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Abstract

A Roman dominating function on a graph G = (V(G), E(G)) is a func-
tion f : V(G) — {0, 1,2} satisfying the condition that every vertex u for
which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The
Roman dominating function f is an outer-independent Roman dominating
function on G if the set of vertices labeled with zero under f is an inde-
pendent set. The outer-independent Roman domination number ~,;z(G) is
the minimum weight w(f) = >, cy(q) f(v) of any outer-independent Ro-
man dominating function f of G. A vertex cover of a graph G is a set of
vertices that covers all the edges of G. The minimum cardinality of a ver-
tex cover is denoted by a(G). A graph G is a vertex cover Roman graph
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if v0ir(G) = 2a(G). A constructive characterization of the vertex cover
Roman trees is given in this article.

Keywords: Roman domination, outer-independent Roman domination, ver-
tex cover, vertex independence, trees.
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1. INTRODUCTION

Throughout this work we consider G = (V, E)) as a simple graph of order n = |V]|.
That is, a graphs that is finite, undirected, and without loops or multiple edges.
Given a vertex v of G, Ng(v) represents the open neighborhood of v, i.e., the set
of all neighbors of v in G, and the degree of v is d(v) = |[Ng(v)|. If S C V(G),
then the open neighborhood of S is Ng(S) = U,cg Na(v). Whenever it is no
confusion, we shall skip the subindex G in the notations above. The minimum
and mazimum degrees of G are denoted by §(G) and A(G), respectively. For
any two vertices u and v, the distance d(u,v) between u and v is the length of a
shortest u — v path.

A leaf vertex of G is a vertex of degree one. A support vertex of G is a vertex
adjacent to a leaf; a weak support verter is a support vertex adjacent to exactly
one leaf; a strong support vertex is a support vertex that is not a weak support;
a strong leaf vertex is a leaf vertex adjacent to a strong support vertex; and a
semi-support vertex is a vertex adjacent to a support vertex that is not a leaf.
The set of leaves is denoted by L(G); the set of support vertices is denoted by
S(G); the set of weak support vertices is denoted by S,,(G); the set of strong
support vertices is denoted by Ss(G); the set of strong leaves is denoted by Ls(G);
and the set of semi-support vertices is denoted by SS(G).

A set S of vertices is independent if S induces an edgeless graph. An inde-
pendent set of maximum cardinality is a mazimum independent set of G. The
independence number of G is the cardinality of a maximum independent set of
G and is denoted by (G). An independent set of cardinality S(G) is called a
B(G)-set. A wvertex cover of G is a set of vertices S that covers all the edges,
i.e., every edge is incident with a vertex of S. The minimum cardinality of a
vertex cover is denoted by a(G). A vertex cover of cardinality o(G) is called an
a(G)-set.

A dominating set of a graph G is a set S of vertices of G such that every
vertex in V(G)\ S is adjacent to at least one vertex in S. The domination number
of G is the minimum cardinality of a dominating set of G and is denoted by v(G).
The literature on the subject of domination in graphs up to the year 1997 has
been surveyed and detailed in the two books [4, 5].
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A Roman dominating function (RDF) on a graph G is a function f : V(G) —
{0,1, 2} satisfying that every vertex u for which f(u) = 0 is adjacent to at least
one vertex v for which f(v) = 2. Notice that f generates three sets Vp, V1 and V5
such that V; = {v € V(G) : f(v) =i} fori =0,1,2. In this sense, from now on we
will write f = (Vy, V1, V) so as to refer to the Roman dominating function f. The
weight of an RDF is the value w(f) = f(V(G)) = X cv(q) f(w) = [Vi| + 2[V2].
The Roman domination number yr(G) is the minimum weight of an RDF on
G. A vertex v € V5 is said to have a private neighbor if there exists a vertex
w € N(v)NV, for which N(w)N(V1UVa) = {v}. Roman domination in graphs was
formally defined by Cockayne, Dreyer, Hedetniemi, and Hedetniemi [2] motivated,
in part, by an article in Scientific American of lan Stewart entitled “Defend the
Roman Empire” [9].

Once the seminal article [2] appeared, the topic immediately attracted the at-
tention of several researchers, which has made that Roman domination in graphs
is nowadays very well studied. Clearly, Roman domination is strongly related
to domination in graphs. Thus, a relatively straightforward relationship (see [2])
states that for any graph G, v(G) < yr(G) < 27(G). The particular case of
graphs satisfying the equality yr(G) = 2v(G) motivated the definition of the so
called Roman graphs, i.e., graphs G for which yr(G) = 27(G). An open prob-
lem concerning characterizing all the Roman graphs still remains open although
some contributions to this topic are already known. Perhaps, the most remark-
able contribution in this direction appeared in [6], where all the Roman trees
were characterized.

An RDF is an outer-independent Roman dominating function (OIRDF) on
G if V} is an independent set. The outer-independent Roman domination number
Yoir(G) is the minimum weight of an OIRDF on G. An OIRDF with weight
Yir(G) is called a 7,r(G)-function. The concepts above were introduced and
studied in [1]. In such work was proved that for any graph G, a(G) + 1 <
70ir(G) < 2a(G) and those graphs achieving the equality in the upper bound
were called vertex cover Roman graphs (VC-Roman graphs for short). Hence, an
open problem was then raised up. That was, characterizing all the VC-Roman
graphs. In this sense, and following with the traditions of Roman trees and
some other works in the same style, in this work, we give a characterization of
VC-Roman trees.

In connection with this, we make the following remark commented by a
referee of this work, and we cite exactly his/her words: “By the definition of
vertex cover sets, all the vertices outside the vertex cover set form an independent
set too. Thus, if we add the property of vertex cover on a Roman dominating
function, then it is natural to consider an outer-independent Roman dominating
function. In 1998, the paper Characterization of graphs with equal domination
and covering number by Randerath and Volkmann (see [8]) showed a related result.
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By combining the results of [6], I conjecture that this problem is already solved by
results of the mentioned two papers’. In one direction this is true, but as we next
show, the contrary direction is not true.

