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In this paper, we analyze sequential bankruptcy problems, which generalize bankruptcy problems. They 

cover the problems of sharing water in a transboundary river and of allocating expedition rewards in 

projects. We propose the upwards mechanism for generalizing rules for bankruptcy problems to rules for 

sequential bankruptcy problems. Further, we characterize the upwards constrained equal awards, the up- 

wards constrained equal losses, and the upwards proportional rules on the basis of upwards composition 

and upwards path independence. 
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. Introduction 

Bankruptcy problems are one of the simplest, yet most interest- 

ng, economic problems. In a bankruptcy problem, there is a group 

f agents with rightful claims over a scarce estate. The question is 

ow to “fairly” share the estate among the agents. There is an ex- 

ensive literature on bankruptcy problems from a game theoretical 

erspective (cf. Aumann and Maschler, 1985; Curiel, Maschler, and 

ijs, 1987; O’Neill, 1982 , as seminal papers) as well as from an ax-

omatic perspective (cf. Dagan, 1996; Dietzenbacher, 2018; Gallice, 

019; Herrero & Villar, 2001; Moreno-Ternero & Vidal-Puga, 2020; 

oulin, 1987; Peters, Schröder, & Vermeulen, 2019; Tsay & Yeh, 

019 ). For a survey on bankruptcy literature we refer to Thomson 

2003, 2015) . 

Bankruptcy problems have been applied in a variety of 

conomic situations like in sharing the emission of CO 2 

 Gutiérrez, Llorca, Sánchez-Soriano, & Mosquera, 2018 and Duro, 

iménez-Gómez, & Vilella, 2020 ), passepartout problems ( Estévez- 

ernández, Borm, & Hamers, 2012 ), museum pass problems 

 Bergantiños & Moreno-Ternero, 2015, 2016; Casas-Mendez, Frag- 

elli, & Garcia-Jurado, 2011, 2014 ), sharing the revenues from 

roadcasting sport events ( Bergantiños & Moreno-Ternero, 2019 ) 

nd in two-sided matching problems ( Estévez-Fernández, Borm, 

 Lazarova, 2016 ). Recently, Ansink and Weikard (2012) analy- 

es the problem of sharing water in a transboundary river in the 

ramework of bankruptcy problems where the agents are linearly 
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rdered (see Madani, Zarezadeh, & Morid, 2014 , and Mianabadi, 

ostert, Zarghami, & van de Giesen, 2014 , for instance). This lin- 

ar order is given by the position in the river and the natural flow 

f its water. Moreover, at each location along the river, there is ex- 

ctly one agent and the total water inflow at each location restricts 

he maximum amount of water an agent can get. Allowing more 

han one agent at each location enriches the problem since allows 

he representation of its different uses, e.g. human consumption, 

rop irrigation, electricity, industry, etc. By allowing to differenti- 

te amongst water uses, it is possible to take priorities of claimants 

uring drought times ( Moulin, 20 0 0; Thomson, 2003 ). 

Estévez-Fernández, Borm, and Hamers (2007) , and Bergantiños 

nd Lorenzo (2019) ; Estévez-Fernández (2012) , and Bordley, Keisler, 

nd Logan (2019) in a more general setting, analyze allocation 

f delay costs and expedition rewards in projects within a game 

heoretical framework. In many projects, specially when develop- 

ng high technology, there is a race against the clock and high 

ncentives are given in order to finish the project before the 

lanned time. For a project to be expedited, the activities need 

o coordinate and cooperate for this aim. Estévez-Fernández et al. 

2007) and Estévez-Fernández (2012) model the allocation of rev- 

nues from expedited projects using a bankruptcy approach where 

he agents have a linear order based on the minimum slack of all 

he “paths” in which they are involved. Besides, the slack of the 

aths also restrict the maximum amount the activities in a path 

an obtain from the total reward. 

