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Abstract: Let G be a graph with no isolated vertex and f : V(G) → {0, 1, 2} a function. If f
satisfies that every vertex in the set {v ∈ V(G) : f (v) = 0} is adjacent to at least one vertex in the
set {v ∈ V(G) : f (v) = 2}, and if the subgraph induced by the set {v ∈ V(G) : f (v) ≥ 1} has
no isolated vertex, then we say that f is a total Roman dominating function on G. The minimum
weight ω( f ) = ∑v∈V(G) f (v) among all total Roman dominating functions f on G is the total Roman
domination number of G. In this article we study this parameter for the rooted product graphs.
Specifically, we obtain closed formulas and tight bounds for the total Roman domination number of
rooted product graphs in terms of domination invariants of the factor graphs involved in this product.

Keywords: total Roman domination; total domination; rooted product graph

1. Introduction

The study of domination-related parameters in product graphs is one of the most important and
attractive areas of domination theory in graphs. Among the principal attractions of this area, Vizing’s
Conjecture [1] is possibly the most popular open problem for the theory of domination in graphs.
This conjecture asserts that the domination number of the Cartesian product of two graphs is at least
equal to the product of their domination numbers. In recent years, several kinds of domination-related
parameters in product graphs have been studied. For instance, we cite the following works:
total domination [2] and total Roman domination [3] in direct product graphs; Roman domination in
lexicographic product graphs [4]; domination-related parameters like classical domination, Roman
domination, independence domination, connected domination, convex domination and super
domination in rooted product graphs [5]; and Roman domination in Cartesian and strong product
graphs [6]. In this article, we study a very well-known variant of domination (total Roman domination)
for the case of rooted product graphs.

We consider G = (V(G), E(G)) as a simple graph. Given a vertex v of a graph G, N(v) will denote
the open neighborhood of v in G, i.e., the set of vertices of G adjacent to v. The closed neighborhood, denoted
by N[v], equals N(v)∪ {v}. Given a set S ⊆ V(G), its open neighborhood is the set N(S) = ∪v∈SN(v),
and its closed neighborhood is the set N[S] = N(S) ∪ S. As usual, the graph obtained from G by
removing all the vertices in S ⊆ V(G) will be denoted by G− S. If S = {v}, for some vertex v, then we
simple write G− v.
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The degree of a vertex v in G is d(v) = |N(v)|. A vertex v ∈ V(G) is universal if d(v) = |V(G)| − 1.
A leaf of G is a vertex v with degree d(v) = 1. A support of G is a vertex adjacent to a leaf and
a strong leaf is a leaf at distance two from another leaf. The sets of leaves, support vertices and strong
leaves are denoted by L(G), S(G) and Ls(G), respectively.

A set S ⊆ V(G) is a dominating set of G if N[S] = V(G). The domination number of G,
denoted by γ(G), is the minimum cardinality among all dominating sets of G. A dominating set
with cardinality γ(G) is called a γ(G)-set. A similar agreement will be assumed when referring to
optimal functions (or sets) associated to another parameter. Moreover, a dominating set S of G is
a total dominating set (TDS) of G if N(S) = V(G), i.e., every vertex of G is adjacent to at least one
vertex in S. The minimum cardinality among all TDSs of G is the total domination number of G, and is
denoted γt(G). For more information about these two parameters, see the following books [7–9].

Let G be a graph and f : V(G)→ {0, 1, 2} a function. Observe that f induces three sets V0, V1 and
V2 such that Vi = {v ∈ V(G) : f (v) = i} for i = 0, 1, 2. Hence, we will write f (V0, V1, V2) instead
f : V(G)→ {0, 1, 2} so as to refer to f . If D is a subset of vertices of G, then f (D) = ∑v∈D f (v). Hence,
we define the weight of f as ω( f ) = f (V(G)) = |V1|+ 2|V2|.

One of the domination variants which has been intensively studied in the last two decades
concerns the so-called Roman domination, which was formally presented in [10] and was motivated
in part by the defensive strategy of the Roman Empire decreed by Constantine (see [11,12]).
Several applications of Roman domination were shown in [13]. The Roman domination in graphs is
a useful tool for modeling optimization problems such as facility location problems (building a new
hospital, fire station, or restaurant), planning of defense strategies, surveillance related problems,
communication networks, etc. Given a graph G, a function f (V0, V1, V2) is called a Roman dominating
function (RDF) if every vertex in V0 is adjacent to a vertex in V2. The minimum weight among all
RDFs on G is the Roman domination number, and is denoted γR(G). Several well-known results relate
the Roman domination number with the (total) domination number. For instance, γt(G) ≤ γR(G)

(see [14]) and γR(G) ≤ 2γ(G) (see [10]). Further results on Roman domination can be found for
example in [13–16].

The concept of total Roman domination in graphs was formally presented in [17], although
it was previously introduced in [18] in a more general form. A total Roman dominating function
(TRDF) on a graph G without isolated vertices is an RDF f (V0, V1, V2) such that V1 ∪ V2 is a total
dominating set of G. The minimum weight among all TRDFs on G is the total Roman domination
number, and is denoted γtR(G). As expected, (total) domination number, Roman domination number
and total Roman domination number are related. The following relationships are proofs of this:
γR(G) ≤ γtR(G) ≤ 2γt(G) (see [17]) and γtR(G) ≤ γR(G) + γ(G) (see [19]). Further results on total
Roman domination can be found for example, in [19–22].

