CI-compliant and 1-AK compliant polymatroids are
Ingleton-compliant and, respectively, ZY-compliant. Those inequalities are related
to a special configuration introduced in [3].
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Definition 3.11 A matroid (Q, r) satisfies the bundle condition if it does not con-
tain four flats (Ai)i∈[4] such that every flat has rank 2, the union of every pair of
flats has rank 3 except for r(A1A4) = 4, and the union of every three or four flats
has rank 4.

Vamos matroid is among the smallest ones violating the bundle condition, and
the one with the minimum number of dependent hyperplanes. If a matroid does
not satisfy the bundle condition, then the collection (Ai)i∈[4] described in the pre-
vious definition violates both Ingleton and Zhang–Yeung inequalities as expressed
in (1) and (2), respectively. Therefore, almost entropic matroids and, in particular,
algebraic matroids satisfy the bundle condition. Moreover, the sparse paving ma-
troids that are Ingleton-compliant coincide with those satisfying a generalization
of the bundle condition [46, Corollary 3.2].

Proposition 3.12 Let M be a sparse paving matroid of rank k ≥ 4. Then M is not

Ingleton-compliant if and only if there exist five pairwise disjoint subsets B, A1, A2, A3,

A4 of the ground set with |B| = k − 4 and |Ai| = 2 such that BA1A4 is a basis and

all the other sets of the form BAiAj with i 6= j are circuit-hyperplanes.

Corollary 3.13 If a sparse paving matroid M is not Ingleton-compliant, then there is

a minor of M on eight points that is not Ingleton-compliant.

As a consequence, the class of Ingleton-compliant sparse paving matroids has
a finite number of forbidden minors [46, Theorem 1.3]. In contrast, the set of
excluded minors for the class of Ingleton-compliant matroids is infinite [43]. By
combining Proposition 3.12 with a recent result about algebraic matroids [41], the
following remarkable property of sparse paving matroids is easily derived.

Theorem 3.14 If a sparse paving matroid is not Ingleton-compliant, then it is not

ZY-compliant and hence it is neither almost entropic nor algebraic.

Proof If a sparse paving matroid admits the configuration described in Proposi-
tion 3.12, then Zhang–Yeung inequality (2) does not hold for (BAi)i∈[4]. ut

By using the result in Proposition 3.12, Nelson and van der Pol [46] proved
that the number of Ingleton-compliant matroids is doubly exponential on the size
of the ground set. This indicates that the power of Ingleton inequality in the clas-
sification of matroids is quite limited. Of course, many more rank and information
inequalities are available, but one may expect a better outcome from the strategy
introduced in [23], which makes it possible to use undiscovered inequalities. This
claim is supported by the results obtained in secret sharing [23, 27]. Specifically,
the linear programming technique discussed in Section 3.3 can be adapted to the
study of the classes of matroids described in Section 2.1 by using the following
linear programming problems or their extensions to multiple pairs or triples of
sets.

Linear Programming Problem 3.15 Given a polymatroid (Q, r), and A,B ⊆ Q,

determine if there is an extension (Qxo, r) such that xo is a common information for

the pair (A,B).

Linear Programming Problem 3.16 Given a polymatroid (Q, r) and U, V, Z ⊆ Q,

determine if there is an extension (Qzo, r) such that zo is an AK-information for the

triple (U, V, Z).
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Those linear programming problems can be used to disprove that a given ma-
troid is folded linear or almost entropic. To that end, one can also apply Linear
Programming Problems 3.9 or 3.10 (or their extensions) to any port of the given
matroid. The corresponding common information or AK-information exists if and
only if the optimal value is equal to 1.

Nevertheless, that technique is useless for matroids of rank 3 because they are
CI-compliant. The following lemma is a consequence of [47, Proposition 2.1.21].

Lemma 3.17 Consider a finite set Q and a family H ⊆ P(Q) of subsets of Q. Then

H is the family of hyperplanes of a paving matroid of rank 3 on Q if and only if the

following properties are satisfied.

1. H has at least two members and every member of H has at least two elements.

2. For every two different elements x, y ∈ Q, there exists a unique H ∈ H with

{x, y} ⊆ H.

Proposition 3.18 Every matroid of rank 3 is CI-compliant, and hence also AK-

compliant.

