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Abstract: This paper presents a novel framework for robust linear quadratic regulator (LQR)-based
control of pulse-width modulated (PWM) converters. The converter is modeled as a linear
parameter-varying (LPV) system and the uncertainties, besides their rate of change, are taken into
account. The proposed control synthesis method exploits the potential of linear matrix inequalities
(LMIs), assuring robust stability whilst obtaining non-conservative results. The method has been
validated in a PWM DC–DC boost converter, such that it has been shown, with the aid of simulations,
that improved robustness and improved performance properties can be achieved, with respect to
previously proposed approaches.
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1. Introduction

Control systems for power converters typically must satisfy several specifications and requirements,
while dealing with uncertainty or operating point dependence at the same time. Since worst-case
models may not exist or be different for each specification, the conventional industry standard
approaches, such as the ones based on voltage-mode [1,2] and current-mode [2–4] controllers, rely on
expert knowledge, simulation and iteration in order to find an appropriate controller.

As an alternative to this manual iteration, the automatic synthesis of controllers for switched-mode
power converters has been one active topic of research in the last decade. These approaches are of
interest because they can take into account the requirements together with the uncertainty or the
nonlinearities of the converter to provide robust stability and performance, and they can do all that by
imposing conditions beforehand.

Methods based on linear matrix inequalities (LMIs) have been some of the most successful
approaches to the synthesis of robust controllers for power converters. The first attempts [5–7]
demonstrated how uncertainty could be modeled and how the transient and frequency domain
specifications could be taken into account. More recently, the efforts have been focused on approaches
that do not require full state feedback [8], that improve the robustness [9] or the performance
properties [10]. Although these papers employ averaged models of the converters, other approaches
have also tackled the problem from a hybrid system perspective [11,12].

One of the open problems in the topic is the fact that the results may be conservative.
The synthesized controller may not offer the best possible performance, when compared with
conventionally tuned controllers, such as current-mode controllers. One possible solution to this
conservativeness was shown in [13], where excellent robustness and tight regulation were achieved
simultaneously, at the expense of control complexity.
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One of the causes behind the conservativeness of LMI methods in [7] is the fact that the stability of
the system is ensured no matter how large the derivative of the uncertain parameters may be. Specifically,
when the uncertainty is characterized by being norm bounded, time varying and evolving in a set of
polyhedral vertices, one difficulty remains: how to find an adequate mathematical representation for it,
as well as for its rate of variation [14]. Nonetheless, several ways for representing both the derivative
of the time-dependent parameter and the parameter itself have been proposed in the literature [14–17].
Different approaches to control these uncertain systems have been reported, such as state feedback
gain-scheduling control [18], output feedback [15], linear quadratic Gaussian (LQG) or linear quadratic
regulator (LQR) controllers [19–21] and gain-scheduled linear quadratic regulators (LQRs) [22,23].

In this paper, we propose a new method to synthesize robust LQR controllers for pulse-width
modulated (PWM) converters, with the objective to improve the LQR synthesis that was proposed in [7].
The method is based on the results introduced in [14,15], such that the proposed approach can consider
the time derivative of the uncertain parameters. As a consequence, the new LQR formulation can
obtain less conservative results. This reduced conservativeness can be seen as a new degree of freedom.
With this method, practicing engineers can synthesize controllers for larger sets of uncertainty (i.e., with
improved robustness) or controllers that provide tighter regulation (i.e., improved performance) when
compared with the previous method. The approach has been verified with the synthesis of a controller
for a boost converter, such that a direct comparison with [7] has been carried out. Note that the
proposed method could also be used in other switched-mode power converters, such as the buck
converter (which was also treated in [7]).

This paper is organized as follows. Section 2 briefly reviews the modeling of the boost converter
and the LQR state feedback proposed in [7]. Then, Section 3 proposes a new formulation of the LQR
problem, such that novel LMI conditions are given. In Section 4, the proposed synthesis method is
employed in the boost converter, using the original model and other alternatives that allow us to obtain
improved robustness or improved performance. The appropriateness of the approach is verified with
simulations in Section 5. Finally, conclusions are given in Section 6.