In this paper, we introduce sequential bankruptcy problems, 

hich form a theoretical framework that supports the works of 

nsink and Weikard (2012) , Estévez-Fernández et al. (2007) , and 

stévez-Fernández (2012) , and Bergantiños and Lorenzo (2019) . In 

 sequential bankruptcy problem, there is an ordered partition of 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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he set of agents, 〈 N 1 , . . . , N r 〉 , and r estates, E 1 , . . . , E r , such that

he members in N 1 claim on E 1 , the members in N 2 claim on E 1 
nd E 2 , and so forth. Moreover, each estate E l is not high enough

o satisfy the total claim of the members in N l , . . . , N r . Relating it

ack to the work of Ansink and Weikard (2012) , the problem of 

haring water in a transboundary river can be modeled as a se- 

uential bankruptcy problem where | N l | = 1 for each l ∈ { 1 , . . . , r} .
egarding the work of Estévez-Fernández (2012) , the allocation of 

evenues from expedited projects can be modeled as a sequential 

ankruptcy problem where: (i) there are as many elements in the 

artition of agents as groups of paths with same slack that are in- 

olved in the project expedition and (ii) the total estate over which 

 group can claim is the contribution of the group to the total re-

ard of the expedition. 

We introduce the upwards mechanism for generalizing rules for 

ankruptcy problems to rules for sequential bankruptcy problems. 

his name is inspired in the literature of sharing water in a river. 

iven a bankruptcy rule f, the upwards mechanism generates a 

equential bankruptcy rule by starting to share the estate “down- 

tream” and, subsequently, moving upwards while updating the 

laims at each stage of the procedure. We focus on three of the 

ost used rules for bankruptcy problems: the proportional, the 

onstrained equal awards, and the constrained equal losses rules. 

nspired in Dagan (1996) and Herrero and Villar (2001) , we char- 

cterize the upwards constrained equal awards rule by means of 

pwards composition, the upwards constrained equal losses rule 

y means of upwards path independency, and the upwards propor- 

ional rule is characterize using upwards self-duality and upwards 

omposition, as well as upwards self-duality and upwards path in- 

ependency. 

The remainder of the paper is organized as follows. 

ection 2 surveys bankruptcy problems and introduces sequential 

ankruptcy problems. In Section 3 , we introduce the upwards 

echanism and provide characterizations for the upwards con- 

trained equal awards, the upwards constrained equal losses, and 

he upwards proportional rules. We conclude with Section 4 . 

. Preliminaries 

.1. Bankruptcy problems 

In this section, we give a brief survey of existing concepts in 

he literature of bankruptcy problems and introduce sequential 

ankruptcy problems. 

First, we present notation that will be used throughout the ar- 

icle. For x ∈ R , x + = max { 0 , x } . Let N be a finite set. We denote by

 ∈ R 

N the vector with all zeros. For x ∈ R 

N and S ⊆ N, x S ∈ R 

S de-

otes the projection of x in R 

S and x (S) = 

∑ 

i ∈ S x i . Let r ∈ N , r ≤ | N| ,
nd let 〈 N 1 , . . . , N r 〉 be a partition of N. For l 1 , . . . , l s ∈ { 1 , . . . , r} and

 ∈ R 

| N| , we denote x l 1 , ... ,l s ∈ R 

| N| with 

 

l 1 , ... ,l s 
l 

= 

{
x l if l ∈ { l 1 , . . . , l s } , 
0 otherwise. 

ith minor abuse of language, for y 1 ∈ R 

N 1 , . . . , y N r ∈ R 

N r , we de-

ote y l 1 , ... ,l s ∈ R 

N with 

 

l 1 , ... ,l s 
N l 

= 

{
y N l if l ∈ { l 1 , . . . , l s } , 
0 N l otherwise. 

In a bankruptcy problem, a finite group of agents have a right- 

ul claim over a scarce estate. Formally, a bankruptcy problem is 

escribed by a tuple (N, E, c) where N is the set of agents, E ∈ R + 
s the estate, and c ∈ R 

N + is the vector of claims, with c i the claim

f i ∈ N on E, that satisfies c(N ) ≥ E. Let B 

N denote the set of

ankruptcy problems with set of agents N. For notational easiness, 

 bankruptcy problem is denoted (E, c) ∈ B 

N . 
389 
For (E, c) ∈ B 

N , the aggregate loss of a bankruptcy problem 

s the difference between the total claim and the estate, that is, 

 (E, c) = c(N) − E. If no confusion is to be expected, we write L in-

tead of L (E, c) . For a claimant i ∈ N, the minimal right of i is the

mount of estate available, if any, once all other claimants have 

eceived their full claim. Another, less used, interpretation of the 

inimal right of i is as follows. Pessimistically assuming that agent 

 is going to pay the aggregate loss, his minimal right is the part of

he claim that is left, if any, after subtracting the aggregate loss: 

 i (E, c) = (E − c(N \ { i } )) + = (c i − L ) + . 

f no confusion is to be expected, we write m i instead of m i (E, c) . It

s well established that 
∑ 

i ∈ N m i ≤ E (cf. Curiel et al., 1987; O’Neill, 

982 ). 