Proof Clearly, it is enough to prove that, for every matroid (Q, r) of rank 3 and for
every pair (A,B) of subsets of Q, there exists a matroid (Qxo, r) of rank 3 extending
(Q, r) such that xo is a common information for the pair (A,B). Obviously, it is
enough to prove the result for simple matroids and for pairs (A,B) of hyperplanes.
Simple matroids of rank 3 are paving. Let M be a paving matroid of rank 3 on Q

and let (H1, H2) be a pair of distinct hyperplanes of M . If there exists xo ∈ H1∩H2,
then xo is a common information for the pair (H1, H2). Otherwise, take xo /∈ Q
and consider the family H′ of subsets of Qxo formed by all hyperplanes of M other
than H1, H2 together with H1xo, H2xo, and all pairs xxo with x ∈ Qr (H1 ∪H2).
It is easy to prove that H′ satisfies the conditions in Lemma 3.17, and hence it
is the family of hyperplanes of a paving matroid M ′ of rank 3 on Qxo. Moreover,
it is obvious that M ′ extends M and xo is a common information for the pair
(H1, H2). ut

4 Classification of Matroids on 8 Points

The matroids AG(3, 2), AG(3, 2)′, F8, Q8, V8 (Vamos matroid), P8, and L8 ap-
pearing in this section and in Section 5 are described in the Appendix of Oxley’s
book [47]. Given a sparse paving matroid M , a new such matroid M ′ can be ob-
tained by relaxing one of its circuit-hyperplanes, that is, by transforming it into a
basis. In that situation, M ′ is called a relaxation of M .

4.1 Matroids that are not Ingleton-compliant

Mayhew and Royle [44] provided a comprehensive list of matroids on up to 9
points, specifying how many of them are simple, paving, or sparse paving. They
also presented the list of all 44 non-linear matroids on 8 points, which are sparse
paving and of rank 4. Since every matroid on at most 7 points is linear, those are
the smallest non-linear matroids. Exactly 39 of them are not Ingleton-compliant,
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which implies by Theorem 3.14 that they are neither almost entropic nor algebraic.
Those 39 matroids, which include F8 and Q8, are relaxations of the binary affine
cube AG(3, 2), with AG(3, 2)′ and the Vamos matroid V8 the ones among them
with, respectively, most and fewest circuit-hyperplanes. The matroids in [44] are
named according to the database provided by the same authors in [53]. In this
work we follow the same notation.

4.2 Folded Linear Matroids

The 5 remaining non-linear matroids on 8 points are P1, P ′2, P ′′2 , and P3, which are
relaxations of P8, and a relaxation L′8 of L8. Take Q = {0, 1, . . . , 7} as the ground
set of those sparse paving matroids. The circuit-hyperplanes of P8 are

0127, 0136, 0235, 1234, 0456, 1457, 2467, 3567, 0347, 1256,

while the ones of L8 are

0246, 1357, 0156, 2347, 0127, 3456, 0457, 1236.

The matroid P1 is obtained from P8 by relaxing the circuit-hyperplane 3567 of P8.
The relaxation of 0347 from P1 gives the matroid P ′2, while P ′′2 is obtained from
P1 by relaxing 1256. The relaxation of both 0347 and 1256 from P1 produces the
matroid P3. Finally, the matroid L′8 is obtained from L8 by relaxing the circuit-
hyperplane 0457.

By applying Linear Programming Problem 3.15 to those five non-linear ma-
troids, we found out that they are 1-CI-compliant, and hence also 1-AK-compliant
by Proposition 3.7. We explored the possibility that some of them were folded lin-
ear matroids. To that end, we combined the technique to find linear representations
of matroids presented in [47, Section 6.4] with the tools for folded linear matroids
given in [5] and we concluded that only P3 and L′8 are folded linear matroids.

Theorem 4.1 The smallest non-linear matroids that are folded linear are precisely P3

and L′8.

Before proving Theorem 4.1, we describe how to use the techniques from [5,47]
to that end. Unless otherwise stated, the blocks in the matrices appearing in this
section are square matrices of size `. We use capital letters to represent them. As
usual, the identity and zero matrices are denoted by I and 0, respectively.

Consider a matroid M = (Q, r) of rank m on n points, a field F, and a positive
integer `. Assume that Q = {0, 1, . . . , n− 1} is the ground set of M . Every F-linear
representation of the polymatroid (Q, `r) is called an (F, `)-linear representation of

M , and it is determined by a block matrix over F of the form

B =

 B0,0 · · · B0,n−1

...
...

