
1

General Confidentiality and Utility Metrics for
Privacy-Preserving Data Publishing Based on

the Permutation Model
Josep Domingo-Ferrer, Fellow, IEEE, Krishnamurty Muralidhar and Maria Bras-Amorós

Abstract—Anonymization for privacy-preserving data publishing, also known as statistical disclosure control (SDC), can be viewed
under the lens of the permutation model. According to this model, any SDC method for individual data records is functionally equivalent
to a permutation step plus a noise addition step, where the noise added is marginal, in the sense that it does not alter ranks. Here, we
propose metrics to quantify the data confidentiality and utility achieved by SDC methods based on the permutation model. We
distinguish two privacy notions: in our work, anonymity refers to subjects and hence mainly to protection against record re-identification,
whereas confidentiality refers to the protection afforded to attribute values against attribute disclosure. Thus, our confidentiality metrics
are useful even if using a privacy model ensuring an anonymity level ex ante. The utility metric is a general-purpose metric that can be
conveniently traded off against the confidentiality metrics, because all of them are bounded between 0 and 1. As an application, we
compare the utility-confidentiality trade-offs achieved by several anonymization approaches, including privacy models (k-anonymity and
ε-differential privacy) as well as SDC methods (additive noise, multiplicative noise and synthetic data) used without privacy models.
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1 INTRODUCTION

S INCE the turn of the century, we are fully immersed
in the information society. Most human activities leave

digital traces that someone collects and stores. Social media,
the internet of things, bank transactions, purchases at stores
are just a few ways of gathering data on people. Such a
massive data collection has many advantages: increased
business opportunities, better and more rigorous research
and, in general, rosier prospects of improving the well-being
of the human race.

Yet, accumulating, sharing and publishing personally-
identifiable information (PII) has also a disquieting side, as
it invades the privacy of the subjects to whom PII relate; a
famous example is the teenager pregnancy guess reported
in [14]. Data protection legislation, epitomized by the EU
General Data Protection Regulation [21], tries to protect
citizens by restricting the accumulation of PII. Anonymizing
PII, i.e. turning them into data that are not personally
identifiable but still retain substantial analytical utility, is
a way to enable data analysis, sharing and even publishing
without violating the data protection laws.

Anonymization for privacy-preserving data publishing
is also known as statistical disclosure control (SDC, [25]).
The usual setting in anonymization is for a data controller
(the entity that manages and releases the data, and often
owns them) to hold the original data (with the original re-
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sponses by the subjects) and modify them to reduce the dis-
closure risk. Then the controller publishes the anonymized
data or shares them with users, typically data analysts or
researchers —who expect the anonymized data to be still
useful. It may occur that some of the users behave as intrud-
ers and try to perform disclosure attacks on the anonymized
data. Disclosure can be of two types:

• Re-identification disclosure, whereby the intruder de-
termines the subject to whom an anonymized data
item corresponds;

• Attribute disclosure, in which the anonymized data
help the intruder to estimate the value of a confi-
dential attribute for a certain subject.

Data at the individual level, such that each record cor-
responds to one individual subject (person, enterprise, etc.),
are known as microdata. From microdata, other formats can
be derived, such as tables (the traditional output of national
statistical institutes) and on-line queryable databases (that
answer statistical queries on an underlying microdata set).
Here, we will focus on microdata.

The traditional approach to anonymization, still domi-
nant among statistical agencies, can be called “utility-first”:
the controller runs an SDC method [25] with a heuris-
tic parameter choice and with suitable utility preservation
properties on the microdata set. After that, the controller
measures the risk of disclosure, which she can do empir-
ically by attempting record linkage between the original
and the anonymized data sets [37], or analytically by using
generic metrics (e.g. [28]) or metrics tailored to a specific
SDC method (e.g. [18] for sampling-based SDC). If the
controller deems the remaining risk too high, she re-runs the
anonymization method with more confidentiality-stringent
parameters and probably more utility sacrifice.
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Whereas most utility-first SDC methods obtain each
anonymized record by masking a certain original record,
synthetic data are an exception. In this case, the anonymized
data set consists of synthetic/simulated data that preserve
a set of utility characteristics of the original data set. Since
there is no direct mapping between original and synthetic
records, synthetic data are often regarded as the safest
utility-first approach. Unfortunately, this lack of mapping
also makes it difficult to quantify the confidentiality actu-
ally achieved, because many confidentiality metrics need to
compare each anonymized record with its corresponding
original record.

An alternative anonymization approach can be termed
“privacy-first” and is based on the notion of privacy model,
which is a condition dependent on a parameter that guar-
antees an upper bound on the risk of reidentification dis-
closure and perhaps also on the risk of attribute disclosure
by an intruder. Well-known privacy models include k-
anonymity [35] and its extensions, as well as ε-differential
privacy [16]. The controller can enforce a certain privacy
model using one or several specific SDC methods whose
parameters are a function of the model parameters. For
example, k-anonymity can be attained with a combination
of generalization and suppression or with microaggrega-
tion [12]; ε-differential privacy is normally attained via noise
addition. There may be two issues with the privacy-first
approach: on the one side, if the controller chooses too
stringent a parameter for the privacy model, the utility of
the anonymized data may be too low; on the other side, if
she chooses too relaxed a parameter, the protection given by
the privacy model may be insufficient.

Thus, no matter whether the controller follows the
utility-first or the privacy-first approaches, she needs to
measure the utility and the protection provided by a certain
anonymization method. However, SDC methods for micro-
data rely on a diversity of principles [25], and this makes
it difficult to analytically compare their utility and data
protection properties [15]; this is why one usually resorts
to empirical comparisons [11].