The complexity of the total Roman domination number was studied in [18]. The authors showed
that the decision problem related to total Roman domination number is NP-hard even when restricted
to bipartite graphs and chordal graphs. This suggests finding closed formulas or giving tight bounds
on this domination invariant for special families of graphs. These studies are attractive, for instance,
for the product graphs, and as previously shown, several studies in this regard have been carried out.

Our goal with this paper is to make some contributions to the study of total Roman domination
number for the case of rooted product graphs. In that regard, in the next section we state the intervals
in which this parameter can be found in a rooted product graph. Furthermore, we obtain closed
formulas and tight bounds for this parameter.

2. Main Results in Rooted Product Graphs

Given a graph G of order n and a graph H with root v ∈ V(H), the rooted product graph G ◦v H is
defined as the graph obtained from G and H by taking one copy of G and n copies of H and identifying
the ith-vertex of G with vertex v in the ith-copy of H for every i ∈ {1, . . . , n} [23]. Figure 1 shows
an example of rooted product graph P4 ◦v H, where P4 is the path graph of order four.
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v

H P4 ◦v H

Figure 1. The rooted product graph P4 ◦v H.

For every x ∈ V(G), Hx will denote the copy of H in G ◦v H containing x. The restriction of
any γtR(G ◦v H)-function f to V(Hx) will be denoted by fx and the restriction to V(Hx) \ {x} will be
denoted by f−x .

Now, we state some tools, which will be very useful throughout the article.

Lemma 1. Let H be a graph without isolated vertices and v ∈ V(H) \ S(H). Then

γtR(H − v) ≥ γtR(H)− 2.

Moreover, if γtR(H − v) = γtR(H)− 2, then the following conditions hold.

(i) f (N(v)) = 0 for every γtR(H − v)-function f .
(ii) There exists a γtR(H)-function g0 satisfying g0(v) = 0.
(iii) There exists a γtR(H)-function g1 satisfying g1(v) = 1.

Proof. Let f be a γtR(H − v)-function and w ∈ N(v). Let h be a function on H defined as follows:
h(w) = min{ f (w) + 1, 2}, h(v) = 1 and h(u) = f (u) whenever u ∈ V(H) \ {v, w}. Observe that h is
a TRDF on H. Hence, γtR(H − v) = ω( f ) ≥ ω(h)− 2 ≥ γtR(H)− 2, as desired.

From now on, we assume that γtR(H − v) = γtR(H)− 2. Suppose that there exists w ∈ N(v)
such that f (w) > 0. In such a case, we deduce that the function h′, defined by h′(v) = 0, h′(w) = 2
and h′(u) = f (u) whenever u ∈ V(H) \ {v, w}, is a TRDF on H. This implies that γtR(H) ≤
ω(h′) ≤ ω( f ) + 1 = γtR(H)− 1, which is a contradiction. Thus, f (N(v)) = 0. Finally, if w ∈ N(v),
then the function g0, defined by g0(v) = 0, g0(w) = 2 and g0(u) = f (u) whenever u ∈ V(H) \ {v, w},
is a γtR(H)-function. Analogously, the function g1, defined by g1(v) = 1, g1(w) = 1 and g1(u) = f (u)
whenever u ∈ V(H) \ {v, w}, is a γtR(H)-function as well, which completes the proof.

Following is a theorem bounding γtR(H − v), for a particular vertex v ∈ V(H). Before stating
this, we shall need the next remark.

Remark 1. Let H be a graph without isolated vertices. If v ∈ Ls(H), then there exists a γtR(H)-function f
such that f (v) = 0.

Proof. Let f (V0, V1, V2) be a γtR(H)-function such that f (L(H)) is minimum among all
γtR(H)-functions. Let N(v) = {u}. Since u ∈ S(H), we have that u ∈ V1 ∪ V2 . If u ∈ V1,
then N(u) ∩ L(H) ⊆ V1. As |N(u) ∩ L(H)| ≥ 2, it follows that the function f ′, defined by
f ′(u) = 2, f ′(v) = 0 and f ′(x) = f (x) whenever x ∈ V(H) \ {u, v} is a γtR(H)-function such that
f ′(L(H)) < f (L(H)), which is a contradiction. Hence, u ∈ V2, which implies that f (N(u)∩ L(H)) ≤ 1.
So, and without loss of generality, we can assume that f (v) = 0 as |N(u) ∩ L(H)| ≥ 2. Therefore,
the proof is complete.

Theorem 1. Let H be a graph without isolated vertices. If v ∈ Ls(H), then

γtR(H)− 1 ≤ γtR(H − v) ≤ γtR(H).

Proof. By Remark 1 there exists a γtR(H)-function f such that f (v) = 0. Hence, f restricted to
V(H) \ {v} is a TRDF on H − v. Thus, γtR(H − v) ≤ f (V(H) \ {v}) = ω( f ) = γtR(H). Moreover,
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let g be a γtR(H − v)-function and let u be the support vertex associated to v in H. Since g(u) > 0,
we have that the function g′, defined by g′(v) = 1 and g′(x) = g(x) whenever x ∈ V(H) \ {v},
is a TRDF on H. So, γtR(H) ≤ ω(g′) = ω(g) + 1 = γtR(H − v) + 1, which completes the proof.

Next, we expose a result for the Roman domination number of rooted product graphs given by
Kuziak et al. in [5], which will be used later in the paper.

Theorem 2. [5] Let G be a graph of order n ≥ 2. Then for any graph H with root v and at least two vertices,

n(γR(H)− 1) + γ(G) ≤ γR(G ◦v H) ≤ nγR(H).

We continue this section with a useful lemma.