In [8], the graphs G of minimum degree one for which a(G) = v(G) were
characterized. Also, in [6], the trees T for which yr(T") = 2v(T') were character-
ized. A combination of both properties, for a tree T, means that yr(T") = 2a(T).
Now, since Yg(G) < Yoir(G) and v,r(G) < 2a(G) are satisfied for any graph
G, we can deduce that 2a(T) = Yr(T) < Yir(T) < 2a(T). Thus, there must
be equalities in the chain of inequalities above, and therefore v,ir(T) = 2a(T),
or equivalently, 7" is a VC-Roman tree (notice that this is satisfied in general for
any Roman graph of minimum degree one). Now, for the contrary, if we assume
that a tree 7" is a VC-Roman tree (7,,r(T) = 2a(T')), then this does not mean
T is a Roman tree for which a(7T) = v(T). As an example, we can observe the
VC-Roman tree T in Figure 1 for which a(T) = v(T) = 3, vir(T) = 6 and

Yr(T) = 5.
O T O O O
O O O

Figure 1. A VC-Roman tree T' for which vo;z(T) = 6, a(T) = (T) = 3 and yr(T') = 5.

Consequently, we observe that the trees belonging to the intersection family
of the families given in [6] and [8] is a subfamily of the family of trees which we
construct in our work.

2. RESULTS

The next theoretical characterization for VC-Roman graph was given in [1]. How-
ever, such characterization lacks of usefulness, since it is precisely based on finding
a Yoir(G)-function.

Proposition 1 [1]. A graph G is a VC-Roman graph if and only if it has a
'YOiR(G)-funCtiON f = (‘/Oa Vl) VYQ) with ‘/1 = @

The following well-known result, due to Gallai [3], states the relationship
between the independence number and the vertex cover number of a graph.

Theorem 2 (Gallai, [3]). A vertex set S of a graph G is independent if and only
if the set V(G)\ S is a vertex cover. Moreover, a(G) + B(G) = |[V(G)].

By the definition of VC-Roman graphs, Proposition 1 and Theorem 2, the
next results follow.
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Proposition 3. Let G be a VC-Roman graph and let f = (Vo, 0, V32) be a voir(G)-
function. Then

(i) Vb is a B(G)-set.
(ii) Va is an o(G)-set.
(iii) Ewvery vertex in Vo has a private neighbor.

Proof. First notice that 2|Va| = v,ir(G) = 2a(G) and so, |Va| = a(G). More-
over, by Theorem 2, it follows |Vp| = B(G), which completes the proof of (i)
and (ii). On the other hand, let v be a vertex belonging to V2. By definition,
N(v) N Vh # 0. Now, suppose that v does not have a private neighbor. Hence,
every vertex w € N(v) N Vp satisfies that {v} C N(w) N Va. Consider a function
= Vg, V{,Vq) = (Vo, {v}, V2 \ {v}). Since Vj = Vp, we observe that f’ is an
OIRDF on G and satisfies that w(f’) < w(f), a contradiction. Thus, every vertex
in V5 has a private neighbor, and the proof of (iii) is complete. [

One consequence of the proposition above is the next theorem, which will
further play an important role.

Theorem 4. Let G be a VC-Roman graph and let f = (Vo,0,V2) be a voir(G)-
function. Then V(G) = L(G) U S(G) U SS(G), where Vy = L(G) U SS(G) and
Vo = S(G).

Proof. We first note that Proposition 3(iii) implies that every vertex belonging
to Vo is a support vertex of G since every vertex of Vo has a private neighbor
x € Vp which has no neighbor in Vj. Thus, x must be a leaf and so, Va2 C S(G).
Now, suppose that there exists a support vertex u belonging to V. As V4 is an
independent set, the leaf w adjacent to u belongs to V5, but then w does not
have a private neighbor, which is a contradiction with Proposition 3(iii). Thus,
every support belongs to V5 and therefore, Vo = S(G). Also, the independent
set Vp satisfies that Vy C N(V2), which means that Vp = L(G) U SS(G) and, in
consequence, that V(G) = L(G) U S(G) U SS(G), which ends the proof. |

Corollary 5. If G is a VC-Roman graph, then §(G) = 1.

We next continue with some other extra properties of VC-Roman graphs
which will further on be useful.

Proposition 6. Let G be a VC-Roman graph with SS(G) = 0. Then every
support vertex is a strong support vertez.

Proof. Let f = (Vo,0,V3) be a v,;r(G)-function. By Theorem 4 we have f =
(L(G),0,S(G)). Suppose there exists a support vertex s satisfying |N(s) N
L(G)| = {h}. Now, it is readily seen that f' = ((L(G)\{h})U{s}, {h}, S(G)\{s})
is an OIDRF on G of weight less than w(f), a contradiction, since f is a v,;r(G)-
function. Thus, every support vertex is a strong support vertex. [ |
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Proposition 7. Let G be a graph containing a strong support vertex v. Then
there exists a voir(G)-function f satisfying f(v) = 2.

Proof. Let v € S5(G) and let hi,ha € N(v) N L(G). Let f be a vir(G)-
function satisfying f(v) # 2. First, we note that f(v) # 1, (otherwise f(v) =1
implies that f(h1) = f(he) = 1 and the function g satisfying that for every
u € V(G)\ {v, h1,ha}, g(u) = f(u), g(v) = 2,9(h1) = g(ha) = 0 is an OIRDF
with weight less that f, which is a contradiction). Thus, it must happen f(v) = 0,
which implies f(h1) = f(he) = 1. Now, by considering a function as that g
defined above, we can clearly note that g is an OIRDF with the same weight as
f. Therefore, g is a v,;r(G)-function that satisfies the necessary requirements. m

Corollary 8. Let G be a graph containing a strong leaf vertex v. Then there
exists a Yoir(G)-function f satisfying f(v) = 0.