2. Modeling of the DC–DC Converter and LQR State Feedback Control

This section introduces the state feedback control approach proposed in [7], which resulted in the
automatic synthesis of robust LQR controllers for PWM power converters.

2.1. Averaged Model of the DC–DC Boost Converter

Figure 1 shows the block diagram of a DC–DC converter with the control subsystem, where v0(t)
is the output voltage, vg(t) is the line voltage, iload(t) is the load disturbance. The output voltage must
be kept at a given value Vre f . The converter load is modeled as a resistor R.

In [7], the averaged model of a boost converter is given in the form

.
x(t) = A(θ)x(t) + Bu(θ)u(t) (1)

The uncertainty in A(θ) and Bu(θ) is included in a convex polytope as follows:

[A(θ), Bu(θ)] ∈ Co{ς1, . . . , ςN }

:=
{

N∑
i=1

λiςi , λi ≥ 0 ,
N∑

i=1
λi = 1

}
(2)

In general, the admissible values of vector θ are constrained in an hyperrectangle in the parameter
space<N.

The images of the matrix [A(θ), Bu(θ)] for each vertex υi correspond to a set {ς1, . . . , ςN }.
The components of the set {ς1, . . . , ςN } are the extrema of a convex polytope which contains the images
for all admissible values of θ if the [A(θ), Bu(θ)] depends linearly on θ [7].
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Figure 1. Schematic of a DC–DC converter with a state feedback control subsystem.

Where

A(θ) =


−RL

L −
D′
L 0

D′
C −

1
RC 0

0 −1 0

; Bu(θ) =


Vg
D′L

−
Vg

(D′2R)C
0

 (3)

According to [7], for the DC–DC boost converter, the load R and the duty cycle D′d at the operating
point are considered uncertain parameters. Besides, two new uncertain variables, δ = 1

D′d
and β = 1

D′2d R
,

are defined. Thus, the parameter vector was defined as:

θ =
[

1
R D′d δ β

]
(4)

where the components of the parameter vector are restricted inside the following intervals:

R ∈
[

1
Rmax

, 1
Rmin

]
D′d ∈

[
D′dmin, D′dmax

]
δ ∈

[ 1
D′dmax

, 1
D′dmin

]
β ∈

[
1

(D′2dmaxRmax)
, 1

(D′2dminRmin)

] (5)

This gives an uncertain model, which from now on is noted as P2009, inside a polytopic domain
formed by N = 24 vertices. A three-dimensional representation of P2009 is shown in Figure 2. This model
was used in [7] to synthesize a robust LQR controller, as is explained in the next subsection.
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2.2. Previous LMI Formulation of the LQR Synthesis Problem

In [7], the LQR problem was solved as follows:

minP,Y,XTr(QP) + Tr(X)

Subject to
AiP + PAi

T + BuiY + YTBT
ui + I < 0 X R

1
2 Y

YR
1
2 P

 > 0

P > 0For i = 1, . . . , N

(6)

N is the number of vertices of the polytope. Q and R are constant matrices that set weights
on states and control effort. Once this minimization under constraints is solved, the optimal LQR
controller was recovered by K = YP−1.

In the next section, we aim to establish new LMI formulation for an LQR problem treating linear
systems with time-varying parameters.

Figure 2. Plot of nonlinear uncertainty function (f(D’)) (solid line) and three-dimensional projection of
the polytope P2009 (dashed line), as in [7].

3. New Formulation of the LQR Problem for Linear Parameter-Varying (LPV) Polytopic Systems

3.1. Proposed Representation of Uncertainty and Its Rate of Variation

Let us consider the continuous linear parameter time-dependent system, given by the
state representation:

.
x(t) = A(θ(t))x(t) + Bu(θ(t))u(t) (7)

where x(t) ∈ <n is the state and u(t) ∈ <m is the input.
We assume the system matrices A(θ(t)) and Bu(θ(t)) are dependent on the parameter θi(t), i.e.,

A(θ(t)) =
N∑

i=1

θi(t)Ai (8)

Bu(θ(t)) =
N∑

i=1

θi(t)Bui (9)

where Ai and Bi are now constant matrices (i = 1..N).
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The time-varying parameter θ(t) varies in a polytope given by:

θ(t) ∈ ΛN, where ΛN :=

θ ∈ <N :
N∑

i=1

θi = 1, 0 ≤ θi ≤ 1

 (10)

N is, again, the number of vertices of the polytope.
Its time derivative

.
θ(t) is such that: ∥∥∥∥ .