Contribution and plan of this paper

In this paper, we present new confidentiality and utility
metrics for anonymized data. Let us briefly define these
notions. We use utility in the customary sense of preserving
the statistical properties of the original data. On the other
hand, confidentiality is one of the two main privacy notions
in statistical disclosure control, the other being anonymity.
Whereas anonymity refers to subjects and hence mainly
to protection against record re-identification, confidentiality
refers to the protection afforded to attribute values against
attribute disclosure.

Specifically, we exploit the unified view of anonymiza-
tion afforded by the permutation model [8] to derive
bounded confidentiality metrics for microdata anonymiza-
tion that are based on the relative amounts of permutation
undergone by the different attributes of a data set. We then
give a bounded utility metric that can be used to evaluate
the trade-off between utility and confidentiality and also
to compare this trade-off among different utility-first SDC
methods as well as among different privacy models.

In Section 2, we give background on anonymity vs
confidentiality, on the permutation model and on canonical
correlation, a primitive that we will use to construct our
confidentiality metrics. Section 3 makes the case for using
permutation to assess confidentiality and utility. In Section 4
we present the confidentiality metrics and in Section 5 we
present the utility metric. Empirical work on the operation
of the new metrics is described in Section 6; we com-
pare the utility-confidentiality trade-offs attained by several
anonymization approaches, including privacy models (k-
anonymity and differential privacy) and utility-first SDC
methods (additive noise, multiplicative noise and synthetic
data). Section 7 reviews related work. Finally, conclusions
and lines of future research are summarized in Section 8.

2 BACKGROUND

2.1 Anonymity vs confidentiality
As mentioned above, we use anonymity to refer to pro-
tection against record re-identification and confidentiality
to protection against attribute disclosure. In fact, a given
anonymity level can co-exist with different levels of confi-
dentiality:

• In k-anonymity, if the original data set happens to be
already k-anonymous (this is quite unlikely, but pos-
sible), then no SDC masking is needed for anonymity.
Even though the anonymity level is k, confidentiality
is zero, because the original attribute values are not
modified. On the other hand, if attributes need to be
heavily masked to attain k-anonymity, confidentality
is in general nonzero.

• In ε-differential privacy, if the original data set or
query have very low sensitivity (they depend very
little on the absence or presence of any single subject
in the data), very little noise needs to be added to
satisfy the model. Thus in this case, anonymity is
inversely proportional to ε, but confidentiality is low.
Conversely, if sensitivity is high, a lot of noise is
added and confidentiality is high even though ε is
the same.

• No matter whether k-anonymity or ε-differential pri-
vacy are used, for the same anonymity level confi-
dentiality can be expected to grow with the num-
ber of attributes. Indeed, in k-anonymity, the more
attributes, the less homogeneous the records in the
k-anonymous classes, and the higher the distortion
when generalizing the records in a class or replacing
them by the centroid record. On the other hand, in
ε-differential privacy, the privacy budget ε needs to
be split among the attributes, which means that the
more attributes, the less budget per attribute and the
more noise needs to be added to each attribute to
achieve ε-differential privacy for the overall data set;
hence, confidentiality increases.

2.2 The permutation model
In [8], we introduced the permutation model of anonymiza-
tion. Consider an original attribute X = {x1, x2, · · · , xn}
and its anonymized version Y = {y1, y2, · · · , yn}. As-
sume X and Y can be ranked (even categorical nominal
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attributes can be ranked, using a semantic distance [9]).
For i = 1 to n: compute j = Rank(yi) and let zi = x(j),
where x(j) is the value of X of rank j. Then call attribute
Z = {z1, z2, · · · , zn} the reverse-mapped version of X . For
example, if original value x1 ∈ X is anonymized as y1 ∈ Y ,
and y1 is, say, the 3rd smallest value in Y , then we take z1
to be the 3rd smallest value in X .

If there are several attributes in the original data set X
and anonymized data set Y, the previous reverse-mapping
procedure is conducted for each attribute; call Z the data
set formed by reverse-mapped attributes. Note that: (i) a
reverse-mapped attribute Z is a permutation of the corre-
sponding original attribute X ; (ii) the rank order of Z is
the same as the rank order of Y . Therefore, any microdata
anonymization technique is functionally equivalent to permuta-
tion (from X into Z) followed by residual noise addition (from
Z into Y). The noise added is residual, because the ranks of
Z and Y are the same. See Figure 1.

2.3 Canonical correlation

Correlations are range-independent metrics that assess the
relationships between pairs of attributes. Canonical corre-
lation analysis (CCA) is a multivariate statistics technique
to measure the correlation between two vectors of random
variables [24]. We will use CCA to assess the correlation
between the original data set X, that can be viewed as a
sample of a vector x of random variables X1, . . . , Xm (the
original attributes), and the anonymized data set Y, that can
be viewed as a sample of a vector y of random variables
Y 1, . . . , Y m (the anonymized attributes).

Denote by CXX and CY Y the respective covariance
matrices of data sets X and Y, and by CXY the covariance
matrix between X and Y.

The canonical correlations between X and Y can be
found by solving the eigenvalue equations{

C−1XXCXYC
−1
Y YCY XwX = ρ2wX

C−1Y YCY XC−1XXCXYwY = ρ2wY
(1)

where the eigenvalues ρ2 are the squared canonical correla-
tions and the eigenvectors wX and wY are the normalized
canonical correlation basis vectors. If both X and Y have m
attributes, there are m non-zero solutions of Equations (1),
that is, there are m canonical correlations ρ1, . . . , ρm, where
we have written them in non-increasing order ρi ≥ ρj if
i ≤ j.