Observation 9. Let T be a tree where V(T) = L(T)US(T)USS(T) and L(T)U
SS(T) is an independent set. Then

(i) L(T)u SS(T) is a B(T)-set.
(ii) S(T) is an a(T)-set.
(iti) f = (L(T)USS(T),0,S(T)) is an OIRDF.

In order to present our characterization we need the following definitions. A
near outer-independent Roman dominating function, abbreviated near-OIRDF,
of a graph G, relative to a vertex v, is a function f = (Vj, V1, Va) satisfying the
following.

(i) v € V.
(ii) V is an independent set.
(iii) Every vertex u € Vi \ {v} is adjacent to at least one vertex in V5.

The weight of a near-OIRDF of G relative to v is the value f(V(G)) =
> wev f(u). The minimum weight of a near-OIRDF on G relative to v is called
the near outer-independent Roman domination number of G relative to v, which
we denote as 7, (G;v). Notice that, for every vertex v of G we have v,r(G) <
Vi r(Giv) + 1. We now define a vertex v to be a near stable vertex in G, if
Yoir(G) < Al r(G;v). In this sense, the set of near stable weak support vertices
of G is denoted by S)*(G). For example, every weak support of a path Ps is a
near stable weak support vertex. We remark that the terminology of “near” style
parameters and “near stable” vertices with respect to a parameter is a very well
known and commonly used technique in domination theory. In order to simply
mention a recently published example where this was used, we can for instance
refer to [7].

With all the tools presented till now, we are then able to begin with the
characterization of the family of VC-Roman trees. To this end, we need the
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following operations Fi, Fy, F3, F) and F5 on a tree T' (by attaching a path P
to a vertex v of T we mean adding the path P and joining v to a vertex of P).
Also, we assume that [S(T")] > 1, since the case |S(T")| = 0 ( when T is a path
P, and T is a VC-Roman tree) is straightforward.

Operation Fj. Attach a path P; to a vertex v € S(T).
Operation F3. Attach a path P; to a vertex v € Lg(T).

Operation Fj3. Attach a path P3 to a vertex v € SS(T'), by joining v to the
support vertex of Ps.

Operation Fy. Attach a path P3 to a vertex v € Ss(T') U S}}*(T), by joining v
to the support vertex of Pj.

Operation F5. Attach a path P5 to a vertex v € S5(T") U S]}*(T), by joining v
to the semi-support vertex of Ps.

Let F be the family of trees defined as F = {T' | T = P3 or T is obtained
from P3 by a finite sequence of the operations Fy, Fy, F3, Fy or F5}. We first show
that every tree of the family F is a VC-Roman tree.

Lemma 10. IfT € F, then T is a VC-Roman tree.

Proof. We proceed by induction on the number r(T") of operations required to
construct the tree T. If »(T) = 0, then T = P53 is a VC-Roman tree. This
establishes the base case. Hence, we now assume that k£ > 1 is an integer and
that each tree T' € F with r(T") < k satisfies that 7" is a VC-Roman tree.

Let T € F be a tree with 7(7') = k. Then T can be obtained from a tree
T" € F with r(T") = k — 1 by one of the operations F, Fy, F3, F; or F5. We shall
prove that 7" is a VC-Roman tree. To this end, and using Theorem 4, we consider
the v,ir(T")-function " = (L(T") U SS(T"),0,S(T")) (notice that such f’ exists
because T" is a VC-Roman tree). We consider the following situations.

Case 1. T is obtained from 7" by operation Fj. Assume T is obtained from
T" by adding the vertex u and the edge uv where v € S(T"). Notice that u
is a leaf of T. By using Observation 9 we see that the function f = (L(T") U
SS(T")U{u},0,S(1T")) = (L(T)USS(T),0,S(T)) is an OIRDF on T with weight
w(f) = Yoir(T"). So, Yeir(T) < w(f) = Yoir(T"). Now, since u € L(T) and
v € S(T"), it follows v € S5(T). So, by Proposition 7 there exists a v,;r(T)-
function g such that g(v) = 2 and for every leaf h adjacent to v, g(h) = 0. Thus,
Yoir(T) = w(g) = g(V(T")) + g(u) = g(V(T")). Note also that g restricted to
V(T") is an OIRDF on T”, which leads to v,g(T") < g(V(T")) = voir(T). Thus,
we get Yoir(T) = Yoir(T"). On the other hand, it is easy to see that a(T) = a(T")
and by using the hypothesis v,z (T") = 2a(T”") (because T” is a VC-Roman tree),
we deduce Yoir(T) = 20(T) and T is a VC-Roman tree.



274 A. CABRERA MARTINEZ, D. KuziaAk AND I.G. YERO

Case 2. T is obtained from 7" by operation Fy. Assume T is obtained from
T' by adding the path ujus and the edge uyv where v € Lg(T”). Notice that
up € S(T) and ug € L(T), and let uw € Sg(T") N N(v). By using Observation 9,
we see that the function f = (L(T") U SS(T") U {ua},0, S(T") U{u1}) = (L(T) U
SS(T),0,S(T)) is an OIRDF on T with weight w(f) = veir(T") + 2 and so,
Yoir(T) < w(f) = Yoir(T’) + 2. On the other hand, let g be a v,z(T)-function
such that the number of vertices labeled with one under ¢ is minimum. Now
consider the function g restricted to V(T"), say ¢’. Suppose ¢’ is not an OIRDF on
T'. Hence, this can only happen when ¢'(v) = 0 and ¢'(u) # 2. Thus, it must be
g(u1) = 2 and ¢'(u) = 1, which also leads to ¢’(u') = 1 for any leaf v’ € N(u)\{v}
(note that at least one of such leaves exists because u € Ss(7")). So, we can
redefine g by making g(u) = 2 and g(u’) = 0 and obtain a 7,z (T")-function with
a smaller number of vertices labeled with one under g, which is a contradiction.
Thus, ¢’ is an OIRDF on 7" and so, g(V(T")) = ¢'(V(T")) = w(¢’) > Yeir(T").
Moreover, we observe that 1 < g(u1) + g(uz) < 2. If g(u1) + g(uz2) = 1, then this
can only occur when g(u1) = 0 and g(ug) = 1, which leads to g(v) = 2 and g(u)
can take any value. In such case, we can again redefine g by making g(u) = 2,
g(v) = g(u') =0, g(u;) = 2 and g(uz) = 0 and obtain a new function g” which
satisfies one of the following situations.

e ¢’ has weight smaller than g ( if g(u) # 0 and u has only one leaf neighbor),
and this is not possible.

e ¢” has the same weight as g (if g(u) = 0 or u has more than one leaf neighbor),
but a smaller number of vertices labeled with one under ¢g” than g, and this
is a contradiction with the choice of g.