θ(t)
∥∥∥∥ ≤ b ; b ≥ 0 (11)

b is a positive real number that bounds the parameter’s derivative.
If the uncertain parameter θi belongs to the set given by (10) and satisfies (11), then its time

derivative can be written as [14,15]: .
θi = r(σ j − βk) (12)

σ j and βk belong, respectively, to the polytopes given by:

σ(t) ∈ ΛM; ΛM :=

σ ∈ <M :
M∑

j=1

σ j = 1, 0 ≤ σ j ≤ 1

 (13)

β(t) ∈ ΛK; ΛK :=

β ∈ <K :
K∑

k=1

βk = 1, 0 ≤ βk ≤ 1

 (14)

3.2. New LQR Problem Formulation for Uncertain LPV System

We are interested in an LMI formulation of the LQR problem adapted from [7]. Given the system
presented in (1), the optimal LQR controller is obtained by using the state feedback gain K (u = Kx)
that minimizes a performance index.

J =

∞∫
0

(
xTQx + uTRu

)
dt (15)

where Q is a symmetric and semidefinite positive matrix and R is a symmetric and definite
positive matrix.

The pair (A, Bu) must be controllable. The LQR problem can be viewed as the weighted
minimization of a linear combination of the state x and the control input u. The weighting matrix Q
establishes which states are to be controlled more tightly than others. R weights the amount of control
action to be applied depending on how large the deviation of the state x is [7]. This optimization of
cost weight constrains the magnitude of the control signal. The LQR controller is obtained by using
the feedback gain K such that, in closed loop, the performance index (15) is rewritten:

J =

∞∫
0

(
xT(Q + KTRK)x

)
dt (16)

In this paper, we aim to give an LMI formulation for the same LQR problem as in [7], taking into
account the uncertain parameter θ(t) that evolves into (10). We also consider the time derivative of
this parameter as it is expressed in (12). The novel LQR formulation for the LPV system is given in the
following theorem.
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Theorem 1. The complete LMI formulation of the LQR problem is: considering system (7), in the uncertain
domains (10)–(11), with Nsymmetric and positive definite matrices P1, . . . .PN, N matrices F j, G j( j = 1, ...N),
matrices L and R of appropriate dimensions and a positive realα that is sufficiently large, we have:

minPi,F j,G j,L,R

i=N∑
i=1

Tr(QPi) + R(δ+ σ)

 (17)

Subject to 
b(P j − Pk) − αF j − αFT

j + I −αG j − F j + Pi LTAT
i + DTBT

ui + αLT + F j

−αG j − FT
j + PT

i −G j −GT
j G j

AiL + BuiD + αL + FT
j GT

j −L− LT

 < 0 (18)

[
σIn×n DT

D Im×m

]
> 0[

δ In×n In×n

In×n L

]
> 0

(19)

Pi > 0
For i, j, k = 1, .., N

(20)

The control gain is then given by K = DL−1.

Proof. Let us consider (18); replacing D by KL and DT by LTKT in (18), we get:
b(P j − Pk) − αF j − αFT

j + I −αG j − F j + Pi LTAT
i + LTKTBT

ui + αLT + F j

−αG j − FT
j + PT

i −G j −GT
j G j

AiL + BuiKL + αL + FT
j GT

j −L− LT

 < 0 (21)

In (21), replacing Ai + BuiK by Ai and AT
i + KTBT

ui by AT
i , we get:

b(P j − Pk) − αF j − αFT
j + I −αG j − F j + Pi LTAT

i + αLT + F j

−αG j − FT
j + PT

i −G j −GT
j G j

AiL + αL + FT
j GT

j −L− LT

 < 0 (22)