Bm−1,0 · · · Bm−1,n−1

 , (3)

where each block Bi,j is a square matrix of size `. If Vi is the vector subspace of

F`m spanned by the columns in the i-th block-column, then (Vi)i∈Q is an F-linear
representation of the polymatroid (Q, `r). By the next result, there exists such a
matrix in which every block is either invertible or zero.
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Lemma 4.2 Suppose that A = {0, 1, . . . ,m − 1} is a basis of M . For each j =
m, . . . , n−1, consider the fundamental circuit C(j, A), that is, the only circuit contained

in A ∪ j. Then there exists a block matrix of the form I · · · 0 B0,m · · · B0,n−1

...
. . .

...
...

...

0 · · · I Bm−1,m · · · Bm−1,n−1

 , (4)

providing an (F, `)-linear representation of M . Furthermore, in every such representa-

tion, each block Bi,j with j ≥ m is invertible if i ∈ C(j, A) and it is zero otherwise.

Proof If B′, a block matrix of the form (3), is an (F, `)-linear representation of
M , then the submatrix T formed by the block-columns corresponding to the basis
A is invertible. Clearly, B = T−1B′ is an (F, `)-linear representation of M of the
form (4). Consider j ≥ m. Without loss of generality, suppose that C(j, A) =
{0, . . . , s − 1, j} for some s ≤ m. Since the submatrix of B formed by the block-
columns corresponding to C(j, A) has rank `s, it is clear that Bi,j = 0 if s ≤ i ≤
m − 1. If, otherwise, 0 ≤ i ≤ s − 1, the rank of the submatrix formed by the
block-columns corresponding to C(j, A) r i equals `s, which implies that Bi,j is
invertible. ut

Following [5], we are going to use two operations on block matrices representing
folded linear matroids. Namely, block-column scaling and row-block scaling.

Lemma 4.3 ( [5] Proposition 2.12) Let M be an `-folded linear matroid represented

by a block matrix B of the form (3) and let G be an invertible `× ` matrix. Then, for

each i = 0, . . . ,m− 1, the matrix

B0,0 · · · B0,n−1

...
...

GBi,0 · · · GBi,n−1

...
...

Bm−1,0 · · · Bm−1,n−1


is also an (F, `)-linear representation of M , and the same applies to the matrix B0,0 · · · B0,jG · · · B0,n−1

...
...

...

Bm−1,0 · · · Bm−1,jG · · · Bm−1,n−1


for each j = 0, . . . , n− 1.

Block scaling can help significantly in simplifying the study of (F, `)-linear
representations. By the following lemma, we can assume that several blocks Bi,j

in (4) equal the identity matrix. It is a straightforward generalization of [47, The-
orem 6.4.7], the analogous result for linear representations of matroids.
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Lemma 4.4 LetM be an `-folded F-linear matroid that admits an (F, `)-representation

B′ of the form (4). Take V = {0, . . . ,m− 1} and W = {m, . . . , n− 1}. Consider the

bipartite graph G with set of vertices V ∪W such that (i, j) ∈ V ×W is an edge if and

only if B′i,j 6= 0. Let E be the set of edges of a maximal acyclic subgraph of G. Then

a sequence of block scalings provides an (F, `)-representation B of the form (4) such

that Bi,j = I if (i, j) ∈ E.

Proof Adapt the proof of [47, Theorem 6.4.7] in the obvious way. ut

The graph G is connected for many matroids, and in that case we can choose
any spanning tree of G and we can assume that the n− 1 blocks Bi,j with j ≥ m

corresponding to its edges are equal to I. We are now ready to prove Theorem 4.1.

Proof (Proof of Theorem 4.1) Let M be one of the matroids P1, P
′
2, P
′′
2 , P3 and

suppose that it is an `-folded F-linear matroid for some field F and some positive
integer `. Since 0123 is a basis, by Lemmas 4.2 and 4.4, we can assume that M
admits an (F, `)-linear representation of the form

I 0 0 0 0 I I I

0 I 0 0 I 0 I A

0 0 I 0 I B 0 C

0 0 0 I I D E 0

 (5)

where all nonzero blocks are invertible. We next consider the circuit-hyperplanes
0456, 1457, and 2467. The submatrices corresponding to those sets are, respec-
tively, 

I 0 I I

0 I 0 I

0 I B 0
0 I D E

 ,


0 0 I I

I I 0 A

0 I B C

0 I D 0

 , and


0 0 I I

0 I I A

I I 0 C

0 I E 0

 .