A bankruptcy rule is a function f that assigns to each 

ankruptcy problem (E, c) ∈ B 

N a vector f (E, c) ∈ R 

N satisfying 

 ≤ f (E, c) ≤ c and 

∑ 

i ∈ N 
f i (E, c) = E. 

he three more relevant bankruptcy rules in the literature are 

he proportional rule, the constrained equal awards rule, and the 

onstrained equal losses rule. The proportional rule , Prop , allo- 

ates the estate among the agents proportionally to their claims: 

or every (E, c) ∈ B 

N , Prop (E, c) = 

E 
c(N) 

c. The constrained equal 

wards rule , CEA , allocates the estate as equal as possible among 

he agents, considering that they do not get more than their 

laims: For every (E, c) ∈ B 

N , CEA (E, c) = ( min { c i , α} ) i ∈ N with α ∈
 such that 

∑ 

i ∈ N min { c i , α} = E. The constrained equal losses 

ule , CEL , allocates the losses as equal as possible among the 

gents, considering that they do not get a negative amount: For 

very (E, c) ∈ B 

N , CEL (E, c) = ((c i − β) + ) i ∈ N with β ∈ R such that
 

i ∈ N (c i − β) + = E. For a survey on more bankruptcy rules and 

heir properties, we refer to Thomson (2003, 2015) . 

.2. Sequential bankruptcy problems 

Before defining sequential bankruptcy problems, we give two 

ntroductory examples. Ambec and Sprumont (2002) initiated a 

ainstream of literature on sharing the water of an interna- 

ional river among the agents located along the river. Ansink and 

eikard (2012) further analyses this problem in the framework of 

ankruptcy problems where the agents are linearly ordered. They 

ropose a mechanism that transforms bankruptcy rules into rules 

or sharing water in a river. One feature of the problem in Ansink 

nd Weikard (2012) is that in each river location, there is exactly 

ne agent. We now consider that at each location, there may be 

ore than one agent. For instance, in one specific location, one 

gent might represent the water needed for human consumption, 

nother might represent the water needed for crop irrigation, and 

nother one might represent the water needed for industry. By al- 

owing more than one agent at each river location, we can also 

ake priorities of claimants into account: under water shortage, hu- 

an consumption may have priority over water needed for indus- 

ry. For more on bankruptcy problems with priorities, see Moulin 

20 0 0) and Thomson (2003) . 

xample 2.1. Consider a river with three locations, 1,2,3, along the 

iver. We may assume that location 1 is the location that is most 

pstream, location 2 is the location that is halfway, and location 3 

s the most downstream one. In location 1 there is a total inflow 

f E 1 = 6 units and there are two claimants, A and B, with claims

 A = 2 and c B = 3 ; in location 2 there is a total inflow of E 2 = 5

nits and there are three claimants, C, D, and E, with claims c C =
 , c D = 2 , and c E = 3 ; and in location 3 there is a total inflow of

 3 = 3 units and there is one claimant, F , with claim c F = 5 . 

Here, the agents at location 1 have rights over the inflow of 6 

nits; the agents at location 2 have rights over the total inflow at 
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Table 1 

Planned and realization times of the activities and the paths in Example 2.2 . 

Activity Planned time Realization time Expedition 

A 5 2 3 

B 7 3 4 

C 10 7 3 

D 4 3 1 

E 2 1 1 

F 3 2 1 

Path 

A-B 12 5 

C 10 7 

D-E-F 9 6 
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ocations 1 and 2 of 6 + 5 = 11 units; and the agent at location 3

as rights over the total inflow of the river: 6 + 5 + 3 = 14 units. 

In this specific situation, agents A and B have an inflow that 

otally satisfies their claims and let 1 unit of water go downstream. 

he agents C, D, and E have a total of 5 + 1 units of water inflow,

n order to satisfy their demands. Agent F has a claim of 5 and an

nsufficient inflow of 3 units to satisfy his claim. Therefore, agents 

, B, C, D and E may not be able to fulfill all their claims. 