Multiplying (22) by θi , σ j and βk and summing up, respectively, for i = 1 . . .N, j = 1..M and
k = 1..K, we obtain:

b(P(σ) − P(β)) − αF(σ) − αFT(σ) + I −αG(σ) − F(σ) + P(θ)
LTAT(θ) + αLT

+F(σ)
−αG(σ) − FT(σ) + PT(θ) −G(σ) −GT(σ) G(σ)

A(θ)L + αL
+FT(σ)

GT(σ) −L− LT


< 0 (23)
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Multiplying the LMI condition (23) by


I 0 αI
0 I 0
0 0 I

 < 0 on the left and its transpose on the right,

where α is a positive real number, we get:
.
P(θ) + αA(θ)L + αLTAT(θ) + I −F(σ) + P(θ) LTAT(θ) − αL + F(σ)

−FT(σ) + PT(θ) −G(σ) −GT(σ) G(σ)
A(θ)L− αLT + FT(σ) GT(σ) −L− LT

 < 0 (24)

where P(θ) is a positive and symmetric matrix called the Lyapunov candidate matrix.

We suppose that αLT = P(θ) = F(σ) and G(σ) =
P(θ)
α , then, we get:

.
P(θ) + A(θ)P(θ) + P(θ)AT(θ) + I 0 P(θ)AT(θ)

α

0 −
2P(θ))
α

P(θ)
α

A(θ)P(θ)
α

P(θ)
α −L− LT

 < 0 (25)

Applying the Schur complement on LMI (25),

.
P(θ) + A(θ)P(θ) + P(θ)AT(θ) + I < −

2
4α− 1

AT(θ)P(θ)A(θ) (26)

For values of α that are sufficiently large, we get

.
P(θ) + A(θ)P(θ) + P(θ)AT(θ) + I < 0 (27)

(27) can be written
.
P(θ) + A(θ)P(θ) + P(θ)AT(θ) < −I (28)

Thus, we get the Lyapunov condition written for the LPV systems

.
P(θ) + A(θ)P(θ) + P(θ)AT(θ) < 0 (29)

For the proof of (19), see [24].
The approach presented above is used for the case of a boost DC–DC converter modeled based on

an LPV polytopic formulation.

4. Synthesis of Improved LQR Controllers for DC–DC Boost Converters

4.1. Modeling

In this section, two different uncertainty models are shown. The same uncertain parameter θ(t) is
employed. The uncertain parameter belongs to (4) and is such that its derivative verifies (5) and (6).

θ(t) =
[
D′,

1
D′

,
1
R

,
1

D′2R

]
(30)

Any matrix in this set can be obtained by:

A(θ(t)), Bu(θ(t)) = θ1(A1, Bu1) + θ2(A2, Bu2) + θ3(A3, Bu3) + θ4(A4, Bu4) (31)

and the derivative of θ(t) satisfies the bound imposed in Section 2.
The first model is a simplification of P2009, and it was first introduced in [25]. This model, which will

be noted as P2011, is based on a polytopic covering of the space in θ(t). Since the variables in θ(t) are not
fully independent, a polytopic covering with fewer vertices can be derived. The result is a polytope with
eight vertices instead of the 16 vertices in P2009. Figure 3 shows P2011 and Table 1 defines its vertices.
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Figure 3. Plot of nonlinear uncertainty function (f(D’)) (solid line) and reduced polytope P2011 (dashed
line), as in [25]. The projections of the polytope are also shown in each respective plane.

Table 1. Vertices of the polytopic covering of P2011

D
′ 1

D
′

1
D
′2R

1
R

θ1(t) 0.3 1/0.3 1/0.9 1/10

θ2(t) 0.3 1/0.3 1/4.5 1/50

θ3(t) 0.425 1.6 2.25/10 1/10

θ4(t) 0.425 1.6 2.25/50 1/50

θ5(t) 0.425 2 2.25/10 1/10

θ6(t) 0.425 2 2.25/50 1/50

θ7(t) 1 1 1/10 1/10

θ8(t) 1 1 1/50 1/50

In order to test if the proposed synthesis approach can extend the region of stability of the
system, we consider an extension of P2011. This is a new model that considers an enlargement of the
space in θ(t). Figure 4 shows the original P2011 polytope, and the novel enlarged one, noted as P2020.
The vertices of the model are shown in Table 2.