Lemma 2. Let f (V0, V1, V2) be a γtR(G ◦v H)-function. The following two statements hold for any vertex
x ∈ V(G).

(i) ω( fx) ≥ γtR(H)− 2.
(ii) If ω( fx) = γtR(H)− 2, then N[x] ∩V(Hx) ⊆ V0.

Proof. Let x ∈ V(G). Observe that every vertex in V0 ∩ (V(Hx) \ {x}) has a neighbour in V2 ∩V(Hx)

and every vertex in (V1 ∪V2)∩ (V(Hx) \ {x}) has a neighbour in (V1 ∪V2)∩V(Hx). First, we proceed
to prove (i). Suppose that ω( fx) ≤ γtR(H)− 3 and let w ∈ N(x) ∩V(Hx). Let g be a function on Hx

defined as follows: g(w) = 2 and g(u) = fx(u) whenever u ∈ V(Hx) \ {w}. It is easy to see that g
is a TRDF on Hx. Hence, γtR(Hx) ≤ ω(g) ≤ ω( fx) + 2 ≤ γtR(H)− 1, which is a contradiction as
Hx ∼= H. Thus, ω( fx) ≥ γtR(H)− 2, which completes the proof of (i).

Now, we proceed to prove (ii). Assume that ω( fx) = γtR(H) − 2. Suppose that x ∈ V1 ∪ V2.
Let w ∈ N(x) ∩ V(Hx) and we define the function f ′ as follows: f ′(w) = min{ f (w) + 1, 2} and
f ′(u) = f (u) whenever u ∈ V(Hx) \ {w}. Notice that f ′ is a TRDF on Hx such that ω( f ′) ≤ γtR(H)− 1,
which is a contradiction. Thus, x ∈ V0. Finally, suppose there exists w ∈ N(x) ∩V(Hx) ∩ (V1 ∪V2).
In such a case, we define the function f ′′ as follows: f ′′(w) = 2 and f ′′(u) = f (u) whenever
u ∈ V(Hx) \ {w}. As in the case above, f ′′ is a TRDF on Hx such that ω( f ′′) ≤ γtR(H)− 1, which is
again a contradiction. Thus, N(x) ∩V(Hx) ⊆ V0, and the proof is complete.

From Lemma 2-(i) we deduce that any γtR(G ◦v H)-function f generates three sets A f , B f , C f of
V(G) as follows.

A f = {x ∈ V(G) : ω( fx) ≥ γtR(H)},
B f = {x ∈ V(G) : ω( fx) = γtR(H)− 1},
C f = {x ∈ V(G) : ω( fx) = γtR(H)− 2}.

Proposition 1. Let f be a γtR(G ◦v H)-function. If C f 6= ∅, then v ∈ V(H) \ S(H) and

γtR(H − v) = γtR(H)− 2.

Proof. By Lemma 2-(ii), if x ∈ C f , then f (x) = 0 and f (y) = 0 for every y ∈ N(x) ∩ V(Hx).
This implies that x ∈ V(Hx) \ S(Hx), and also that f restricted to V(Hx) \ {x} is a TRDF on
Hx − x of weight γtR(H) − 2. Since H ∼= Hx, it follows that v ∈ V(H) \ S(H) and γtR(H − v) =

γtR(Hx − x) ≤ γtR(H)− 2. Finally, by Lemma 1 we obtain that γtR(H − v) = γtR(H)− 2, which
completes the proof.

Theorem 3. Let G and H be two graphs without isolated vertices. If |V(G)| = n and v ∈ V(H), then the
following statements hold.
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(i) γtR(G ◦v H) ≤ nγtR(H).
(ii) If v ∈ V(H) \ S(H), then γtR(G ◦v H) ≤ γtR(G) + nγtR(H − v).

Proof. First, we proceed to prove (i). Notice that, from any γtR(H)-function, we can construct a TRDF
on G ◦v H of weight nγtR(H). Thus γtR(G ◦v H) ≤ nγtR(H), which completes the proof of (i).

Finally, we proceed to prove (ii). Assume that v ∈ V(H) \ S(H). Observe that, from any
γtR(G)-function and any γtR(H − v)-function we can construct a TRDF on G ◦v H of weight at most
γtR(G) + nγtR(H − v), which completes the proof.

The next theorem, which we can consider as one of the main results of this paper, states the
intervals in which the total Roman domination number of a rooted product graph can be found.

Theorem 4. Let G and H be two graphs without isolated vertices. If |V(G)| = n and v ∈ V(H), then one of
the following conditions holds.

(i) γtR(G ◦v H) = nγtR(H).
(ii) n(γtR(H)− 1) ≤ γtR(G ◦v H) ≤ γtR(G) + n(γtR(H)− 1).
(iii) γt(G) + n(γtR(H)− 2) ≤ γtR(G ◦v H) ≤ γtR(G) + n(γtR(H)− 2).

Proof. Let f (V0, V1, V2) be a γtR(G ◦v H)-function and we consider the sets A f , B f and C f defined
above. Now, we analyze the following cases.

Case 1. B f ∪ C f = ∅. By definition we deduce that ω( fx) ≥ γtR(H) for every x ∈ V(G) and,
as a consequence, γtR(G ◦v H) ≥ nγtR(H). By Theorem 3, condition (i) follows.