Only one of the two equations (1) needs to be solved, say
the first one, because wX and wY are related as follows:{

CXYwY = ρκXCXXwX

CY XwX = ρκYCY YwY

where

κX = κ−1Y =

√
wT
YCY YwY

wT
XCXXwX

.

Canonical correlation ρ1 turns out to be the correlation
between u1 = xTw1

X and v1 = yTw1
Y , where these linear

combinations of x and y are the ones yielding the highest
correlation. Then ρ2 is the correlation between u2 = xTw2

X

and v2 = yTw2
Y , where these linear combinations yield the

highest correlation among the combinations such that u1

and u2 are uncorrelated and v1 and v2 are uncorrelated.
And so on with ρ3 up to ρm.

See [23] for more details on CCA.

3 THE PERMUTATION MODEL AND THE ASSESS-
MENT OF CONFIDENTIALITY

3.1 Confidentiality and the permutation matrices
According to the permutation model, the protection offered
by an anonymization method comes from two alterations of
the original data X: on the one hand, alteration of the ranks
of attribute values (that is, permutation of X into Z) and,
on the other hand, addition of noise (to transform Z into Y)
such that it does not entail any further change in the ranks.

Hence, the main confidentiality protection principle
turns out to be permutation. More precisely, let us consider
the m permutation matrices that respectively represent the
permutation undergone by each of the m attributes. The
following holds:

• If and only if the m permutation matrices are iden-
tical, permutation is trivial in the sense that entire
records are swapped, which provides no confiden-
tiality.

• If permutation is non-trivial, it provides confidential-
ity as long as the intruder cannot accurately recreate
the m permutation matrices.

The maximum-knowledge intruder assumed in the per-
mutation model knows X and Y. Thus, this intruder is
stronger than any other prior intruder in the data set
anonymization literature. Furthermore, he is purely mali-
cious: even though he already knows the original data set,
he wants to find the mapping between the original and
the anonymized records, in order to recreate the permu-
tation matrices and thereby discredit the controller having
anonymized the data.

In the case of synthetic data, such a natural mapping
between original and anonymized records does not exist,
but the permutation model tells us that replacing original
by synthetic data can still be viewed as a permutation. A
possible approach is for the intruder to sort X by the j-th
original attribute and Y by the j-th anonymized attribute,
for any 1 ≤ j ≤ m, and hypothesize that the i-th sorted
original record corresponds to the i-th anonymized record.
From that hypothesized mapping, the intruder may derive
hypothesized permutation matrices.

In the remainder of this paper, X and Y will represent
the ranks of the attributes in the original and anonymized
data sets, respectively, rather than their magnitude values.
The reason is that our interest lies in the permutation of the
ranks.

3.2 Confidentiality and disclosure
The more accurate the intruder’s estimation of the permu-
tation matrices, the less confidentiality is left and the more
chances for disclosure.

Re-identification disclosure cannot be prevented unless
there is a change in ranks, that is, unless X 6= Z and Z
is not a trivial permutation of X. If X = Z or both data
sets are related by a trivial permutation, it is immediate
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Fig. 1. The permutation model of anonymization

for an intruder to link each anonymized record in Y to
the record in X that has the same ranks for all attributes.
Once the subject’s original record has been determined, re-
identification becomes possible.

Let us now look at protection against attribute disclo-
sure. If X = Z or one data set is a trivial permutation of the
other, then protection comes only from noise addition that
transforms Z into Y but does not change ranks. Unless data
are very sparse, the noise has to be necessarily small, which
affords little protection against attribute disclosure. Thus, in
general, protection against attribute disclosure necessitates
also changes in ranks.

4 BOUNDED CONFIDENTIALITY METRICS

In this section we present three confidentiality metrics. To
compute the first two metrics, one needs to know the map-
ping between records in the original data set and records in
the anonymized data set. The reason is that they are based
on canonical correlations and therefore they require CXY ,
the covariance matrix between X and Y. The third metric is
based on the second metric but it does not need to know the
mapping between records in X and Y. Thus, it is especially
suitable for anonymization via synthetic data.

All three metrics use Spearman’s rank-based correla-
tion. This is a non-parametric (distribution-free) measure
of the strength of the monotonic association between two
attributes. It can be used even when attributes are measured
in ordinal scales. In certain situations (such as when the
relationship between the attributes is not linear and/or their
distributions are not normal), Pearson’s product-moment
correlation —more usual and based on attribute values
rather than ranks— can be unreliable. In these situations,
Spearman’s correlation based on ranks is a better measure
than Pearson’s [22]. Furthermore, Spearman’s correlation
has also been shown to be more robust than Pearson’s in
the presence of outliers [38] and provides higher power for
tests of association [19].

Since the proposed metrics are based on the permu-
tation model, they implicitly assume that the number of
anonymized records is the same as the number of original
records. However, there are SDC methods that may decrease

or increase the number of records. This is not problematic
as long as the party computing the metrics is the controller
who has performed the anonymization —which is the usual
situation, because the purpose of the metrics is to guide
anonymization. Indeed, if the number of records is reduced
due to suppression or sampling, the controller knows which
records have been suppressed and may discard them to ob-
tain an original data set with the same number of records as
the anonymized data set. If the number of records decreases
or increases as a result of synthetic data generation, then
the controller (or in fact anyone) can sample whichever of
the original or anonymized data sets is larger so that the
sampled data set has the same number of records as the
smaller data set.

In the sequel, we assume that the attributes in X and
Y are numerical or ordinal categorical, so that canonical
correlations and covariances can be computed on them.
For nominal categorical attributes, an ontology can be used
whereby a semantically coherent numerical value such as
marginality [9] can be assigned to each nominal category.

4.1 Confidentiality metric from the largest canonical
correlation
A first approach is to measure confidentiality based on the
largest canonical correlation ρ1 between the original data set
X and the anonymized data set Y.