Each of these matrices has rank 3`. Gaussian elimination transforms those matrices
into

I 0 I I

0 I 0 I

0 0 B −I
0 0 0 DB−1 + E − I

 ,


I I 0 A

0 I D 0
0 0 I I

0 0 0 C −B +D

 , and


I I 0 C

0 I E 0
0 0 I I

0 0 0 A− I + E

 .

Therefore,

D = (I − E)B (6)

C = B −D = EB (7)

A = I − E (8)

Since 3567 is a basis, the corresponding submatrix has full rank. Gaussian elimi-
nation on it yields 

I D E 0
0 I I I

0 0 I A

0 0 0 C −B +BA

 .
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By the previous equations, C −B +BA = EB −BE, and hence

EB 6= BE, (9)

which is possible only if ` > 1.
Clearly, the submatrix corresponding to the set 0347 has rank 3` if and only

if C = A. But C 6= A because, otherwise, B = E−1 − I by (7) and (8), and then
EB = BE, a contradiction with (9). As a consequence, P1 and P ′′2 do not admit
any (F, `)-linear representation.

Similarly, the submatrix corresponding to 1256 has rank 3` if and only if D = E.
We claim that this is impossible and, as a consequence, P ′2 is not a folded linear
matroid. Indeed, if D = E, and since I − E = A by (8) and thus invertible, then
B = (I − E)−1E by (6) and

(I − E)EB = (I − E)E(I − E)−1E = E(I − E)(I − E)−1E = E2 = (I − E)BE,

which is a contradiction with (9).
Since both 1256 and 0347 are bases of P3, it is still possible to find an (F, `)-

linear representation for it. If there exists such a representation, then the matrices
corresponding to 0347 and 1256 have full rank, and hence the matrices B−E−1 + I

and E − (I − E)B are invertible. After substituting A, C, and D in (5) according
to (8), (7) and (6), the following plausible (F, `)-linear representation for P3 is
obtained 

I 0 0 0 0 I I I

0 I 0 0 I 0 I I − E
0 0 I 0 I B 0 EB

0 0 0 I I (I − E)B E 0

 . (10)

As a matter of fact, if we take

B =

(
1 1
1 0

)
and E =

(
0 2
2 0

)
it can be checked that it results in a (GF (5), 2)-linear representation for that
matroid.

We next prove in a similar fashion that L′8 is also a folded linear matroid. If
this is the case, by Lemmas 4.2 and 4.4, there exists an (F, `)-linear representation
of the form 

I 0 0 0 I I 0 I

0 I 0 0 D C I A

0 0 I 0 E I I B

0 0 0 I F G I 0

 .

Proceeding in the same way as before, from the circuit-hyperplanes 0156, 0246,
1357, 2347, and 3456 we can conclude that

G = I, F = D, B = I, A = D, and C = I − E +D.

Since 0457 is a basis, the corresponding submatrix
I I I I

0 D C A

0 E I B

0 F G 0

 =


I I I I

0 D I − E +D D

0 E I I

0 D I 0
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has full rank. By Gausian elimination, we obtain
I I I I

0 I D−1 0
0 0 I − ED−1 I

0 0 DED−1 − E 0

 ,

hence DED−1−E has full rank. In particular, this implies that ` > 1. In conclusion,
if L′8 is a folded linear matroid, it admits an (F, `)-linear representation of the form

I 0 0 0 I I 0 I

0 I 0 0 D I − E +D I D

0 0 I 0 E I I I

0 0 0 I D I I 0

 (11)

with DE 6= ED and I − E +D invertible. Take i, with i2 = −1. The choice

D =

(
0 −1
1 0

)
and E =

(
i 0
0 −i

)
does result in a (GF (52), 2)-linear representation of L′8. This can be checked by
using a computer. ut

4.3 Algebraic Matroids and Skew-Field Representable Matroids

There exist folded linear matroids that are not algebraic [9], but none on 8 points.