Estévez-Fernández et al. (2007) , and Estévez-Fernández 

2012) in a more general setting, analyze allocation of delay 

osts and expedition rewards in projects within a game theoret- 

cal framework. A project consists of a set of activities that are 

nterconnected and need to be carried out during a period of 

ime in order to achieve a particular aim. Examples of projects are 

he construction of a building, the organization of a congress, or 

he development of the hyperloop. A planned project specifies its 

ctivities, their interconnections, and the planned time to carry 

ut each activity. This allows us to have a planned duration of 

he project. In many projects, specially when developing high 

echnology, there is a race against the clock and high incentives 

re given in order to finish the project before the planned time. 

or a project to be expedited, the activities need to coordinate and 

ooperate for this aim as the following example illustrates. 

xample 2.2. Consider a project with six activities which intercon- 

ections are given in Fig. 2 . 

The planned time of the activities are p( A ) = 5 , p( B ) = 7 ,

p( C ) = 10 , p( D ) = 4 , p( E ) = 2 and p( F ) = 3 . Hence, the planned

ime of the project is 

max { p( A ) + p( B ) , p( C ) , p( D ) + p( E ) + p( F ) } 
= max { 5 + 7 , 10 , 4 + 2 + 3 } = 12 . 

he manager wants the project to be expedited. For this, he is will- 

ng to pay a reward of € 10 0 0 per unit of expedition. To expedite

he whole project, activities in path A-B need to be expedited. If 

nly activities in A-B are expedited and C, D, E, F act according 

o plan, the project can have a maximum expedition of 2 units of 

ime. If C coordinates with A and B to expedite the project, while 

, E, and F act according to plan, they could increase the total ex- 

edition by at most one extra unit of time. To further expedite the 

roject, A, B and C also need the cooperation of activities in the 

ath D-E-F. Let the realization times of the project be those given 

n Table 1 . 

In this situation, A claims € 30 0 0, B claims € 40 0 0, C claims €
0 0 0, and D, E, and F claim € 10 0 0 each. Here, A and B are needed

o bring the total expedition of the project ( 12 − 7 = 5 ), and have

ights over the total reward of € 50 0 0. Activity C contributes to 

he expedition of 10 − 7 = 3 units of time and has rights over €
0 0 0 of the total reward. Activities D, E, and F contribute to the

xpedition of 9 − 7 = 2 units of time and have rights over € 20 0 0

f the total reward. 
390 
We now introduce sequential bankruptcy problems. Let N

e a finite set of claimants and let 〈 N 1 , . . . , N r 〉 be an ordered

artition of N. A sequential bankruptcy problem is a tuple 

〈 N 1 , . . . , N r 〉 , (E 1 , . . . , E r ) , c) where E 1 , . . . , E r ∈ R + are the estates

o be shared among the claimants such that the members of N 1 

laim over E 1 , the members of N 2 claim over E 1 + E 2 , and, in gen-

ral, the members of N l claim over 
∑ l 

λ=1 E λ for l ∈ { 1 , . . . , r} ; and

 ∈ R 

N + is the vector of claims satisfying c(N) ≥ ∑ r 
λ=1 E λ. Similar to

nsink and Weikard (2012) , we impose the following assumption 

o guarantee meaningfulness of sequential bankruptcy problems. 

Assumption : 

r 
 

λ= l 
c(N λ) ≥

r ∑ 

λ= l 
E λ for all l ∈ { 1 , . . . , r} . 

Let B 

N 1 , ... ,N r denote the set of bankruptcy problems with set 

f agents N = 

r ⋃ 

λ=1 

N λ and ordered partition 〈 N 1 , . . . , N r 〉 . For no-

ational easiness, a sequential bankruptcy problem is denoted 

 E , c) ∈ B 

N 1 , ... ,N r , where E = (E 1 , . . . , E r ) . 