Since canonical correlations are bounded in [−1, 1], we
can define our permutation-based confidentiality metric as

CM1(X,Y) = 1− ρ21, (2)

where, as mentioned above, X and Y contain ranks rather
than values.

According to Expression (2), top confidentiality
(CM1(X,Y) = 1) is attained when ranks of attributes in
Y are independent of the ranks of attributes in X, which
means that the anonymization can be viewed as a random
permutation.

In contrast, zero confidentiality (CM1(X,Y) = 0) is
achieved if the ranks in X and Y are the same for at least one
original attribute Xi and one anonymized attribute Y i, that
is, if the anonymization method leaves all ranks unchanged
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for at least one original attribute. Ranks can stay unchanged
either because the values in Xi and Y i are the same or
because the original values have been perturbed so little that
ranks are unaffected. Note that this notion of confidentiality
is quite strict: leaving a single attribute unprotected brings
the confidentiality metric down to zero. We use the same
notion in the next two metrics.

4.2 Confidentiality metric from all canonical correla-
tions

A more refined approach is to take all m canonical correla-
tions into account when measuring confidentiality. In [27],
[26], a connection between canonical correlations and mu-
tual information is shown if the collated data sets T =
(X,Y), where T has 2m attributes and n records, follow
an elliptically symmetrical distribution (a generalization of
the multivariate Gaussian). The connection is:

I(ui; vi) = ln

(
1

1− ρ2i

)
, (3)

where ui and vi are the linear combinations yielding ρi.
Since the pairs {(ui, vi) : i = 1, 2, . . . ,m} are mutually

uncorrelated, we can add Expression (3) for all pairs to
obtain the mutual information between the original data set
X and the anonymized data set Y:

I(X;Y) =
m∑
i=1

I(ui; vi)

=
m∑
i=1

ln

(
1

1− ρ2i

)
= ln

(
1∏m

i=1(1− ρ2i )

)
. (4)

From Expression (4) and by analogy with Expression (2),
we can derive the following confidentiality metric that has
the advantages of taking all canonical correlations into ac-
count and being related to the mutual information between
the original and the anonymized data sets.

CM2(X,Y) =
m∏
i=1

(1− ρ2i )
[
= e−I(X;Y)

]
. (5)

The second equality between brackets in Expression (5)
can only be guaranteed if the above distributional assump-
tions hold, in which case Expression (5) can be justified
using mutual information.

Regardless of the distributional assumptions,
CM2(X,Y) can be computed from the canonical
correlations and the following holds:

• Top confidentialityCM2(X,Y) = 1 is reached when
the anonymized data set and the original data sets
tell nothing about each other, which is the same
as saying that mutual information between them is
I(X;Y) = 0.

• Zero confidentiality CM2(X,Y) = 0 occurs if at
least one of the canonical correlations is 1. This occurs
if at least one original attribute is disclosed when
releasing Y. Since ρ1 is the largest correlation, this
means that we have CM2(X,Y) = 0 if and only if
ρ1 = 1, in which case we also have that the metric of
Expression (2) is CM1(X,Y) = 0.

4.3 Mapping-free confidentiality metric

The confidentiality metrics defined in Sections 4.1 and 4.2
implicitly assume a known mapping between records in the
original data set X and records in the anonymized data
set Y to compute canonical correlations (in particular to
compute the covariance CXY between X and Y). Such a
mapping is naturally known to the controller if she obtains
each record in Y by masking a record in X, via noise
addition or another SDC method.

However, in the case of synthetic data generation there
is no natural mapping between original and anonymized
values. Indeed, data synthesis generates a complete data
set by using the distributional characteristics of the original
data set, rather than the original data themselves. Many
synthetic data generation procedures have been proposed in
the literature [2], [32], [33], [13]. Since the individual records
in the synthetic data set Y do not depend on the individual
records in the original data set X, the correlation between
original data and synthetic data can be expected to be zero,
subject to the sampling error. Consequently, metrics CM1
and CM2 will always be close to 1, even if the synthetic
data leak the original data (see examples further down in
this section and in Section 6).

In this section, we propose a confidentiality metric that
does not need to know in advance the mapping between
records of X and Y. It uses the permutation model and
more specifically reverse mapping [8], whereby the values
of an anonymized attribute can be viewed as a permuta-
tion of the values of the corresponding original attribute
(plus perhaps a marginal amount of noise). Hence, even if
anonymized values look uncorrelated with the original val-
ues, a permutation linking anonymized and original values
exists. As mentioned in Section 3.1, a maximum-knowledge
intruder knowing X and Y can try to guess the mapping
between records across both data sets by sorting X and Y
by one attribute and evaluating how similar the values of
the rest of attributes are in the sorted data sets.

To reflect the above procedure, we propose the
confidentiality metric CM3 computed by Algorithm 1.

Algorithm 1.

1) For j = 1 to m do:

a) Sort the original data set by its j-th attribute
and let X−j be the projection of the sorted
data set on all attributes except the j-th one.

b) Sort the anonymized data set by its j-th
attribute and let Y−j be the projection of the
sorted data set on all attributes except the j-
th one.

c) Compute CM2(X−j ,Y−j) according to Ex-
pression (5).

2) Let

CM3(X,Y) = min
1≤j≤m

CM2(X−j ,Y−j). (6)

The CM3 confidentiality metric can be readily applied
when Y is synthetic: a mapping between records in X and



6

Y is not needed because one tries all m possible mappings
obtained when using each single attribute as a sorting key.