Case 2. B f 6= ∅ and C f = ∅. By definition we deduce that ω( fx) ≥ γtR(H)− 1 for every x ∈ V(G)

and, as a consequence, γtR(G ◦v H) ≥ n(γtR(H)− 1). We only need to prove that γtR(G ◦v H) ≤
γtR(G) + n(γtR(H)− 1). Let h be a γtR(G)-function and u ∈ B f . From f , u and h, we define a function
g on G ◦v H as follows. For every vertex x ∈ V(G), the restriction of g to V(Hx) \ {x} is induced
from f−u , and we set g(x) = min{ f (x) + h(x), 2}. Notice that g is a TRDF on G ◦v H of weight
ω(g) ≤ γtR(G) + n(γtR(H) − 1), concluding that γtR(G ◦v H) ≤ γtR(G) + n(γtR(H) − 1). Hence,
condition (ii) follows.

Case 3. B f = ∅ and C f 6= ∅. By definition we obtain that

γtR(G ◦v H) = ∑
x∈A f

ω( fx) + ∑
x∈C f

ω( fx)

≥ ∑
x∈A f

γtR(H) + ∑
x∈C f

(γtR(H)− 2)

= 2|A f |+ ∑
x∈V(G)

(γtR(H)− 2)

= 2|A f |+ n(γtR(H)− 2)

From Lemma 2-(ii) we have that every vertex x ∈ C f satisfies that N[x]∩V(Hx) ⊆ V0. As B f = ∅,
there exists a vertex y ∈ A f ∩N(x)∩V2. This implies thatA f ∩V2 dominates C f , and as a consequence,
A f is a dominating set of G. Hence, |A f | ≥ γ(G). Combining the inequalities above, we deduce that
γtR(G ◦v H) ≥ 2|A f |+ n(γtR(H)− 2) ≥ 2γ(G) + n(γtR(H)− 2) ≥ γt(G) + n(γtR(H)− 2).

On the other hand, by Proposition 1 we have that v ∈ V(H) \ S(H) and that γtR(H − v) =

γtR(H) − 2. Moreover, Theorem 3-(ii) leads to γtR(G ◦v H) ≤ γtR(G) + nγtR(H − v) = γtR(G) +

n(γtR(H)− 2). Thus, condition (iii) follows.

Case 4. B f 6= ∅ and C f 6= ∅. By Proposition 1 and Theorem 3-(ii) it follows that γtR(G ◦v H) ≤
γtR(G) + n(γtR(H)− 2).
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Finally, let us define a set S ⊆ V(G) as follows. If x ∈ A f then we choose one vertex
ux ∈ N(x) ∩V(G) and set x, ux ∈ S. For the other vertices, if x ∈ B f then we set x ∈ S. Now,
we will prove that S is a total dominating set of G. By definition of S, if x ∈ A f , then x is adjacent to
some vertex y ∈ S. Now, by Lemma 2-(ii), if x ∈ C f then there exists a vertex y ∈ N(x) ∩ (B f ∪A f ),
which implies that y ∈ S. If x ∈ B f , then it must have a neighbor z ∈ V(G) ∩ (V1 ∪V2), otherwise fx

is a TRDF on Hx and so γtR(H) = γtR(Hx) ≤ ω( fx) = γtR(H)− 1, which is a contradiction. Hence,
z ∈ B f ∪ A f , which implies that z ∈ S, as required. Therefore, S is a total dominating set of G of
cardinality at most 2|A f |+ |B f | and, as a consequence,

γtR(G ◦v H) = ∑
x∈A f

ω( fx) + ∑
x∈B f

ω( fx) + ∑
x∈C f

ω( fx)

≥ ∑
x∈A f

γtR(H) + ∑
x∈B f

(γtR(H)− 1) + ∑
x∈C f

(γtR(H)− 2)

= (2|A f |+ |B f |) + ∑
x∈V(G)

(γtR(H)− 2)

≥ |S|+ n(γtR(H)− 2)

≥ γt(G) + n(γtR(H)− 2).

So, condition (iii) follows, which completes the proof.

The bounds given in the theorem above are tight. To see this, we consider the following examples
where H1 is the graph shown in Figure 2 (we always assume that G is a graph of order n without
isolated vertices). Recall that Pn is the path graph of order n.

• If v ∈ S(P4), then γtR(G ◦v P4) = nγtR(P4) = 4n.
• If v ∈ S(P3), then γtR(G ◦v P3) = n(γtR(P3)− 1) = 2n.
• If v ∈ L(P3) and γtR(G) = γR(G), then γtR(G ◦v P3) = γtR(G) + n(γtR(P3)− 1) = γtR(G) + 2n.
• γtR(G ◦v H1) = γtR(G) + n(γtR(H1)− 2) = γtR(G) + 4n.
• Theorem 5 gives some conditions to achieve the equality γtR(G ◦v H) = γt(G) + n(γtR(H)− 2).

In this case we can take H, for example, as the graph given in Figure 3.

v

Figure 2. The graph H1.

(a)

2

1

1

1 1

1 12 2

(b)

21 1

1 12 2

(c)

11 1

1 12 2

Figure 3. Graphs H, H − v and H − N[v] with different labelings (vertices with no drawn label have
label zero) to show that γtR(H) = 12 (a), γtR(H − v) = 10 (b) and γtR(H − N[v]) = 9 (c).

Next, we analyse some particular cases. First, we consider the case in which
γtR(H − v) = γtR(H)− 2.
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Theorem 5. Let G 6∼= ∪P2 be a graph of order n without isolated vertices. If H is a graph such that
γtR(H − v) = γtR(H)− 2 and γtR(H − N[v]) = γtR(H)− 3 for some v ∈ V(H), then

γtR(G ◦v H) = γt(G) + n(γtR(H)− 2).