For ( E , c) ∈ B 

N 1 , ... ,N r , the aggregate loss for the members of 

 k is defined by L k ( E , c) = c(N k ) − E k . Unlike in bankruptcy prob-

ems, L k ( E , c) may be negative. If no confusion is to be expected,

e write L k instead of L k ( E , c) . Our assumption can now be re-

tated as 

L l = 

r ∑ 

λ= l 
L λ ≥ 0 for all l ∈ { 1 , . . . , r} 

here DL l represents the downwards aggregate loss for the mem- 

ers of N l , . . . , N r . 

xample 2.3. The problem of sharing water in a river in 

xample 2.1 can be seen as a sequential bankruptcy problem 

here N = { A , B , C , D , E , F } , N 1 = { A , B } , N 2 = { C , D , E } , and N 3 =
 F } ; E 1 = 6 , E 2 = 5 , and E 3 = 3 ; and c = (2 , 3 , 1 , 2 , 3 , 5) . 

The expedition project problem in Example 2.2 can be seen 

s a sequential bankruptcy problem where N = { A , B , C , D , E , F } ,
 1 = { D , E , F } , N 2 = { C } , and N 3 = { A , B } ; E 1 = 20 0 0 , E 2 = 10 0 0 ,

nd E 3 = 20 0 0 ; and c = (30 0 0 , 40 0 0 , 30 0 0 , 10 0 0 , 10 0 0 , 10 0 0) . 

A sequential bankruptcy rule or rule is a function f that 

ssigns to each sequential bankruptcy problem ( E , c) ∈ B 

N 1 , ... ,N r a 

ector f ( E , c) ∈ R 

N satisfying 

 ≤ f ( E , c) ≤ c , (1) 

l 
 

=1 

∑ 

i ∈ N λ
f i ( E , c) ≤

l ∑ 

λ=1 

E λ for each l = 1 , . . . , r − 1 , and (2) 

r 
 

=1 

∑ 

i ∈ N λ
f i ( E , c) = 

r ∑ 

λ=1 

E λ. (3) 

or k ∈ { 1 , . . . , r} and E 1 = . . . = E k = 0 , conditions (1) and (2) im-

ly x N l = 0 N l for each l ∈ { 1 , . . . , k } . 
.3. Properties 

One way to discern among several division rules is by looking at 

heir properties. We now pay attention to generalizing basic prop- 

rties for bankruptcy rules to properties for sequential bankruptcy 

ules. We first consider invariance under claims truncation (see 

uriel et al., 1987 ). It refers to the upper bound for claims. It says

hat those claims that are over the estate should not be rewarded. 

ence the allocation should not depend on that part of the claim 

hat is greater than the maximum available quantity: For each 

E, c) ∈ B 

N , f (E, c) = f (E, c E ) where c E 
i 

= min { c i , E} for all i ∈ N. 
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Fig. 1. Sharing the water in a river in Example 2.1 . 

B

w

 

i  

(  

f

e

r

o

w

t

P

3

q

p

o

t

T

m

s

E

i  

w  

E

u

i

t

a

x

S

c

When considering sequential bankruptcy problems, the ques- 

ion we first need to address is what is our reference point for 

runcation. It is clear that claimants can never get more than the 

total estate” over which they are claiming. A rule f satisfies in- 

ariance under claims truncation if for each ( E , c) ∈ B 

N 1 , ... ,N r , 

f ( E , c) = f ( E , c E ) 

here c 
E 
i 

= min { c i , ∑ k 
λ=1 E λ} for all i ∈ N k and all k ∈ { 1 , . . . , r} . 

We can relax invariance under claims truncation by consider- 

ng the property for those sequential bankruptcy problems with 

nly one positive estate. A rule f satisfies weak invariance under 

laims truncation if for each k ∈ { 1 , . . . , r} and each E k > 0 with

 E k , c) ∈ B 

N 1 , ... ,N r , 

f ( E k , c) = f ( E k , c E k ) 

here c 
E k 
i 

= min { c i , E k } for all i ∈ 

⋃ r 
λ= k N λ and c 

E k 
i 

= 0 for all i ∈
 k −1 
λ=1 

N λ. It readily follows that invariance under claims truncation 

mplies weak invariance under claims truncation. 

Next, we consider equal treatment of equals (cf. Thomson, 

003 ). This property says that the same claims should be rewarded 

ith the same allocation: For each (E, c) ∈ B 

N and i, j ∈ N with

 i = c j , f i (E, c) = f j (E, c) . 