The following are interesting cases of synthetic data sets:

• Let X be such that attributes Xi and Xj are per-
fectly correlated. Assume that the synthetic Y also
preserves the relationship between Y i and Y j to be
the same as the one between Xi and Xj . In other
words, the permutations from Xi to Y i and from Xj

to Y j are exactly the same. Hence, if we sort X by Xi

and Y by Y i, attributes Xj in X−i and Y j in Y−i

are perfectly correlated. Thus CM2(X−i,Y−i) = 0
and in consequence CM3(X,Y) = 0. However
directly using CM2 on X and Y yields in general
CM2(X,Y) 6= 0.

• If the attributes in X are very highly correlated, any
masking method that preserves the correlation struc-
ture of X in Y cannot permute much. Consequently,
it offers less confidentiality than if the correlation
structure was not preserved. Equation (6) captures
this situation of rank preservation among X and
Y and gives a low value for CM3, even if CM1
and CM2 may be quite high, as illustrated in an
experiment in Section 6.3.

4.4 Summary on confidentiality metrics
CM1 or CM2 should be applied whenever the mapping
between original records and anonymized records is known.
If the mapping is not known, such as in synthetic data, then
CM3 should be applied.

The following holds regarding CM1 and CM2:

• CM2 is a product of terms not greater than 1 whose
first term is CM1. Hence CM2 is not greater than
CM1.

• CM2 = 0 if and only if CM1 = 0, because ρ1 is the
largest correlation.

• Since CM2 takes all canonical correlations into ac-
count, it is a better metric than CM1, although CM1
is easier to compute.

It is difficult to compare CM3 with CM1 or CM2. The
former is intended for use with synthetic microdata in which
there is no linkage between the records in the original and
masked data. When applied to non-synthetic masking meth-
ods, sinceCM3 is based on an arbitrary linkage andCM2 is
based on the true linkage, we normally have CM3 > CM2.
The exception is the case of trivial permutation (swapping
entire records), in which CM3 = 0. Indeed, under trivial
permutation sorting X by any attribute Xi and Y by the
corresponding Y i yields identical sorted data sets, and thus
CM3 = 0.

Therefore, CM3 has the advantage of detecting trivial
permutation, which CM1 and CM2 do not detect.

CM3 can also be viewed as the confidentiality metric
from the intruder’s perspective. Unlike the data controller,
the intruder does not know the true linkage between orig-
inal and masked records and may evaluate confidentiality
using CM3. Interestingly, when synthetic microdata are
released neither the data controller nor the intruder know
the “true” linkage and CM3 is a natural confidentiality
metric for both.

5 A COVARIANCE-BASED BOUNDED UTILITY MET-
RIC

In statistical disclosure control, a confidentiality metric
needs to have a companion utility metric to allow for the
necessary trade-off evaluation between utility and confiden-
tiality. Since in Expressions (2), (5) and (6) we have proposed
confidentiality metrics that are bounded between 0 and 1,
we need companion utility metrics that are also bounded.

After measuring confidentiality in terms of covariance
matrices, it is natural to examine whether covariances can
also conveniently characterize utility. Although some util-
ity metrics focus on the mean error between original and
anonymized data, preserving the covariance structure seems
the most relevant utility feature for all those analyses aimed
at discovering relationships between attributes.

If the attributes in the original and the anonymized
data set are Gaussian (resp. near-Gaussian), then they are
fully (resp. almost fully) described by their second-order
statistics. Hence, in this case the covariance matrix is a
sufficient measure of utility. The more the distribution of
the attributes departs from Gaussian, the more likely higher-
order relationships are that stay uncaptured by the covari-
ance matrix, which nonetheless remains a meaningful utility
measure.

Let a data set X be masked as Y. As said above, we
will consider the ranks of values in both data sets, rather
than the values themselves. If all attributes are numerical
and sparse, one might choose to work on values rather than
ranks in order to capture utility more closely.

In terms of covariances, maximum utility occurs when
CXX = CY Y , in which case the (second-order) relation-
ships between attributes in the original data set are exactly
preserved in the masked data set. To compare how similar
CXX and CY Y are, a rough procedure is to compare their
respective eigenvalues. Let the eigenvalues of CXX be λX1 ,
. . ., λXm, and the eigenvalues of CY Y be λY1 , . . ., λYm. In the
case of a covariance matrix, the first eigenvalue represents
the magnitude of the maximum spread of the data, the sec-
ond eigenvalue is the magnitude of the second largest data
spread in a direction orthogonal to the maximum spread
direction, etc. Thus, eigenvalues appear in non-increasing
order. The case of all m eigenvalues of a covariance matrix
being equal would reflect a set of records having equal
spread in all directions of the m-dimensional space, a sort
of m-dimensional sphere; this occurs when all attributes are
uncorrelated.

Unfortunately, just comparing eigenvalues is not suffi-
cient to assess utility, because eigenvalues capture only the
magnitude of the maximum spreads on orthogonal direc-
tions, but not the directions themselves. Thus, two data sets
can share the same set of eigenvalues while being different:
in particular, if Y is a rotation of X, both data sets have the
same eigenvalues.

For a given spread magnitude (eigenvalue), the direction
of spread is described by the corresponding eigenvector. We
loosely adapt a procedure proposed in [20] for comparing
covariance matrices. Let λX1 , . . ., λXm, resp. λY1 , . . ., λYm be
the eigenvalues of CXX , resp. CY Y in non-increasing order.
Let vX1 , . . ., vXm, resp. vY1 , . . ., vYm be the corresponding
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eigenvectors of CXX , resp. CY Y . Then it holds that

λXj = (vXj )TCXXvXj , j = 1, . . . ,m.

Now consider

λ
Y |X
j = (vXj )TCY Y v

X
j , j = 1, . . . ,m.