Proof. Let g′ be a γtR(H − v)-function. By Lemma 1-(i), we may assume (without loss of generality)
that g′(N(v)) = 0. From g′, we define the following function g on H. If x ∈ V(H − v) then
g(x) = g′(x), and g(v) = 0. Moreover, let h′ be a γtR(H − N[v])-function and we consider the
function h on H defined by h(x) = h′(x) if x ∈ V(H − N[v]), h(x) = 0 if x ∈ N(v), and h(v) = 2.

Let D be a γt(G)-set. From D, g and h, we define the following function f ′ on G ◦v H. For every
z ∈ D, the restriction of f ′ to V(Hz) is induced from h. Moreover, if z ∈ V(G) \ D, then the restriction
of f ′ to V(Hz) is induced from g. By the construction of g and h, it is straightforward to see that f ′ is
a TRDF on G ◦v H. Thus,

γtR(G ◦v H) ≤ ∑
x∈D

ω( f ′x) + ∑
x∈V(G)\D

ω( f ′x)

= ∑
x∈D

ω(h) + ∑
x∈V(G)\D

ω(g)

= ∑
x∈D

(γtR(H)− 1) + ∑
x∈V(G)\D

(γtR(H)− 2)

= |D|+ ∑
x∈V(G)

(γtR(H)− 2)

= γt(G) + n(γtR(H)− 2).

We only need to prove that γtR(G ◦v H) ≥ γt(G) + n(γtR(H)− 2). Suppose that C f = ∅ by some
γtR(G ◦v H)-function f . This implies that n(γtR(H)− 1) ≤ γtR(G ◦v H) ≤ γt(G) + n(γtR(H)− 2),
which is a contradiction because γt(G) < n (it is easy to see that γt(G) = n if and only if G ∼= ∪P2).
Therefore, C f 6= ∅ for any γtR(G ◦v H)-function f . Hence, and by analogy to Cases 3 and 4 in the proof
of Theorem 4, we deduce that γtR(G ◦v H) ≥ γt(G) + n(γtR(H)− 2), which completes the proof.

Notice that the premises given for the graph H in the previous theorem lead to the existence of
a γtR(H)-function f satisfying f (v) = 2. Since Lemma 1 does not guarantee the existence of a graph
that satisfies such conditions, in Figure 3 we show a graph that does satisfy them.

Theorem 6. Let G be a graph of order n without isolated vertices and H a graph such that
γtR(H − v) = γtR(H)− 2 for some v ∈ V(H). If g(v) ≤ 1 for every γtR(H)-function g, then

γtR(G ◦v H) = γtR(G) + n(γtR(H)− 2).

Proof. By Theorem 3-(ii) and the equality γtR(H − v) = γtR(H) − 2 we have that
γtR(G ◦v H) ≤ γtR(G) + nγtR(H − v) = γtR(G) + n(γtR(H)− 2). To conclude the proof, we only
need to prove that γtR(G ◦v H) ≥ γtR(G) + n(γtR(H)− 2). Let f (V0, V1, V2) be a γtR(G ◦v H)-function.
Let A f = A=

f ∪A
>
f , where A=

f = {x ∈ A f : ω( f ) = γtR(H)} and A>
f = A f \ A=

f . Since g(v) ≤ 1 for
every γtR(H)-function g, we deduce that B f ⊆ V0 ∪V1 (otherwise, if there exists a vertex x ∈ B f ∩V2,
then we can obtain a γtR(Hx)-function g with g(x) = 2 by giving label 1 to some neighbor of x in Hx,
which is a contradiction as Hx ∼= H). Moreover, if x ∈ A=

f ∩V2, then N(x) ∩V(G) ∩ (V1 ∪V2) 6= ∅
(otherwise, fx would be a γtR(Hx)-function with fx(x) = 2, which contradicts the fact that g(v) ≤ 1
for every γtR(H)-function g). Now, we define a function h(V′0, V′1, V′2) on G.

(i) If x ∈ A>
f ∪ (A=

f ∩V2), then we set h(x) = 2.
(ii) If x ∈ A=

f \V2, then we set h(x) = 1.
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(iii) If x ∈ A>
f ∪ (A=

f \V2), then we choose one vertex not previously labeled u ∈ N(x) ∩V(G) (if it
exists) and set h(u) = 1.

(iv) We set h(x) = f (x) for any other vertex x ∈ V(G) not previously labeled.

We claim that h(V′0, V′1, V′2) is a TRDF on G. First, we observe that if x ∈ V′0, then x ∈ C f ∪ (B f ∩V0).
Hence, there exists a vertex y ∈ N(x) ∩ V2 ∩A f . Since V2 ∩A f ⊆ V′2, it follows that y ∈ N(x) ∩ V′2,
as desired.

We only need to prove that V′1 ∪ V′2 is a total dominating set of G. By definition of h, it is clear
to see that every vertex in V′2 ∪ (V′1 ∩A f ) is adjacent to some vertex in V′1 ∪V′2. Now, let x ∈ V′1 ∩ B f .
If f (N(x) ∩V(Hx)) > 0, then fx is a TRDF on Hx of weight γtR(H)− 1, which is a contradiction. So,
f (N(x) ∩V(Hx)) = 0 and as f is a TRDF on G ◦v H, there exists a vertex y ∈ N(x) ∩ (A f ∪ B f ) such
that f (y) > 0. Hence, y ∈ V′1 ∪V′2, as desired.