Figure 4. Plot of nonlinear uncertainty function (f(D’)) (solid line) and proposed polytope P2020 for
extended robustness (dashed pink line). The projections of the polytope are also shown in each
respective plane. Note how P2020 compares with P2011, which is shown here in black dashed lines and
covers a much smaller parameter space.
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Table 2. Vertices of the polytopic covering of P2020

D
′ 1

D
′

1
D
′2R

1
R

θ1(t) 0.1 1/0.1 1/0.1 1/10

θ2(t) 0.1 1/0.1 1/0.5 1/50

θ3(t) 0.165 1.8 3/10 1/10

θ4(t) 0.165 1.8 3/50 1/50

θ5(t) 0.165 5.2 1 1/10

θ6(t) 0.165 5.2 1/5 1/50

θ7(t) 1 1 1/10 1/10

θ8(t) 1 1 1/50 1/50

4.2. Synthesis Results

The same Q used in [7] is employed in the synthesis. The value of R was established using the
proposed synthesis method with the old model P2009. The objective was to obtain a controller that is
equivalent to the one in [7], which is noted Keq. That aim was achieved with R = 1·10-6.

4.2.1. Previous LQR Synthesis Method

Based on the LQR synthesis method given in [7], whose LMIs are shown in (6), three models have
been tested: P2009, P2011 and P2020. The results are as follows:

− With P2009:K =
[
−0.86 −1.39 3159.54

]
.

− With P2011: The set of LMIs is infeasible.
− With P2020: The set of LMIs is infeasible.

4.2.2. Proposed LQR Synthesis Method

The synthesis with the novel conditions {17-18-19-20} results in the following controllers:

− With P2009, b = 1·104, α = 1·105, R = 1·10-6, the result is Keq =
[
−0.55 −0.89 1871.75

]
.

This controller achieves the same performance that can be obtained with controller K, but with a
lower control effort (the gains in Keq are smaller than those in K).

− With P2011, b = 1·104, α = 1·105, R = 1·10-6, the result is Kper f =
[
−0.46 −1.49 4218

]
.

− With P2020, b = 1·104, α = 1·105, R = 1·10-5, the result is Krob =
[
−0.01262 0.00095 9.607

]
.

5. Simulation Results

This section illustrates the properties of the different controllers K, Keq, Kper f and Krob. We have
performed a set of PSIM [26] simulations of the switched DC–DC boost converter, according to Figure 1.
The first set of simulations is useful to establish the performance of the controllers, by analyzing the
response of the converter with respect to changes in the output current. The second set aims to establish
the robustness of the different controllers when there is a change in the operating point, by modifying
the supply voltage.

First, the waveforms of the simulations with changes in the load are grouped in Figure 5. The top
waveforms in each subfigure correspond to the output voltage v0(t), whereas the bottom waveform
represents the output current iload(t). In all simulations, the converter load is initially the nominal
value R = 25Ω. At time t = 1 ms, the load changes to R = 10Ω, which is the maximum load allowed
by design in all polytopes. The load returns to R = 25Ω at t = 6 ms.
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Figure 5. Simulated transient of the boost converter under a load step transient with the robust LQR
controllers K (solid line), Keq (thick dashed line), Kper f (dashed line) and Krob (dotted line); (a–c) show
the transient when Vg = 12 V and the operating point duty cycle is D’ = 0.5; (d) shows the transient
when Vg = 7.2 V and the operating point duty cycle is D’ = 0.3.