Proposition 4.5 Every folded linear matroid on 8 points is algebraic.

Proof Since linear matroids are algebraic, we only need to consider P3 and L′8.
Both are algebraic over all fields with finite characteristic [10, Example 35]. The
result for P3 was first proved by Lindström [34]. ut

The notion of linear representations of matroids over fields can be extended to
linear representations over skew-fields. Matroids that admit such a representation
are said to be linearly representable over a skew-field, or skew-field representable for
short. The relation between skew-field representable matroids and folded linear
matroids has been studied in [50, 58]. It is known that there exist folded linear
matroids that are not representable over any skew-field [50]. In the other direction,
some connections have been made in [58]. We found that, for matroids with at most
8 points, these two classes of matroids coincide.

Proposition 4.6 A matroid on at most 8 points is skew-field representable if and only

if it is a folded linear matroid.

Proof Every linearly representable matroid is also skew-field representable. Skew-
field representable matroids are CI-compliant, so the 39 non-Ingleton compliant
matroids discussed above are not representable over skew-fields. The techniques in
Section 4.2 can also be adapted to representations over skew-fields. In particular,
one can prove in that way that P1, P ′2 and P ′′2 are not skew-field representable.
Moreover, the matrix (11) provides a representation of L′8 over the quaternion
division ring R(i, j, k) by taking E = i and D = j. A representation of P3 over the
quaternion division ring is obtained from the matrix (10) by taking B = k and
E = j. ut
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Remark 4.7 The only matroids on 8 points for which it is not known whether they
are algebraic, almost entropic, or entropic are P1, P ′2, and P ′′2 .

We can summarise the current classification of matroids on 8 points as follows.
There are 44 matroids that are not linear (Section 4.1) and, among them, exactly
two are folded linear (Theorem 4.1). Also, on 8 points, a matroid is skew-field
representable if and only if it is a folded linear matroid (Proposition 4.6), and the
folded linear ones are algebraic (Proposition 4.5). There are three matroids on 8
points for which it is not known whether they are algebraic, almost entropic, or
entropic (Remark 4.7). A classification of these three matroids will conclude the
characterization of algebraic, entropic, and almost entropic matroids on 8 points.

4.4 Exploring Larger Matroids

By taking into account the results in [19] about linear rank inequalities derived
from the common information property, one may expect that there are Ingleton-
compliant matroids that are not CI-compliant. As a consequence of the results in
Sections 4.1 and 4.2, a matroid on 8 points is 1-CI-compliant if and only if it is
Ingleton-compliant. Mayhew and Royle [44] found out that every matroid on 9
points that is not Ingleton-compliant contains a minor on 8 points with the same
property. By solving Linear Programming Problem 3.15 for many matroids on 9
points from the database [53], we found 171 sparse paving matroids of rank 5 on
9 points that are Ingleton-compliant but not CI-compliant. All 171 matroids are
listed in Table 1.

One of those examples is the tic-tac-toe matroid, which is described in Sec-
tion 5. It was shown to be non-linearly representable by Alfter and Hochstättler [3].
Actually, they proved that it does not satisfy the so-called generalized Euclidean

intersection property, and the same proof can be used to show that it is not CI-
compliant. It is not known whether the tic-tac-toe matroid is algebraic or not. By
solving Linear Programming Problem 3.16, we checked that it is 1-AK-compliant.
We did not find among the other 170 examples any matroid that is not 1-AK-
compliant but, due to computational limitations, our exploration was incomplete.
Of course, the dual matroids of those 171 matroids are not folded linear. Never-
theless, we checked that they are 1-CI-compliant and hence, by Proposition 3.7,
also 1-AK-compliant. In addition, we note that, using different techniques, 62 of
them were found to be non-algebraic matroids by Bollen [11].

5 Secret Sharing for Matroid Ports

Consider a finite set of players P , a special player po /∈ P and Q = Ppo. For a poly-
matroid (Q, f), we notate Γo(f) for its port at po and σ(f) = maxx∈P f(x)/f(po).
Let Γ be a connected access structure on the set P . Then the parameters σ(Γ ) and
λ(Γ ) introduced in Section 2.2 and the optimal value κ(Γ ) of Linear Programming
Problem 3.8 are characterized as follows.