Thus, we conclude that V′1 ∪ V′2 is a total dominating set of G. So, h is a TRDF on G, and as
a consequence, γtR(G) ≤ ω(h) = 2|V′2|+ |V′1| ≤ 3|A>

f |+ 2|A=
f |+ |B f |. Therefore,

γtR(G ◦v H) = ∑
x∈A>

f

ω( fx) + ∑
x∈A=

f

ω( fx) + ∑
x∈B f

ω( fx) + ∑
x∈C f

ω( fx)

≥ ∑
x∈A>

f

(γtR(H) + 1) + ∑
x∈A=

f

γtR(H) + ∑
x∈B f

(γtR(H)− 1) + ∑
x∈C f

(γtR(H)− 2)

= (3|A>
f |+ 2|A=

f |+ |B f |) + ∑
x∈V(G)

(γtR(H)− 2)

≥ γtR(G) + n(γtR(H)− 2).

Therefore, the proof is complete.

Now, we consider the cases in which either v is a support vertex of H or γtR(H − v) ≥ γtR(H).
Before doing this, we shall need the following useful lemma.

Lemma 3. Let f be a γtR(G ◦v H)-function. If there exists a vertex x ∈ V(G) such that f (x) > 0,
then γtR(G ◦v H) ≤ nω( fx).

Proof. Let h be a function on G ◦v H defined from f as follows. For every z ∈ V(G), the restriction
of h to V(Hz) is induced from fx. Notice that h is a TRDF on G ◦v H, which implies that
γtR(G ◦v H) ≤ nω( fx), as desired.

Theorem 7. Let G and H be two graphs without isolated vertices and |V(G)| = n. If v ∈ S(H) or
γtR(H − v) ≥ γtR(H), then

γtR(G ◦v H) ∈ {n(γtR(H)− 1), nγtR(H)}.

Furthermore, if γtR(H) = γR(H), then γtR(G ◦v H) = nγtR(H).

Proof. Let f (V0, V1, V2) be a γtR(G ◦v H)-function. By Theorem 3-(i) we have that ω( f ) ≤ nγtR(H).
If ω( f ) = nγtR(H), then we are done. In such a sense, we suppose that ω( f ) < nγtR(H). This implies
that there exists a vertex x ∈ V(G) such that ω( fx) < γtR(H), i.e., x ∈ B f ∪ C f . If f (x) = 0,
then x /∈ S(Hx) and also f−x is a TRDF on Hx − x, which implies that γtR(H − v) = γtR(Hx − x) ≤
ω( f−x ) = ω( fx) < γtR(H), which is a contradiction. Hence, f (x) > 0. So, by Lemma 2-(ii) we
deduce that x /∈ C f , which implies that x ∈ B f . Moreover, since f (x) > 0, by Lemma 3 we have that
γtR(G ◦v H) ≤ nω( fx) = n(γtR(H)− 1).

Now, we proceed to prove that γtR(G ◦v H) ≥ n(γtR(H) − 1). If v ∈ S(H),
then V(G) ⊆ S(G ◦v H). This implies that f (z) > 0 for every vertex z ∈ V(G). So, by Lemma 2-(ii) we
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have that C f = ∅, which implies that γtR(G ◦v H) = ∑x∈A f
ω( fx) + ∑x∈B f

ω( fx) ≥ n(γtR(H)− 1).
Moreover, if v ∈ V(H) \ S(H), then by hypothesis we have that γtR(H − v) ≥ γtR(H). So,
C f = ∅ by contrapositive of Proposition 1. Hence, as above, we deduce that γtR(G ◦v H) =

∑x∈A f
ω( fx) + ∑x∈B f

ω( fx) ≥ n(γtR(H)− 1). Therefore, in both cases, the lower bound obtained
leads to the equality γtR(G ◦v H) = n(γtR(H)− 1), as desired.

Furthermore, if γtR(H) = γR(H), then by Theorem 2 we have that n(γtR(H) − 1) + γ(G) =

n(γR(H) − 1) + γ(G) ≤ γR(G ◦v H) ≤ γtR(G ◦v H). Since γ(G) ≥ 1, the result above leads to
γtR(G ◦v H) = nγtR(H).

Observe that if H is a nontrivial star graph or a double star graph (in both cases we consider
the root v ∈ S(H)), then for any graph G of order n without isolated vertices we have that
γtR(G ◦v H) = n(γtR(H)− 1) and γtR(G ◦v H) = nγtR(H), respectively. These two particular cases
belong to families of graphs that are analyzed in Theorems 9 and 12.

We continue with a result in which v ∈ S(H) or γtR(H − v) ≥ γtR(H)− 1.

Theorem 8. Let G and H be two graphs without isolated vertices and |V(G)| = n. If (v ∈ S(H) or
γtR(H − v) ≥ γtR(H)− 1) and γtR(H − N[v]) = γtR(H)− 3, then

γtR(G ◦v H) = n(γtR(H)− 1).

Proof. Let h′ be a γtR(H − N[v])-function and let us consider the function h on H defined as follows.
If x ∈ V(H − N[v]) then h(x) = h′(x), if x ∈ N(v) then h(x) = 0, and h(v) = 2. Next, we define
a function f on G ◦v H from h. For every z ∈ V(G), the restriction of f to V(Hz) is induced from h.
By the construction of h, it is straightforward to see that f is a TRDF on G ◦v H. Thus,

γtR(G ◦v H) ≤ ∑
x∈V(G)

ω( fx)

= ∑
x∈V(G)

ω(h)

= ∑
x∈V(G)

(ω(h′) + 2) = ∑
x∈V(G)

(γtR(H)− 1) = n(γtR(H)− 1).

Therefore, Theorem 7 if v ∈ S(H) or Proposition 1 and Lemma 2 if γtR(H − v) ≥ γtR(H)− 1,
complete the proof.