Thus, the only possibility is that g(ui) + g(u2) = 2. So, we obtain v,r(T) =
w(g) = g(V(T") + g(u1) + g(u2) > 7oir(T") + 2, and consequently, vo;r(T) =
’ym-R(T/) + 2.

By using again Observation 9, Proposition 3 and Theorem 4 we see that
a(T) = |S(T)| = |S(T")] + 1 = «(T") + 1. By hypothesis we know ~,;r(T") =
2a(T") (because T" is a VC-Roman tree). Therefore, voir(T) = Yoir(T') + 2 =
20(T")+2=2(a(T) — 1) + 2 = 2(T') and T is a VC-Roman tree.

Case 3. T is obtained from 7" by operation F3. Assume T is obtained from
T’ by adding the path ujugusg and the edge ugv where v € SS(T"). Notice that
ug € Ss(T) and uy,us € Lg(T). By Observation 9 we get that the function
f = (LT uSS(T) U {uy,us},0,S(T") U{uz}) = (L(T) U SS(T),0,S(T)) is
an OIRDF on T with weight w(f) = v,ir(T’) + 2 and so, vuir(T) < w(f) =
Yoir(T') + 2. On the other hand, based on Proposition 7 and Corollary 8, we
consider a 7o;r(T)-function g satisfying that g(uz2) = 2 and g(u1) = g(uz) = 0,
and such that number of vertices labeled with one is minimum. Again, we consider
the function g restricted to V(T”), say ¢’. If ¢’ is not an OIRDF on 7T’, then
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this can only happen when g(v) = 0 and all its neighbors in 7" have labels
different from two. Let u be a support adjacent to v and let u’ be a leaf adjacent
to w. It must clearly happen that g(u) = 1 (it cannot be g(u) = 0 because
g(v) = 0) and g(u') = 1. Thus, by a similar reasoning as in some cases above,
we redefine g by making g(u) = 2 and g(u’) = 0, which is a contradiction with
the choice of g, since we obtain a function with a smaller number of vertices
labeled with one. Thus, ¢’ is an OIRDF on 7" and so, g(V(T")) = ¢ (V(T")) =
w(g') > Yoir(T"). Moreover, we see that g(uy) + g(uz2) + g(us) > 2. Therefore,
Yoir(T) = w(g) = g(V(T")) + g(w1) + g(u2) + g(us) > Yoir(T') + 2 and, as a
consequence, Yoir(T) = Yoir(T') + 2.

Again, by Observation 9, Proposition 3 and Theorem 4 we get «(T) =
IS(T)] = |S(T)|+1 = «(T') + 1. Tt is known by hypothesis that v,;r(7")
2a(T") (because T" is a VC-Roman tree). Therefore, 7o;r(T) = Yoir(T') + 2 =
20(T")+2=2(a(T) — 1) + 2 =2c(T) and T is a VC-Roman tree.

Case 4. T is obtained from T’ by operation Fy. Assume T is obtained from
T’ by adding the path ujusus and the edge ugv where v € Ss(T")USPS(T"). Also,
let w be a leaf-neighbor to v. Notice that us € Sg(T") and uy,us € Ls(T). By
using Observation 9, it is readily seen that the function f = (L(T") U SS(T") U
{uy,us},0,S(T")U{uz}) = (L(T)USS(T), 0, S(T)) is an OIRDF on T with weight
w(f) = Yir(T") + 2 and s0, Yoir(T) < w(f) = Yoir(T") + 2. Now, we consider
the next two cases.

Case 4.1. v € S¢(T"). In concordance with Proposition 7 and Corollary 8,
we consider a o;r(T")-function g satisfying that g(v) = g(u2) = 2 and g(u;) =
g(u3z) = 0. Now, we notice that the function g restricted to V(1"), say ¢, is
an OIRDF on T’. Thus, it is satisfied that v,;z(T") < ¢'(V(T")) = g(V(T")).
Moreover, since g(u1) + g(uz) + g(us) = 2 we get oin(T) = w(g) = g(V(T')) +
g(ur)+g(u2)+g(ug) > voir(T')+2 and, as a consequence, Yoig(T) = Yoir(T") +2.

Case 4.2. v € SI¥(T"). In concordance with Proposition 7 and Corollary
8, we consider a v,r(T)-function h such that the number of vertices labeled
with one under A is minimum and satisfying h(ug) = 2, h(ui) = h(ug) = 0.
If h(v) = 2, then, by using some similar procedure as in Case 4.1 we obtain
Yoir(T) = Yoir(T") + 2. Thus, we notice that h(v) = 0 (otherwise, if h(v) = 1,
then the function f’ defined by f'(v) = 2, f'(w) = 0 and f'(x) = h(z) for
every x € V(T) \ {v,w}, is a vo;r(T)-function with a smaller number of vertices
labeled with one under h, which is a contradiction). Now consider the function h
restricted to V(T"), say h'. It is easy to see that h’ is a near-OIRDF on T”, and
as v € SpP(T"), then, Yoir(T") < ALp(T';v) < B(V(T')) = K(V(T")). Moreover,
since h(u1) + h(uz) + h(ug) = 2, we get Yoir(T) = w(h) = L(V(T")) + h(u1) +
h(uz) + h(ug) > vir(T") + 2 and, as a consequence, Yoir(T) = Yoir(T') + 2.
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In addition, for both subcases, by Observation 9, Proposition 3 and Theorem
4 we observe that a(T) = |S(T)| = |S(T")] + 1 = «(T") + 1. By hypothesis,
we know that voir(T") = 2a(T") (because T" is a VC-Roman tree). Therefore,
Yoir(T) = Yoir(T') +2 = 2a(T") + 2 = 2(a(T) = 1) + 2 = 2a(T) and T is a
VC-Roman tree.