– κ(Γ ) = min{σ(f) : (Q, f) is a polymatroid with Γ = Γo(f)}.
– σ(Γ ) = inf{σ(f) : (Q, f) is an entropic polymatroid with Γ = Γo(f)}.
– λ(Γ ) = inf{σ(f) : (Q, f) is a linear polymatroid with Γ = Γo(f)}.
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264950 265553 268475 275391 282271 304085
264955 265555 268476 275394 282272 306452
264956 265556 268477 275398 283581 308279
264978 265601 268486 275399 283624 308280
264984 265602 268611 275410 283626 308285
264994 265622 268613 275411 283630 308381
265008 265623 268765 275416 283631 308385
265012 265696 268774 275417 283632 308386
265014 265715 268805 276341 291383 319504
265018 265760 268958 276430 292609 320838
265020 266399 268961 276671 293346 327043
265023 266923 269060 276792 293347 327134
265026 266948 269061 277240 293361 327157
265028 267669 269062 277656 294990 328810
265129 267671 269550 277673 295231 328817
265237 267672 269551 280230 299715 328818
265262 267675 269558 280241 299721 328917
265270 267678 269559 280246 300609 328928
265389 267871 269704 280249 300831 328941
265421 267897 269824 280253 301018 335557
265422 267946 269895 280254 303086 335558
265423 268016 270130 280733 303094 350495
265424 268017 270133 280891 303095 351377
265437 268018 273139 281004 303158 351471
265465 268099 273141 281568 303165 351483
265468 268115 273582 281572 303175 tic-tac-toe
265547 268120 274066 281581 304062
265551 268272 274247 281794 304066
265552 268474 275082 282270 304067
Table 1: Ingleton-compliant non-CI matroids with 9 Points

The following parameter has been recently introduced by Csirmaz [14].

– σ(Γ ) = min{σ(f) : (Q, f) is an almost entropic polymatroid with Γ = Γo(f)}.

Clearly, 1 ≤ κ(Γ ) ≤ σ(Γ ) ≤ σ(Γ ) ≤ λ(Γ ). Moreover, Γ is a matroid port if and
only if κ(Γ ) = 1, and this is equivalent to κ(Γ ) < 3/2 [36, Theorem 4.4]. An
access structure admits an ideal secret sharing scheme if and only if it is the
port of an entropic matroid. Besides, σ(Γ ) = 1 if and only if Γ is the port of an
almost entropic matroid. The parameters κ and λ are invariant by duality, that
is, κ(Γ ∗) = κ(Γ ) and λ(Γ ∗) = λ(Γ ) for every access structure Γ . By the recent
results in [14, 32], this is not the case for the parameter σ. If the access structure
Γ ′ is a minor of Γ , then κ(Γ ′) ≤ κ(Γ ), λ(Γ ′) ≤ λ(Γ ), and also σ(Γ ′) ≤ σ(Γ ).

By using the techniques described in Section 3.3, new lower bounds on σ(Γ )
and λ(Γ ) were obtained in [23] for several access structures including the ports
of the matroids AG(3, 2)′, F8, Q8, and V8. Moreover, the bounds on λ(Γ ) for the
ports of Q8 and V8 are tight [23]. Subsequently, an improved lower bound on σ(Γ )
for a port of the Vamos matroid V8 was obtained in [27] by using the copy lemma
instead of the Ahlswede–Körner lemma.

In this work, we continued the search for lower bounds for matroid ports by
using those methods, which, of course, provide relevant lower bounds only when
applied to matroids that are not CI-compliant. We began by exploring the ports of



Title Suppressed Due to Excessive Length 21

the 39 matroids on 8 points that are not Ingleton-compliant and we found out that
all of them satisfy λ(Γ ) ≥ 4/3 and σ(Γ ) ≥ 9/8. A more general result is obtained
by combining our bounds with Corollary 3.13.

Theorem 5.1 If a sparse paving matroid is not Ingleton-compliant, then at least eight

of its ports satisfy λ(Γ ) ≥ 4/3 and σ(Γ ) ≥ 9/8.