In Figure 4 we show a graph H which satisfies the premises of Theorem 8. In this
case, v ∈ S(H) and for any graph G of order n with no isolated vertex, we obtain that
γtR(G ◦v H) = n(γtR(H)− 1) = 7n.

(a)

2 1 2 1 2

(b)

2 1 2

Figure 4. Graphs H and H − N[v] with different labellings (vertices with no drawn label have label
zero) to show that γtR(H) = 8 (a) and γtR(H − N[v]) = 5 (b).

Next, we proceed to discuss a particular case when v ∈ S(H).

Theorem 9. Let G and H be two graphs without isolated vertices with |V(G)| = n and v ∈ S(H).
If N(v) ∩ S(H) 6= ∅ or g(v) = 1 for every γtR(H)-function g, then

γtR(G ◦v H) = nγtR(H).
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Proof. Theorem 7 leads to γtR(G ◦v H) ∈ {n(γtR(H)− 1), nγtR(H)}. Hence, we only need to prove
that γtR(G ◦v H) ≥ nγtR(H). Let f (V0, V1, V2) be a γtR(G ◦v H)-function such that |V2| is maximum
among all γtR(G ◦v H)-functions. Now, we analyse the following two cases.

Case 1. N(v) ∩ S(H) 6= ∅. Let y ∈ N(x) ∩ S(Hx) for any x ∈ V(G). As x and y are adjacent
support vertices, it follows that f (x) = f (y) = 2. Hence, fx is a TRDF on Hx, and as a consequence,
ω( fx) ≥ γtR(H). Thus, γtR(G ◦v H) ≥ nγtR(H), as desired.

Case 2. g(v) = 1 for every γtR(H)-function g. Since v ∈ S(H), we have that f (x) ≥ 1 for every
vertex x ∈ V(G). So, Lemma 2 leads to C f = ∅. If there exists y ∈ V(G) such that f (y) = 1,
then f (hy) = 1 for every hy ∈ N(y) ∩ L(Hy). Thus, the function f ′(V′0, V′1, V′2), defined by f ′(y) = 2,
f ′(N(y) ∩ L(Hy)) = 0 and f ′(u) = f (u) otherwise, is a γtR(G ◦v H)-function and satisfies that
|V′2| > |V2|, which is a contradiction. Therefore, f (x) = 2 for every x ∈ V(G). Moreover, if B f 6= ∅,
then there exists a γtR(H)-function g such that g(v) = 2, which is a contradiction. Hence, B f = ∅,
and as a consequence, γtR(G ◦v H) ≥ nγtR(H), as desired.

Now, we analyse other cases for the vertex v ∈ V(H).

Theorem 10. Let G be a graph without isolated vertices of order n. Let H be a graph such that
γtR(H − v) = γtR(H) for some v ∈ V(H). If g(v) = 0 for every γtR(H)-function g, then

γtR(G ◦v H) = nγtR(H).

Proof. Let f (V0, V1, V2) be a γtR(G ◦v H)-function. With the assumptions given, Proposition 1 leads
to C f = ∅. Now, we analyse two cases. First, if B f = ∅, then by analogy to Case 1 in the proof of
Theorem 4 we have that γtR(G ◦v H) = nγtR(H).

Second, we suppose that B f 6= ∅ and let x ∈ B f . If f (x) = 0, then f−x is a TRDF on
Hx − x, which implies that γtR(H − v) = γtR(Hx − x) ≤ ω( f−x ) = ω( fx) = γtR(H)− 1, which is
a contradiction. Hence, f (x) > 0. If there exists a vertex u ∈ N(x)∩V(Hx) such that f (u) > 0, then fx

is a TRDF on Hx of weight ω( fx) = γtR(H)− 1, which is a contradiction. Hence, N(x) ∩V(Hx) ⊆ V0.
Note that the function g, defined by g(u) = 1 for some vertex u ∈ N(x) ∩V(Hx) and g(w) = f (w) for
every w ∈ V(Hx) \ {u}, is a TRDF on Hx of weight γtR(H). So g is a γtR(H)-function and satisfies
that g(v) > 0, which is again a contradiction. Hence, B f = ∅, and we are done.

Next, we consider the case in which the root v is a strong leaf vertex of H.

Theorem 11. Let G and H be two graphs without isolated vertices and |V(G)| = n. If v ∈ Ls(H), then

γtR(G ◦v H) =

{
nγtR(H) if γtR(H − v) = γtR(H),

γR(G) + n(γtR(H)− 1) otherwise.

Proof. By Theorem 1 we have that γtR(H − v) ∈ {γtR(H), γtR(H)− 1}. In such a sense, we consider
the following two cases.

Case 1. γtR(H − v) = γtR(H). Let f (V0, V1, V2) be a γtR(G ◦v H)-function. By Proposition 1 we
have that C f = ∅. Suppose that B f 6= ∅ and let x ∈ B f . If f (x) = 0, then f−x is a TRDF on
Hx − x, which implies that γtR(H − v) = γtR(Hx − x) ≤ ω( f−x ) = ω( fx) = γtR(H)− 1, which is
a contradiction. Hence, f (x) > 0. Let {ux} = N(x) ∩ V(Hx). Since v ∈ Ls(H), it follows that
ux ∈ S(G ◦v H). Hence f (ux) > 0, and so fx is a TRDF on Hx of weight ω( fx) = γtR(H)− 1, which is
a contradiction. Therefore, B f = ∅, and so γtR(G ◦v H) = nγtR(H).