Just as each eigenvalue λXj can be viewed as the proportion
of the variance of the attributes in X explained by the
corresponding eigenvector vXj , we can view λ

Y |X
j as the

proportion of the variance of the attributes in Y explained
by vXj . Note that the values λY |Xj , for j = 1, . . . ,m, are not
necessarily non-increasing.

The highest level of utility occurs when λXj = λ
Y |X
j for

j = 1, . . . ,m, which occurs when CXX = CY Y .
Covariance matrices are positive semi-definite, which

means that their eigenvalues are all non-negative. If
λ1, . . . , λm are the eigenvalues of a covariance matrix, let
λ̂1, . . . , λ̂m be their scaled versions so that they add to 1.
Then the extent to which CXX and CY Y differ can be
expressed as

m∑
j=1

(λ̂Xj − λ̂
Y |X
j )2. (7)

Proposition 1. Expression (7) is bounded between 0 and 2.
The maximum occurs when all the variance of X occurs
in a single direction and all the variance of Y also occurs
in a single direction that is orthogonal to the previous
one.

Proof: The minimum is clearly 0. To compute the maxi-
mum, take into account that

∑m
j=1 λ̂

X
j =

∑m
j=1 λ̂

Y |X
j = 1.

Thus, the maximum occurs when two of the squares added
in Expression (7) are 1, and a square can be 1 if it is either
(1 − 0)2 or (0 − 1)2. This situation occurs when: i) all the
variance of X is explained by the first eigenvector vXj , in
which case we have λ̂X1 = 1 and λ̂Xl = 0 for all l = 2, . . . ,m;
and ii) all the variance of Y is explained by one eigenvector
vXj′ with j′ 6= 1 and hence orthogonal to vXj , in which case
λ̂
Y |X
j′ = 1 and the rest of λ̂Y |Xj are zero. �

According to Proposition 1, the maximum difference
between two covariance matrices CXX and CY Y can be
quantified as 2. However, value 2 is reached when CY Y

has a very specific shape with respect to CXX . Rather, we
are interested in finding a measure of utility, that is, to see
how much the covariances in X are preserved in Y. In
this sense, the intuition is that the maximum utility loss
occurs when the covariances of X are completely lost in
Y, or equivalently when any of the m eigenvectors of CXX

explains a fraction 1/m of the variance of Y. In this case,
λ̂
Y |X
j = 1/m for j = 1, . . . ,m, and Expression (7) becomes:

m∑
j=1

(λ̂Xj − 1/m)2. (8)

Proposition 2. Expression (8) is bounded between 0 and
(m− 1)/m.

Proof: The minimum is clearly 0. The maximum is
reached when all the variance of X occurs in a single
direction. In that situation:
m∑
j=1

(λ̂Xj −1/m)2 = (1−1/m)2+(0−1/m)2+. . .+(0−1/m)2

= (m− 1)/m.

�
We are now in a position to define the following utility

measure based on Expressions (7) and (8):

UM(X,Y) =

 1 if λ̂Xj = λ̂
Y |X
j = 1/m for j = 1, . . . ,m;

1−min

(
1,

∑m
j=1(λ̂

X
j −λ̂

Y |X
j )2∑m

j=1(λ̂
X
j −1/m)2

)
otherwise.

(9)
The first case in Expression (9) covers the (very excep-
tional) situation in which both the original data set and
the anonymized data set are perfectly uncorrelated, which
means there is no utility loss. Regarding the second case,
from Propositions 1 and 2, the ratio within the argument of
the minimum function can be greater than 1. By using the
minimum, we make sure UM(X,Y) is bounded between 0
and 1. Thus we have:

• Top utility UM(X,Y) = 1 is reached when informa-
tion loss is zero, which occurs when λ̂Xj = λ̂

Y |X
j for

j = 1, . . . ,m.
• Zero utility UM(X,Y) = 0 occurs if λ̂Xj and λ̂

Y |X
j

differ at least as much as λ̂Xj and the eigenvalues of
an uncorrelated data set.

6 EMPIRICAL WORK

The purpose of the experiments reported in this section
is to highlight that the confidentiality and utility metrics
presented above can be applied to a variety of privacy-first
and utility-first anonymization approaches. Specifically, we
consider privacy models (k-anonymity [35] and differential
privacy [16]) and SDC methods (additive noise, multiplica-
tive noise and synthetic data).

6.1 Privacy models
To test k-anonymity and ε-differential privacy, we took as
original data set the “Census” data set, which contains 1,080
records with numerical attributes [1]. This data set was used
in the European project CASC and in [7], [5], [40], [29], [12],
[10], [6], [36]. Like in [6], [36], we took attributes FICA (Social
security retirement payroll deduction), FEDTAX (Federal
income tax liability), INTVAL (Amount of interest income)
and POTHVAL (Total other persons income). We considered
all four attributes as quasi-identifiers in all of our tests. The
resulting records were all different from each other. Since
all attributes represent non-negative amounts of money, we
took as boundaries for the domain of each attribute 0 and
1.5 times the maximum value of the attribute in the data set.

We then took three versions of the “Census” data set:
one with all 4 attributes, one with 3 attributes (FICA, FED-
TAX and INTVAL) and one with 2 attributes (FICA and
FEDTAX). We separately anonymized the three versions as
follows:

• Achieving k-anonymity for k = 2, 3, . . . , 100 and
k = 200, 300, 400, 500 using the MDAV microaggre-
gation algorithm [12].

• Achieving ε-differential privacy via Laplace noise
addition to unagreggated attribute data for ε= 0.01,
0.1, 1, 10, 25, 50, 100, which covers the usual range
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of differential privacy levels observed in the litera-
ture [17], [3], [4], [30] plus some very large ε values.
For each ε value, five differentially private data sets
were generated and utility and confidentiality met-
rics were averaged over the five data sets.