Proof Let M = (Q, r) be a sparse paving matroid that is not Ingleton-compliant.
By Corollary 3.13, it has a minor M ′ = (Q′, r′) with |Q′| = 8 that is not Ingleton-
compliant. Hence M ′ is one of the 39 matroids on 8 points that are not Ingleton-
compliant. For every po ∈ Q′ ⊆ Q, the port Γ ′ of M ′ at po is a minor of the port
Γ of M at po. Therefore, λ(Γ ) ≥ λ(Γ ′) ≥ 4/3 and σ(Γ ) ≥ σ(Γ ′) ≥ 9/8. ut

Better lower bounds on σ(Γ ) have been obtained for some of those 39 matroids,
which are presented in Table 2. The names or numbers of the matroids are as they
appear in [44], and in the database [53].

We also applied the linear programs in Section 3.3 to the ports of matroids
265389, 265421, 265468, 265551, 265556, 265622, and the tic-tac-toe matroid; all
Ingleton-compliant but non-CI-compliant matroids on nine points. For all of them,
we obtained the lower bound λ(Γ ) ≥ 6/5. We were not able to find any non-trivial
bound on σ(Γ ).

By presenting a suitable linear secret sharing scheme, we prove next that the
bound λ(Γ ) ≥ 6/5 is tight for at least one of the ports of the tic-tac-toe matroid.
Take Q = {0, 1, 2} × {0, 1, 2} and, for every (a, b) ∈ Q, the 5-element set

Cab = {(i, j) ∈ Q : i = a or j = b}.

We introduce several sparse paving matroids with ground set Q and rank 5. We call
Mo the one whose circuit-hyperplanes are all sets Cab. The tic-tac-toe matroid M is
obtained from Mo by relaxing the circuit C11. Finally, for every (a, b) 6= (1, 1), let
Mab be the matroid that is obtained from the tic-tac-toe matroid by relaxing the
circuit Cab. Clearly, every matroid Mab is isomorphic to either M00 or M01. The
matroids Mo and Mab with (a, b) 6= (1, 1) are representable over every large enough
field. We skip the proof of this fact, but we present F11-linear representations for
Mo, M00, and M01, which are given, respectively, by the following matrices, whose
columns are indexed as (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2).

1 0 1 1 1 0 0 1 1
1 1 0 1 1 0 0 0 0
0 0 0 0 1 1 0 1 1
0 0 0 1 1 0 1 1 0
0 6 0 1 0 4 0 2 3




1 1 1 1 1 0 0 1 1
0 0 0 5 0 1 1 0 10
1 0 8 1 0 3 0 0 0
0 0 0 1 1 0 6 7 0
1 5 0 1 1 0 0 0 0




1 0 1 1 1 0 0 7 1
1 1 0 1 1 0 0 0 0
0 0 0 0 1 1 0 7 1
0 0 0 1 1 0 1 1 0
9 0 7 6 0 3 6 0 6

 .

Let Γ be the port of the tic-tac-toe matroid M at po = (0, 0). Let Γ11 be the port
of Mo at po and, for (a, b) 6= (1, 1), let Γab be the port of Mab at po. Since they are
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Matroid Port Improved bound on σ(Γ )

1490 0, 2, 3, 4, 5, 6 8/7
1491 0, 3, 7 33/29
1491 2, 4, 5, 6 8/7
1492 0, 1, 2, 3, 4, 5, 6, 7 49/43
1494 3, 4, 5, 6 33/29
1499 0, 2, 3, 4, 5, 6 8/7
1500 0, 2, 3, 4, 5, 6 8/7
1501 0, 1, 2, 3, 6, 7 33/29
1501 4, 5 8/7
1502 5, 6 8/7
1502 2, 3, 4, 7 33/29
1508 3, 4, 5, 6 33/29
1509 3, 4, 5, 6 33/29
1510 3, 4, 5, 6 33/29
1518 3, 4, 5, 6 33/29
1520 2, 3, 4, 7 33/29
1524 3, 4, 5, 6 33/29
1525 0, 2, 4, 5 33/29
1525 3, 6 8/7
1526 0, 2, 3, 4, 5, 6 8/7
1527 0, 2, 4, 5 33/29
1528 0, 2, 3, 6 8/7
1529 1, 4, 5, 7 33/29
1531 2, 5, 6, 7 33/29
1532 4, 7 8/7
1532 0, 1, 2, 3, 5, 6 33/29
1549 3, 4, 5, 6 33/29
1568 3, 4, 5, 6 33/29
1572 2, 3, 4, 7 33/29
1576 3, 4, 5, 6 33/29
1578 3, 4, 5, 6 33/29
1579 0, 2, 4, 5 33/29
1579 3, 6 8/7
1580 0, 2, 3, 6 33/29
1641 3, 4, 5, 6 33/29
1646 2, 5, 6, 7 33/29
1654 3, 4, 5, 6 33/29
1656 0, 2, 3, 6 33/29
1657 0, 2, 3, 6 33/29
1660 0, 2, 3, 6 33/29