Case 5. T is obtained from T” by operation F5. Assume T is obtained from
T’ by adding the path ujugususus and the edge usv where v € Sg(T") U SI*(T").
Notice that ug € SS(T'), ug,us € S(T) and uy,us € L(T). By Observation 9 we
deduce that the function f = (L(T")USS(T")U{u1, us, us}, 0, S(T")U{uz,us}) =
(L(T)uSS(T),0,S(T)) is an OIRDF on T with weight w(f) = Yeir(T") + 4 and
0, Yoir(T) < w(f) = Yoir(T') + 4. Now, we consider the following two cases.

Case 5.1. v € S5(T"). We consider a v,,r(T)-function g for which g(v) = 2
(this can be asserted based on the fact that v € S(T”) together with Proposition
7 and Corollary 8). In concordance with this, we readily seen that g restricted
to V(T"), say ¢, is an OIRDF on 7", which means g((V(T")) = ¢ (V(T")) >
Yoir(T"). Also, we see that g(ui) + g(u2) + g(us) + g(us) + g(us) > 4. Thus,
Yoir(T') = w(g) = g(V(T")) +g(u1) + g(uz) + g(us) + g(ua) + g(us) = Yoir(T") +4,
which allows to claim Yo;r(T) = Yoir(T") + 4.

Case 5.2. v € S*(T"). Let z be a leaf neighbor of v. We consider a v,;z(T)-
function h such that the number of vertices labeled with one under h is minimum.
Again, we note that if h(v) = 2, then by using some similar procedure, as in
Case 5.1, we obtain that vo;r(T) = Yir(T") + 4. On the other hand, we notice
that h(v) = 0 (otherwise, if h(v) = 1, then the function h; defined by hy(v) = 2,
hi(z) = 0 and hy(z) = h(x) for every x € V(T')\{v, 2}, is a voir(T)-function with
a smaller number of vertices labeled with one under k1, which is a contradiction).
Now consider the function h restricted to V(T”), say h’. It is easy to see that A’ is a
near-OIRDF on T". As v € S3P(T"), we get Yoir(T") < ALp(T";v) < B(V(T)) =
R(V(T")). Moreover, since h(u1) + h(ug) + h(us) + h(us) + h(us) > 4, we deduce
Yoir(T) = w(h) = h(V(T")) +h(ur) + h(uz) +h(ug) +h(ug) +h(us) > Yoir(T) +4
and, as a consequence, Yoir(T) = Yoir(T") + 4.

Again, for both subcases, by Observation 9, Proposition 3 and Theorem 4 it
follows a(T') = |S(T)| = |S(T")| + 2 = a(T") + 2. By hypothesis we know that
Yoir(T') = 2a(T") (because T" is a VC-Roman tree), which leads to v,;r(T) =
Yoir(T") +4 = 2a(T") + 4 = 2(a(T) — 2) + 4 = 2(T') and therefore, T is a
VC-Roman tree. ]

We now turn our attention to the opposite direction concerning the lemma
above. In this sense, from now on we shall need the following terminology and
notation in our results. Given a tree T and a set S C V(T'), by T — S we denote
a tree obtained from 7" by removing from 7" all the vertices in S and all the edges
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incident with a vertex in S (if § = {v} for some vertex v, then we simply write
T—v). For a vertex x of a tree T', a subtree T}, at = of a rooted tree T is the subtree
induced by the descendants of x together with = (rooted tree and descendants are
understood as it is common in the literature). Moreover, we denote by P(x,y)
the set of vertices of one shortest path between x and y, including « and y. We
next show that every VC-Roman tree belongs to the family F.

Lemma 11. IfT is a VC-Roman tree, then T € F.

Proof. We proceed by induction on the order n > 3 of the VC-Roman tree T
If n = 3, then T' = Ps that belongs to F. If n = 4, then T is either a path Py or
a star S3 with three leaves. Notice that Py is not a VC-Roman tree and that the
star S3 can be obtained from Ps by applying operation F;. More in general, if T'
is any star Sj,, then T can be obtained from Ps3 by repeatedly applying operation
Fy. These facts establish the base case of the induction procedure. We assume
next that k& > 4 is an integer and that each VC-Roman tree 7" with |V (T")| < k
satisfies T" € F.

Let T be a VC-Roman tree and |V (T)| = k. Then, by Proposition 1 and
Theorem 4, there exists a y,;r(T)-function f = (V, 0, V2), where Vp = L(T) U
SS(T) (note that this implies that SS(T') induces a subgraph without edges),
Vo =8(T)and V(T) = L(T)US(T)USS(T). We consider now several situations.

Case 1. |S5(T")| = 0. Clearly, any support vertex is adjacent to exactly one
leaf. Also, since k > 4, and by Proposition 6, |SS(T)| > 0. Let h, h’' be two leaves
at the maximum possible distance in 7" such that there is v € SS(T') N P(h, k')
with d(v, h) = 2 or d(v, h’') = 2. Without loss of generality assume that d(v, h) =
2. Let s be the support vertex adjacent to h, P(h,h') N (N(v)\ {s}) = {w} (w is
also a support vertex since v cannot have other kind of neighbor) and assume T'
is rooted at hA’. We have now some possible scenarios.