Figure 2 shows the utility metric and the confidentiality
metrics CM1 and CM2 for the k-anonymized data as a
function of k and the number of attributes. As expected, as
k increases, utility decreases and confidentiality increases.
Also, as anticipated in Section 2.1, for fixed k a decrease of
utility and an increase of confidentiality is observed when
the number of attributes grows.

Figure 3 shows the utility metric and the confidentiality
metrics CM1 and CM2 for the ε-differentially private data
as a function of ε and the number of attributes. As expected,
as ε increases, utility increases and confidentiality decreases.
Also, consistently with Section 2.1, for fixed ε a decrease of
utility and an increase of confidentiality is observed when
the number of attributes grows1.

Note that, since k-anonymity is achieved via microaggre-
gation and ε-differential privacy via noise addition, for both
privacy models the controller knows the correspondence
between each anonymized record and the original record
it derives from. Therefore, it does not make sense for the
controller to use the mapping-free confidentiality metric
CM3.

By superposing Figures 2 and 3 (or rather the numbers
behind them), one can compare the utility-confidentiality
trade-offs achieved by k-anonymity and ε-differential pri-
vacy. For most parameters we tried on the three versions
of the “Census” data set, k-anonymity yields substantially
more utility (above 0.9 for all k) but substantially less
confidentiality than differential privacy.

With privacy models, the data controller is blind re-
garding any issue other than privacy. In addition, it is also
very difficult to compare across privacy models. One of the
objectives of this paper is to propose measures that inform
the controller on other aspects of the masking procedure,
namely utility and confidentiality. This allows the controller
to compare the trade-offs offered by different privacy mod-
els and to evaluate whether a lower/higher level of privacy
may be warranted for the data set. The decision regarding
the right levels of anonymity, confidentiality and utility
must be made by the data controller. Our measures give
him information to make that decision.

1. The particular data set that we used in this study consists of
skewed economic data. The range and hence the global sensitivity of
attributes in the data set are large. As a result, the variance of the noise
added is also relatively large even when ε = 100. In addition, with
multiple attributes, the ε budget must be split among the attributes,
effectively reducing the budget for each attribute. For four attributes,
the variance of the Laplace noise added is four times the variance of the
Laplace noise added for two attributes. Consequently, the correlation
between the original and masked data in the four-attribute case is
substantially lower than in the two-attribute case. Furthermore, canon-
ical correlation evaluates correlation among all original and masked
attributes simultaneously. Not only is the variance added in the case
of four attributes four times larger than in the case of two attributes,
but in the former case four masked attributes are compared against
four original attributes, which also contributes to a greater utility loss
than comparing two masked attributes against two original attributes
as in the latter case. If utility is an important consideration, the data
controller may wish to consider an alternative mechanism for imple-
menting differential privacy when there are many attributes.

TABLE 1
Confidentiality and utility metrics for synthetic data generated with the

IPSO method on two original data sets: “Census” (first row) and a
simulated data set with highly correlated attributes (second row)

Data set UM CM1 CM2 CM3

Census 0.9638 0.9904 0.9849 0.6673
Simulated 1.0000 0.9914 0.9913 0.0277

6.2 Noise-based SDC methods

We further tried our metrics on two typical ways of utilizing
noise for statistical disclosure control: noise addition and
noise multiplication [25]. The results are shown in Figures 4
and 5. In the former, an anonymized attribute Y is obtained
as Y = X + EX , where X is the corresponding original
attribute and EX is a noise random variable distributed
as N(0, ασX), with 0 < α ≤ 1 and σX the standard
deviation of X . In multiplicative noise, Y is obtained as
Y = XEX , where X is the corresponding original at-
tribute and EX is a noise random variable generated from
Uniform(1 − β, 1 + β), with 0 ≤ β < 1. As it could be
expected, it can be seen that, as the noise standard deviation
increases, the utility metric decreases and the confidentiality
metrics increase. For additive noise, these effects are more
pronounced: the reason is that for multiplicative noise the
changes in the ranks are smaller than for additive noise. Like
above, we did not use CM3 because in noise addition and
multiplication the controller knows the mapping between
original and anonymized records.

6.3 Synthetic data

Finally, we have tried CM3 on synthetic data generated
using the IPSO method [2]. IPSO generates a synthetic data
set with exactly the same means and covariances as the
original data set.

The first row of Table 1 shows the confidentiality metrics
CM1, CM2 and CM3 as well as the utility metric UM
achieved by IPSO when run on “Census” as the original
data set (average of 100 replications). The results tell that the
synthetic data have high utility, which was to be expected
because IPSO preserves covariances. Regarding confiden-
tiality, both CM1 and CM2 give very high values, but
CM3 is substantially lower because it explores all possible
mappings. This confirms what we said above: for synthetic
data, CM1 and CM2 should not be used, as they need a
mapping and no true mapping is known.

The second row of Table 1 shows the metrics when IPSO
is run on a simulated data set also with 1,080 records and
four attributes, but with very high correlation (0.99) between
the attributes. Like for “Census”, the results are the average
of 100 replications of IPSO. The synthetic data provide very
high utility UM , as expected, but the confidentiality accord-
ing to CM3 is very low. Note that CM1 and CM2 are high
because they are misled by the lack of a natural mapping in
synthetic data. Thus, CM3 is the only confidentiality metric
that detects how high is the risk of disclosure in IPSO (or in
any other synthetic data generation method) in the case of
highly correlated original attributes.
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Fig. 2. Utility metric (top) and confidentiality metrics CM1 (bottom left) and CM2 (bottom right) for k-anonymized data as a function of k and the
number of attributes

6.4 Summary of experimental results
The confidentiality and utility measures proposed in this
paper are influenced by the characteristics of the data set.
Hence, the results of the above experiments are not general-
izable to data sets, SDC methods, or parameter choices other
than those considered. However, the above empirical work
does illustrate two general facts:
• The application of the proposed confidentiality and

utility metrics to substantially different privacy mod-
els and SDC methods shows that the metrics are con-
sistent. If the confidentiality parameters of the mod-
els and/or methods are set for higher confidentiality
(higher k for k-anonymity, lower ε for differential
privacy, higher noise standard deviation for noise
methods), our metrics detect more confidentiality
and less utility. And conversely if parameters are set
for lower confidentiality.