Case 2. γtR(H − v) = γtR(H) − 1. First, we prove that γtR(G ◦v H) ≤ γR(G) + n(γtR(H) − 1).
Let u be the support vertex associated to v, i.e., N(v) = {u}, and let g be any γtR(H − v)-function.
Note that g(u) > 0 as u ∈ S(H − v). So, from g and any γR(G)-function, we can define a TRDF
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on G ◦v H of weight at most γR(G) + nγtR(H − v). Hence, γtR(G ◦v H) ≤ γR(G) + nγtR(H − v) =
γR(G) + n(γtR(H)− 1), as desired.

To conclude the proof, we only need to prove that γtR(G ◦v H) ≥ γR(G) + n(γtR(H) − 1).
Let f (V0, V1, V2) be a γtR(G ◦v H)-function. Since N(V(G)) \V(G) ⊆ S(G ◦v H), we have that f (y) > 0
for every vertex y ∈ N(V(G)) \ V(G). Hence, Lemma 2-(ii) leads to C f = ∅. Now, we analyze
two subcases.

Subcase 2.1. B f = ∅. In this subcase, by analogy to Case 1 in the proof of Theorem 4, we have that
γtR(G ◦v H) = nγtR(H). Therefore, it follows that nγtR(H) = γtR(G ◦v H) ≤ γR(G) + n(γtR(H)− 1),
which implies that γR(G) = n, i.e., G ∼= ∪P2 (see [10]). Thus, γtR(G ◦v H) = γR(G) + n(γtR(H)− 1),
as desired.

Subcase 2.2. B f 6= ∅. Let x ∈ B f and {ux} = N(x) ∩ V(Hx). As ux ∈ S(G ◦v H), it follows
that f (ux) > 0. If f (x) > 0, then fx is a TRDF on Hx of weight γtR(H)− 1, which is a contradiction.
Hence, f (x) = 0, and as a consequence, f (ux) = 1 (otherwise, if f (ux) = 2, then, as above, fx is
a TRDF on Hx of weight γtR(H) − 1, which is a contradiction). Therefore, B f ⊆ V0 and A f ∩ V2

dominates B f . This implies that f restricted to V(G) is an RDF on G, and so, γR(G) ≤ f (V(G)). Now,
we suppose that there exists a vertex z ∈ A f ∩V2 such that ω( fz) = γtR(H). Let uz ∈ N(z) ∩V(Hz).
Since uz ∈ S(G ◦v H), it follows that f (uz) > 0. This implies that the function fz is a γtR(Hz)-function
because Hz ∼= H. Now, we observe that the function g, defined by g(z) = 1 and g(x) = fz(x) whenever
x ∈ V(Hz) \ {z}, is a TRDF on Hz. Hence, γtR(Hz) ≤ ω(g) = ω( fz)− 1 = γtR(Hz)− 1, which is
a contradiction. Therefore, every vertex z ∈ A f ∩V2 satisfies that ω( fz) > γtR(H). Thus, as C f = ∅
and B f ⊆ V0, we obtain that γtR(G ◦v H) = ∑x∈A f

ω( fx) + ∑x∈B f
ω( fx) ≥ f (V(G)) + n(γtR(H)−

1) ≥ γR(G) + n(γtR(H)− 1), which completes the proof.

The following theorem states the total Roman domination number of the rooted product graph
G ◦v H, when the root v is a universal vertex of H.

Theorem 12. Let G be a graph without isolated vertices of order n. If H is a graph with a universal vertex
v ∈ V(H), then

γtR(G ◦v H) = 2n.

Proof. Let f be a function defined as follows: f (x) = 2 if x ∈ V(G) and f (x) = 0 whenever
x ∈ V(G ◦v H) \V(G). It is clear to see that f is a TRDF on G ◦v H. Hence, γtR(G ◦v H) ≤ ω( f ) = 2n.
Since γtR(H) = 3, we have that either v ∈ S(H) or γtR(H − v) ≥ γtR(H). Thus, Theorem 7 leads to
the desired result.

Any corona graph G�G′ can be expressed as a rooted product graph G ◦v H, where H ∼= K1 + G′

and V(K1) = {v}. Therefore, the following result follows as an immediate consequence of the
theorem above.

Theorem 13. Let G be a graph of order n without isolated vertices and G′ any graph. Then

γtR(G� G′) = 2n.

3. Conclusions and Open Problems

In this paper, we have studied the total Roman domination number of rooted product graphs
G ◦v H. In particular, we were able to give the intervals to which γtR(G ◦v H) belongs. In addition,
we have obtained closed formulas for this parameter when certain conditions are imposed on the
factor graphs G and H involved in this product.

Next, we propose some open problems, which we consider to be interesting.

• Characterize the graphs G and H (and the root v) that satisfy the following equalities.
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- γtR(G ◦v H) = nγtR(H).
- γtR(G ◦v H) = γtR(G) + n(γtR(H)− 1).
- γtR(G ◦v H) = n(γtR(H)− 1).
- γtR(G ◦v H) = γtR(G) + n(γtR(H)− 2).
- γtR(G ◦v H) = γt(G) + n(γtR(H)− 2).

• Characterize the graphs G and H (and the root v) such that γtR(G ◦v H) = γR(G ◦v H).
• Given a graph G of order n and a family of n graphsH = {H1, . . . , Hn} with a set of root vertices

W = {w1, w2, . . . , wn}, respectively, the generalized rooted product graph G ◦W H is defined as the
graph obtained from G andH, by identifying the vertex vi of G with the root vertex wi ∈W of Hi
for every 1 ≤ i ≤ n. We propose to study the total Roman domination number of generalized
rooted product graphs.
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