Case 1.1. |N(v)| = 2. We first observe that |N(s) N S(T)| = 0. That is, if
there exists » € N(s) N S(T) such that N(r) N L(T) = {h,}, then the function
g=(((L(TYuSS(T))\{h})U{r},{h+}, S(T)\{r}) is an OIRDF on T satisfying
that w(g) < w(f) = v0ir(T"), which is a contradiction. Hence |N(s)| = 2, where
N(s) = {v,h} and N(v) = {s,w}. We consider the tree T/ = T — {s,h}. In
T’, the vertex v is a strong leaf and the vertex w is a strong support. By using
Proposition 7 and Corollary 8, we can deduce that the function f restricted to
V(T"), say f' = (V§,V{,V3) is a vyoir(T")-function which has V{ = 0. Thus, by
Proposition 1, 7" is a VC-Roman tree and, by inductive hypothesis, T € F.
Since T' can be obtained from 7" by operation F», we get T € F.

Case 1.2. |N(v)| = 3. In this case, we first note that N(v) C S(T'). Let
N@w) ={s,w,s1}. As |Ss(T)| =0, let N(s1) N L(T) = {h1} and N(w) N L(T) =
{hw}. By the maximality of P(h,h'), if |[N(s1)| > 2, then every neighbor of s;
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other than v is a support. In such case, if there exists a neighbor of s; other than
v, then we proceed with s; instead of s, to construct a function g as in Case 1.1,
and obtain a contradiction. Thus, it follows that |[N(s1)| = 2.

Suppose now that N(w)N(SS(T)\ {v}) = 0 and consider the function g for
which g(v) = 2, g(s) = g(s1) = g(w) = 0 and g(h) = g(h1) = g(hw) = 1 and
g(u) = f(u) for u € V(T)\ {v, s, h, s1,h1,w, hy}. It can be easily checked that g
is an OIRDF on T and that w(g) < w(f) = Y.ir(T), a contradiction.

In this sense, we may assume N (w) N (SS(T)\ {v}) # 0 and we consider the
tree T =T — {h,s,v,s1,h1}. In T’ the vertex w is also a weak support vertex.
Moreover, we claim that the v,,z(T)-function f restricted to V(71”), say f’, is a
Yoir(T")-function. It is clear that f’ is an OIRDF on T". We consider a v,;z(T")-
function ¢’ and suppose that w(g’) < w(f’) = Yir(T) — 4. Now, we consider
the function g on T, defined by g(v) = 2, g(s) = g(s1) =0, g(h) = g(h1) = 1
and g(z) = ¢'(z) for every z € V(T"). We observe that g is an OIRDF on T
satisfying that w(g) = w(g’) + 4 < w(f’") + 4 = vir(T), a contradiction. Thus,
= V3, V{,V4) is a voir(T")-function with V{ = (. So, 7" is a VC-Roman tree,
and by inductive hypothesis, 77 € F.

On the other hand, let f” be a ~/ (T, w)-function and we consider the
function ¢” on T, defined by ¢"(v) = 2, ¢"(s) = ¢"(s1) =0, ¢"(h) = ¢"(h1) =1
and ¢"(z) = f"(x) for every x € V(T"). We observe that ¢” is an OIRDF on
T, and so, we obtain Yoir(T") + 4 = Yoir(T) < w(g”) = V25 (T’ w) + 4. Thus,
Yoir(T") < AL p(T",w), which means w € S3*(1”). Since T' can be obtained from
T’ by operation F5, we deduce that T' € F.

Case 1.3. |[N(v)| > 3. Let N(v) = {s,w, s1,...,8} withr > 2. As |S4(T)| =
0 and the neighbors of v are only support vertices, we assume N (s;) N L(T) =
{h;} for 1 < i < r. By the maximality of P(h,h’), every neighbor of s; other
than v is a support with 1 < ¢ < r. If there exists a support neighbor of s;
for some i, other than v, then we proceed with s; instead of s, to construct
a function ¢ as in Case 1.1, and obtain a contradiction. Thus, it follows that
|N(si)| =2 for 1 <1i < r. Now, we consider the function g for which g(v) = 2,
g(s) = g(si) = 0 and g(h) = g(h;) = 1 for 1 < i < r and g(u) = f(u) for
u € V(T)\{v,s,h,s1,h1,...,sr, hy}. It can be easily checked that ¢ is an OIRDF
on T and that w(g) < w(f) = veir(T"), a contradiction again.

Case 2. |Ss(T')| > 0 and 2|Ss(T")| < |Ls(T)|. Let v be a strong support vertex
satisfying |N(v) N Ls(T)| > 3. Let h € N(v) N Lg(T) and 7" = T — h. Since
f(v) =2 and f(h) = 0, we note that the v,;r(T)-function f restricted to V(T”) is
an OIRDF on 7" and so, Y,ir(T") < f(V(T")) = w(f) — f(h) = Yoir(T). Now, let
9= (V§,V{,V35) be a v5ir(T")-function satisfying g(v) = 2, which can be claimed
by Proposition 7, since v is a strong support vertex of 7”. It can be checked
that the function ¢’ on T defined as ¢'(h) = 0 and ¢'(z) = g(x) otherwise, is an
OIRDF on T'. Thus, Y5ir(T) < w(g") = Yoir(T") and, s0 Yoir(T) = Yoir(T"). Tt is
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then possible to deduce that g can be understood as the restriction of f to V(T")
(for which V] = 0). Thus, by Proposition 1, it follows that 7" is a VC-Roman
tree. By inductive hypothesis, 7" € F, and since T can be obtained from 7" by
operation Fp, we obtain that also T' € F.

Case 3. |Ss(T)| > 0, 2|Ss(T)| = |Ls(T)| and |SS(T)| = 0. In this case, by
Proposition 6, it follows that every support vertex is a strong support vertex.
Let s, s’ be two strong support vertices at the maximum possible distance in 7.
It is easy to see that |N(s) N Ss(T)| = 1 (since |SS(T)| = 0 by assumption)
and |[N(s) N L(T)| = 2. Let N(s) N L(T) = {hi,h2} and consider the tree
T' =T — {s,h1, ha}. By Proposition 7 and Corollary 8, we can assume f(s) =2
and, in this sense, we can deduce that the function f restricted to V(T”), say
= (V§,V{,V3) is a voir(T")-function which has V{ = (). Thus, by Proposition
1, T" is a VC-Roman tree and, by inductive hypothesis, 77 € F. Since T can be
obtained from T by operation Fy, we get T € F.