• Our metrics have been shown helpful to compare
not only how different parameter values affect the
confidentiality-utility trade-off of a certain privacy
model or SDC method, but even more interestingly,
to compare the trade-offs across different privacy
models and/or SDC methods.

7 RELATED WORK

Given that the specific analyses data users will perform on
anonymized data are seldom known by the data protector

at the time of anonymization, there has been a sustained
interest in the literature on generic utility metrics. On the
other hand, there has also been substantial activity to de-
sign confidentiality metrics that could circumvent the costly
empirical approach based on record linkage.

In [11], a score was proposed that combines utility loss
and disclosure risk (confidentiality loss) metrics. The ap-
proach to disclosure risk assessment in that paper relies on
record linkage experiments. On the other hand, utility loss
is measured by comparing records and some statistics in the
original data set and the anonymized data set. Specifically,
the mean square error, the mean absolute error and the mean
variation are used as comparison criteria. The resulting util-
ity loss measures are unbounded and thus hard to compare
with disclosure risk.

In [31], a bounded utility loss metric based on prob-
abilities is presented. The metric is the probability that
the absolute value of the discrepancy between a sample
statistic Θ̂ and the corresponding population parameter θ
is less than or equal to the discrepancy |θ̂ − θ| measured
in the anonymized data set. The intuition is that, the more
different from θ is the value θ̂ of the sample statistic in
the anonymized data set, the more utility is lost when
publishing the anonymized data set. Being bounded, this
metric can be readily compared with the risk of disclosure,
that cannot be above 100%. However, it has the drawbacks
of being only applicable to continuous microdata and not
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benefiting from the generality offered by the permutation
model.

In [39], another generic utility loss metric is proposed
that relies on propensity scores. The original microdata
and the anonymized microdata are merged and a binary
attribute T is added that takes value 0 for the original
records and value 1 for the anonymized records. Then T
is regressed on the rest of attributes. Let T̂ be the adjusted
attribute and let the propensity score p̂i of record i of the
merged data be the value of T̂ for record i. Then utility
is high if the propensity scores of the anonymized and the
original records are similar. This metric is attractive because
it focuses on the actual microdata rather than on prese-
lected statistics. However, it has the drawbacks of being
unbounded and being dependent on the specific regression
model chosen.

In [34], power means were used to obtain confidentiality
and utility metrics based on the permutation model. The
idea is to aggregate the absolute permutation distances
p1, . . . , pn resulting from anonymizing the values of an
attribute in the n records of a data set:

J((p1, . . . , pn), α) =

{ (
1
n

∑n
i=1 p

α
i

) 1
α for α 6= 0;

Πn
i=1p

1
n
i for α = 0,

(10)

where α < 1 turns the above expression into a disclosure
risk metric and α > 1 into a utility loss metric. Indeed, the
more α approaches −∞, the greater is the weight of smaller
permutation distances in Expression (10); since disclosure
occurs when permutation distances for some values are
too small, we have a disclosure risk metric when α is
small. On the other hand, the more α approaches +∞,
the greater is the weight of larger permutation distances
in Expression (10); since large permutation distances are
the ones that most deteriorate utility, we have a utility loss
metric when α is large. Thus, for α < 1, the greater the value

of J((p1, . . . , pn), α), the more disclosure risk, whereas, for
α > 1, the greater the value of J((p1, . . . , pn), α), the more
utility loss.

These power-means metrics may be used to compare
the disclosure protection and the information loss achieved
by two different anonymization methods M and M ′ (or
by the same method M with different parameters parms
and parms′). However, they have the shortcomings of being
intrinsically univariate (they operate independently for each
attribute) and unbounded. In contrast, in this paper, we
have proposed bounded metrics that take all attributes of
the data set into account.

8 CONCLUSIONS AND FUTURE WORK

The permutation model is useful to capture the underlying
nature of microdata anonymization, which turns out to be
essentially permutation (altering ranks) plus some residual
noise (to alter values and make them different from the
original ones). It seems natural to leverage this general
model to derive general metrics for utility loss and disclo-
sure risk. This is what we have done in this paper, with
the additional feature of providing bounded metrics that
allow easily evaluating the trade-off between utility loss and
disclosure risk for any anonymization method.

We have presented experimental work that shows that
our metrics provide results that are consistent with the intu-
ition for many anonymization approaches in the literature,
including privacy models as well as SDC methods based on
noise and synthetic data. In particular, we have been able
to compare the utility-confidentiality trade-offs achieved
by these widely heterogeneous methods, which would not
be possible without the confidentiality and utility methods
developed in this study.

Future research lines may include comparing the results
of our metrics with those obtained with the alternative
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metrics in the literature mentioned in Section 7. Also, it
may be interesting to compare the confidentiality metrics
with the risk estimated via record linkage and the utility
loss metric with the utility for specific data uses.

ACKNOWLEDGMENTS

Thanks go to Sergio Martı́nez for generating the k-
anonymous and the differentially private data sets used
in the empirical section. Partial support for this work has
been received from the Government of Catalonia (ICREA
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