As a baseline for the comparison, Figure 5a shows the performance of controller K, as in [7],
and the performance of controller Keq obtained with the proposed method and the same polytope
used in [7], P2009. It can be seen that the disturbance rejection properties and the settling time are
nearly identical. In contrast, Figure 5b shows a comparison with controller Kper f , which exhibits a tight
regulation of the output voltage, such that the maximum error of v0(t) and its settling time are reduced
to approximately one half of what is achieved with K. As expected, the robust controller Krob presents
loose regulation and a slower response, as shown in Figure 5c, when compared to K.

Note that Figure 5a–c shows the response at the nominal operating point, when vg(t) = 12V and
D’ = 0.5. In order to evaluate the performance at a different operating point, Figure 5d shows the
response of K, Kper f and Krob under an input voltage variation of −40%, such that the operating point is
now D’ = 0.3. Again, Kper f is the controller that achieves excellent regulation properties, maintaining
its robustness in the expected region of operation.

If Kper f is the controller that demonstrates that the proposed method can be used to improved
regulation while maintaining the same robustness properties, Krob is the controller that demonstrates
that the method can also be employed to enlarge the stability region. Figure 6 shows the waveforms of
the simulations in which the input voltage is stepped, such that the operating point of the converter is
modified in time. Figure 6a shows a voltage step of −40%, which corresponds to a step in the duty cycle
from D’ = 0.5 to D’ = 0.3 (D = 0.7). Since all polytopes considered such a region, the three controllers
maintain the stability, with Kper f exhibiting the best regulation performance. Figure 6b shows a similar
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step in the input voltage, but now the input voltage decreases down to vg(t) = 2.4V, such that the
operating point duty cycle moves from D’ = 0.3 to D’ = 0.1. The method proposed in [7] did not allow
us to consider such a large range of operating point uncertainty, whereas the proposed method resulted
in controller Krob. As can be seen in the figure, Krob is the only controller that successfully maintains
stability under those conditions, exhibiting excellent stability properties.

Figure 6. Simulated transient of the boost converter, in the presence of an input voltage disturbance,
with the robust LQR controllers K (solid line), Kper f (dashed line) and Krob (dotted line). (a) The input
voltage steps down to 7.2 V, which corresponds to D = 0.7. All controllers consider such a change of
operating point and maintain the stability. (b) The input voltage steps down to 2.4 V, which corresponds
to D = 0.9. Only controller Krob maintains the stability of the regulation.

It is worth noting that the transient shown in Figure 6b shows the saturation of the duty cycle at
100% with the unstable controllers. Although the modeling of that nonlinearity is out of the scope
of this paper, this aspect has been treated in the specific context of switched-mode power converters
in [27].

Finally, Figure 7 depicts the waveforms of the converter startup, with the three controllers K, Kper f
and Krob. The input voltage is Vg = 12 V and the voltage reference ramps up from 12 V to 24 V at
t = 0, with a rate of change of 2400 V/s. It can be observed that the three controllers operate inside the
expected range of operation and stabilize the converter.

Figure 7. Simulated transient of the boost converter during startup with Vg = 12 V, for the three
controllers K (solid line), Kper f (dashed line) and Krob (dotted line). Top waveforms: output voltage.
Middle waveforms: duty cycle. Bottom waveform: input voltage.
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6. Conclusions

The numerical synthesis of robust LQR controllers for PWM DC–DC converters by means of
LMIs has suffered from the conservativeness of the methods based on quadratic stability, since a single
Lyapunov function is employed for the entire uncertainty region and because the uncertain parameters
are assumed to change arbitrarily fast. This paper proposes a new method to synthesize robust LQR
controllers. The method employs parameter-dependent Lyapunov functions and allows us to consider
the rate of change of the uncertain parameters.

The method has been employed to synthesize LQR controllers for a PWM DC–DC boost converter.
With that aim, the paper has reviewed two uncertainty models of the boost converter that were
proposed in the past. In addition, it has introduced an enlarged version of one of them, with the
objective to obtain stability for a very large region of uncertain parameters. While the conventional
synthesis methods fail to obtain feasible solutions with these uncertainty models, the proposed method
has been demonstrated to be useful in achieving better regulation performance or improved robustness.
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