Case 4. |Ss(T)| > 0, 2|S5(T)| = |Ls(T)| and |SS(T)| > 0. Let h,h’ be two
leaves at the maximum possible distance in 7' such that there is v € SS(T) N
P(h,h') with d(v,h) = 2 or d(v,h') = 2. Without loss of generality assume that
d(v,h) = 2. Let s be the support vertex adjacent to h and assume T is rooted
at /. Note that N(v) C S(T) (since SS(T') C Vp) and |N(v)| > 2. We have now

some possible scenarios.

Case 4.1. |N(v)| = 2 and |[N(s) N S(T)| > 1. If there exists a vertex
r € N(s)NS(T) such that N(r) N L(T) = {h,} (r is not a strong support), then
the function g = ((L(T)\{h, })U{r}, {h:}, S(T)\{r}) is an OIRDF on T satisfying
that w(g) < w(f) = vir(T), a contradiction. Thus, N(s)NS(T) C Ss(T) (every
support neighbor of s is a strong support). Now, this fact together with the
maximality of P(h,h') allows to claim that there is a subtree Tj, with ¢ € N(s),
which is a tree whose vertices are only strong support vertices: the vertex g itself
together with other k ones, say r1,79, ..., 7k, (notice that such vertices belong to
Ss(T')) where |N(r)NS(Ty)| > 1, and leaves such that N (ry)NL(T,) = {hk,, hi, }
(since 2|Ss(T")| = |Ls(T')|). Moreover, note that there is at least one of such strong
supports, say r;, such that |[N(r;) N S(Ty)| = 1.

If £ > 1, then the strong support r; is adjacent to another strong support
(which could be the vertex ¢). Thus, by using a similar procedure as in Case 3
and, without loss of generality, assuming that ry satisfies [N (r) N S(T})| = 1, we
obtain that 77 = T — {rg, hi,, hi, } is a VC-Roman tree. Thus, by the inductive
hypothesis, 77 € F. Since T' can be obtained from 7" by operation Fjy, we get
TeF.

On the other hand, assume that £ = 0. Let N(s) N S(T) = {q} and let
hgishg, € N(q) N L(T). Let T" = T — {q, hg,, hgp }. We note that f restricted
to V(T"), say f' = (Vy,V{,V3), is an OIRDF on T, and so vor(T") < w(f) —
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(f(q) + f(hg) + f(hgy)) = Yir(T) — 2. Now, suppose that f’ restricted to
V(T') is not a vor(T")-function. Let g be a v,r(T")-function. It follows that
w(9) = Yoir(T") < f(V(T")) = v6ir(T) — 2. Moreover, we consider the function
¢’ such that ¢'(x) = g(x) for every z € V(T") and ¢'(q) = 2, ¢'(hqg,) = ¢'(hg,) = 0.
It is easy to see that ¢’ is an OIRDF on T satisfying that w(g') = w(g) +2 =
Yoir(T")+2 < Yoir(T'), a contradiction. Thus, as V{ C V; = (0, and by Proposition
1, it follows that 7" is a VC-Roman tree. By inductive hypothesis 1" € F.

Now, we may assume s € S,,(T") (otherwise, if s € S5(7”), then T' can be
obtained from 7" by operation Fj, and we obtain T' € F), and we consider a
(T s)-function g. Notice that g(s) = 0 and g(h) = g(v) = 1. Now, we
consider the function ¢’ on 7" defined by ¢'(s) = 2, ¢'(h) = ¢'(v) = 0 and
g'(z) = g(z) for every x € V(T") \ {h,s,v}. We notice that ¢’ is an OIRDF on
T" and so, Yoir(T") < A% 5(T';s). Therefore, s € S;*(T"), and since T' can be
obtained from T” by operation Fy, we obtain that T' € F.

Case 4.2. |N(v)| = 2, [N(s) N S(T)] = 0 and s € Ss(T). Hence, by the
maximality of P(h,h’) and since 2|Ss(T")| = |Ls(T')|, it must happen that N(s) =
{h,h1,v} where h; is a strong leaf. Let 7" = T — {h, h1,s}. We note that f
restricted to V(T”) is an OIRDF on 77, and so v,ir(T") < f(V(T")) = w(f) —
(f(h) + f(h1) + f(s)) = 7ir(T) — 2 (according to the choice of f). Let ¢’ be a
Yoir(T")-function. Since v has degree two in T and is adjacent to a support vertex
w other than s, the vertex v is a strong leaf and w is a strong support in 7”. Hence,
by Proposition 7 and Corollary 8, we may consider that ¢'(w) = 2 and ¢'(v) = 0.
Let the function g on T be such that g(z) = ¢'(z) for every x € V(T"), g(s) = 2
and g(h) = g(h1) = 0. It is easy to see that g is an OIRDF on T satisfying that
’VOiR(T) < w(g) = w(g’) +2= VOiR(T/) +2, and so 'YoiR(T/) = 'YoiR(T) — 2. Thus,
the function ¢' = (V{, V{, V3), which is a v,;r(T")-function, can be understood as
f restricted to V(T"). Consequently, as V{ C Vi = (), by Proposition 1, it follows
that 7" is a VC-Roman tree and, by inductive hypothesis 77 € F. Since T can
be obtained from 7" by operation Fy and Fj, we obtain T € F.