AG(3, 2)′ 1, 3, 5, 7 49/43
F8 1, 7 8/7
F8 3, 4, 5, 6 33/29
Q8 1, 4, 6, 7 49/43

V +
8 0, 2, 3, 6 33/29
V8 2, 3, 6, 7 33/29†

Table 2: Bounds on ports of matroids on 8 points. †Improved in [27]

ports of F11-linear matroids, each of the nine access structures Γab admits an ideal
F11-linear secret sharing scheme. Every qualified set of Γ is qualified in at least
five of the six access structures Γ11, Γ00, Γ01, Γ02, Γ10, and Γ20. In addition, the
unqualified sets of Γ are also unqualified in those six access structures. Therefore,
by combining the ideal linear secret sharing schemes for those six access structures
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in a λ-decomposition with λ = 5, we obtain a linear secret sharing scheme for Γ
with information ratio 6/5. The reader is referred to [48,56] for more information
about λ-decompositions.
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7. Beimel, A., Livne, N., Padró, C.: Matroids Can Be Far From Ideal Secret Sharing. Fifth
Theory of Cryptography Conference, TCC 2008, Lecture Notes in Comput. Sci. 4948
(2008) 194–212.

8. Beimel, A., Orlov, I.: Secret Sharing and Non-Shannon Information Inequalities. IEEE
Trans. Inform. Theory 57, 5634–5649 (2011)

9. Ben-Efraim, A.: Secret-sharing matroids need not be algebraic. Discrete Mathematics,
339(8):2136–2145, 2016.

10. Bollen, G.P., Dustin Cartwright, D., Draisma, J.: Matroids over one-dimensional groups.
arXiv:1812.08692 [math.CO] (2018)

11. Bollen, G.P.: Frobenius flocks and algebraicity of matroids. (PhD Thesis) Eindhoven:
Technische Universiteit Eindhoven (2018).

12. Brickell, E.F., Davenport, D.M.: On the Classification of Ideal Secret Sharing Schemes. J.
Cryptology, 4 123–134 (1991)

13. Csirmaz, L.: The size of a share must be large. J. Cryptology 10, 223–231 (1997)
14. Csirmaz, L.: Secret sharing and duality. Cryptology ePrint Archive, Report 2019/1197

https://eprint.iacr.org/2019/1197 (2019)
15. Csiszar, I., Körner, J.: Information theory : coding theorems for discrete memoryless sys-

tems. Academic Press ; Akademiai Kiado, New York : Budapest, (1981)
16. van Dijk, M.: On the information rate of perfect secret sharing schemes. Des. Codes Cryp-

togr. 6, 143–169 (1995)
17. Dougherty, R., Freiling, C., Zeger, K.: Six new non-Shannon information inequalities. In:

2006 IEEE International Symposium on Information Theory, pp. 233–236 (2006)
18. Dougherty, R., Freiling, C., Zeger, K.: Networks, matroids, and non-Shannon information

inequalities. IEEE Trans. Inform. Theory 53 (2007), no. 6, 1949–1969.
19. Dougherty, R., Freiling, C., Zeger, K.: Linear rank inequalities on five or more variables.

Available at arXiv.org, arXiv:0910.0284v3 (2009)
20. Dougherty, R., Freiling, C., Zeger, K.: Non-Shannon Information Inequalities in Four Ran-

dom Variables. Available at arXiv.org, arXiv:1104.3602v1 (2011)
21. Dougherty, R., Freiling, C., Zeger, K.: Characteristic-dependent linear rank inequalities

with applications to network coding. IEEE Trans. Inform. Theory 61 (2015), no. 5, 2510–
2530.



24 Michael Bamiloshin, Aner Ben-Efraim, Oriol Farràs, Carles Padró
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36. Mart́ı-Farré, J., Padró, C.: On secret sharing schemes, matroids and polymatroids. J.
Math. Cryptol. 4, 95-120 (2010)
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