Case 4.3. IN(v)| =2, [N(s)NS(T)| =0 and s € Sy(T). Let 7" =T — {s,h}
and let f' = (Vy,V{,Vy) be the restriction of f to V(I”). Notice that f is an
OIRDF, and s0 i (T") < w(f") = f(V(T')) = ()~ (f(5)+F (1)) = Y0i(T)—2.
Let s’ be the other support vertex adjacent to v. It is not difficult to see that s’ is
a strong support vertex in 7", since s’ is a support in T', and also v becomes a leaf
in 7', which is also adjacent to s’. Also v € Lg(T"). Suppose that f restricted to
V(T") is not an OIRDF of minimum weight on 7. By Proposition 7, there exists
a Yoir(T")-function ¢ satisfying ¢'(s’) = 2 and ¢’(v) = 0. Also, it is satisfied
w(g) <w(f") = f(V(T") = Yoir(T) — 2. Consider now the function g such that
g(x) = ¢'(x) for every z € V(T'), g(s) = 2 and g(h) = 0. Thus, it is easy to see
that g is an OIRDF on T satisfying that w(g) = w(g') +2 < f(V(T")) +2 =
Yoir(T), a contradiction. Therefore, f restricted to V(T”) is a vir(T”)-function.
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Since V] C Vi =0, by Proposition, 1, it follows that 7" is a VC-Roman tree. By
inductive hypothesis, it is known that 7" € F and, since T can be obtained from
T’ by operation Fy, we deduce that T' € F.

Case 4.4. |N(v)] > 2 and |[N(s) N S(T)|] > 1. We proceed analogously to
Case 4.1 to obtain that T" € F.

Case 4.5. |N(v)| > 2, [N(s) N S(T)| = 0 and s € S5(T"). Assume N(s) N
L(T) = {h,h1} (since s is a strong support). Let T/ =T —{s, h, h1 }. Notice that
v € SS(T") since v € SS(T'). Also, note that f restricted to V(T”) is an OIRDF
on 7", and so0 Yoir(T") < f(V(T")) = w(f) = (f(s) + f(h) + f(h1)) = Yoir(T) — 2.
Let ¢’ be a v,;r(T")-function and consider the function g such that g(z) = ¢'(x)
for every z € V(T"), g(s) = 2 and g(h) = g(h1) = 0. We observe that g is
an OIRDF on T satisfying that v,r(T) < w(g9) = w(g’) + 2 = Yir(T") + 2,
which leads to Yoir(T) = Yoir(T’) + 2. Also, by Observation 9, we see that
a(T’') = a(T) — 1. From these above equalities and the fact that T is a VC-
Roman tree, we get voir(T") = 2a(T") , which implies that 7" is a VC-Roman
tree. By the inductive hypothesis 77 € F. In addition, since T can be obtained
from T” by operation F3, we obtain that T € F.

Case 4.6. |N(v)| > 2, [N(s) N S(T)| =0 and s € S,(T). Note that N(v) C
S(T). We can consider that N(v) = {u, s, s1, 82, ..., 8.} with r > 1 where u, s €
P(h,h' )N S(T) and for all i € {1,2,...,7}, it follows that s; is a support vertex
with N(s;) = {v, h;} and h; is a leaf adjacent to s;. Notice that, if there is one of
such support vertices, say s;, with [N (s;)| > 2, then by the maximality of P(h,h')
it follows that N(s;) C S(T") U L(T'), and by using some similar procedures as
above we get the desired results. These are Case 4.4 if |[N(s;)NS(T')| > 1, or Case
4.5 if [N(s;) NS(T)| = 0 and s € Ss(T"). Thus, without loss of generality we can
make the previous assumption concerning the degrees of the supports s1, ..., ;.

Since T is a VC-Roman tree, it must happen r = 1. Otherwise, if r > 1,
then we consider a function g on T, satisfying g(v) = 2, g(s) = g(s1) = g(s2) =
o= g(sr) = 0, g(h) = g(h1) = g(h2) = --- = g(h;) = 1, and g(x) = f(z)
for every vertex x € V(T) \ {v,s,s1,h1,...,8r,h}. Clearly, g is an OIRDF
on T for which w(g) < w(f) = v,r(T), and this is a contradiction. Thus,
IN(v)| = {u,s,s1} and let 7" = T — {v,s,h,s1,h1}. We also notice that u €
S(T") (since u € S(T)), and that f restricted to V(T”) is an OIRDF on 7". So,
Yoir(T") < f(T") = w(f) — (f(v) + f(s) + f(h) + f(s1) + f(M1)) = Yoir(T) — 4.
Now, suppose u € Ss(T").

Let ¢’ be a ~v,r(T')-function. By Proposition 7, we know that ¢'(u) =
2. Consider the function g such that g(z) = ¢'(x) for every z € V(T”) and
g(v) = 0,9(s) = g(s1) = 2 and g(h) = g(h1) = 0. It is easy to see that g is an
OIRDF on T satisfying that vor(T) < w(g9) = w(g’) + 4 = Yoir(T") + 4. Thus
Yoir(T) = Yoir(T") + 4. By Observation 9, we also get that «(7") = a(T) — 2.
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Since Yoir(T) = 2a(T) (T is a VC-Roman tree), we deduce vo;r(T") = 2a(T"),
and this implies 7" is a VC-Roman tree and by inductive hypothesis T/ € F.
Since T can be obtained from T” by operation Fj, we obtain that T € F.
Finally, suppose u € Sy (T"), and consider a v (T"; u)-function ¢’. Notice
that in such case ¢’(u) = 0. Let g be a function on T defined by g(v) = 2, g(s) =
g9(s1) =0, g(h) = g(h1) = 1 and g(z) = ¢'(z) for every x € V(T)\{h, s, h1,s1,v}.
We notice that g is an OIRDF on 7', and 50, Yoir(T")+4 = Yoir(T) < V2 p(T";u)+
4. Thus, Yoir(T") < 42 z(T';u), which implies that u € S;;*(7”). Since T' can be
obtained from T” by operation Fj, we obtain that T € F, which completes all
the cases of the proof. [

As an immediate consequence of Lemmas 10 and 11, we have the desired
characterization, which is the goal of this article.

Theorem 12. Let T be a tree. Then T is a VC-Roman tree if and only if T € F.
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