First, we need to decide when two claimants are considered 

qual. For a start, they need to have equal claims. Besides, they 

lso need to hold their claim over the same amount of “total es- 

ate”. A rule f satisfies equal treatment of equals if for each 

 E , c) ∈ B 

N 1 , ... ,N r , each k, l ∈ { 1 , . . . , r} with 

∑ k 
λ=1 E λ = 

∑ l 
λ=1 E λ, and

ach i ∈ N k and j ∈ N l with c i = c j , 

f i ( E , c) = f j ( E , c) . 

herefore, if i ∈ N k and j ∈ N l , with k < l, are equals, then, c i = c j 
nd E k +1 = . . . = E l = 0 . 

To conclude, we generalize minimal rights first (cf. Thomson, 

003 ). It establishes a minimal level of allocation for each agent, 

ince it works as a lower bound. Firstly, for each claimant we 

dentify an amount considered to be a minimum right (the dif- 

erence between the estate and the remaining claims if it is non- 

egative, and zero otherwise). Then, each claimant receives its 

inimal right, and the bankruptcy problem is revised to distribute 

he remaining estate by applying the rule: For each (E, c) ∈ B 

N ,

f (E, c) = m (E, c) + f (E − ∑ 

j∈ N m j (E, c) , c − m (E, c)) . In sequential

ankruptcy problems, the minimal right of claimant i ∈ N k is the 

art of the estate left, if any, after all other claimants have been 

ully compensated. For this, we first need to define the additional 

state that is available to N k from the upstream claimants. Let 

 E , c) ∈ B 

N 1 , ... ,N r and let AE 0 = 0 . For l = 1 , 

E 1 = (AE 0 + E 1 − c(N 1 )) + = (AE 0 − L 1 ) + 

s the part of the estate E 1 that the members of N 1 are not claiming

nd is the additional estate for N 2 . Then, the members of N 2 can

uarantee a claim over E 2 + AE 1 . For l ∈ { 2 , . . . , r − 1 } , 
E l = (AE l−1 + E l − c(N l )) + = (AE l−1 − L l ) + 

s the additional estate for N l+1 and the members of N l+1 can guar- 

ntee a claim over E l+1 + AE l . By the assumption on sequential 

ankruptcy problems, AE l −
∑ r 

λ= l+1 L λ ≤ 0 for l ∈ { 1 , . . . , r − 1 } . 
The minimal right of i ∈ N k , k ∈ { 1 , . . . , r} , is defined by 

 i ( E , c) = 

( 

AE k −1 + E k − c(N k \ { i } ) + 

r ∑ 

λ= k +1 

(E λ − c(N λ)) 

) 

+ 

= 

( 

AE k −1 + c i −
r ∑ 

λ= k 
L λ

) 

+ 

. 

e denote m ( E , c) = (m i ( E , c)) i ∈ N . If no confusion is to be ex-

ected, we write m instead of m ( E , c) and m instead of m ( E , c) . 
i i 
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A rule f satisfies strong minimal rights first if for each ( E , c) ∈ 

 

N 1 , ... ,N r , 

f ( E , c) = m + f 

( 

Ē 1 −
∑ 

i ∈ N 1 
m i , . . . , Ē r −

∑ 

i ∈ N r 
m i , c − m 

) 

ith Ē l = min { c(N l ) , AE l−1 + E l } for l ∈ { 1 , . . . , r} . 
Easily, m ( ̄E 1 , . . . , Ē r , c) = m ( E , c) . Therefore, minimal rights first

s very restrictive since it implies f ( E , c) = f ( ̄E 1 , . . . , Ē r , c) for every

 E , c) ∈ B 

N 1 , ... ,N r with m ( E , c) = 0 . We consider, for that reason, the

ollowing alternative. A rule f satisfies minimal rights first if for 

ach k ∈ { 1 , . . . , r} and each E k > 0 with ( E k , c) ∈ B 

N 1 , ... ,N r , 

f ( E k , c) = m + f 

(
0 , . . . , 0 , E k −

r ∑ 

λ= k 

∑ 

i ∈ N λ
m i , 0 , . . . , 0 , c − m 

)
. 

The following result provides an expression of the minimal 

ight of the claimants based on their claim and the aggregate loss 

n the different sets of claimants. The proof follows straightfor- 

ardly from the definition of minimal right and is, therefore, omit- 

ed. 

roposition 2.1. Let ( E , c) ∈ B 

N 1 , ... ,N r . 

(i) AE k −1 −
∑ r 

μ= k L λ = max 
1 ≤λ≤k 

{ 

− ∑ r 
μ= λ L μ

} 

≤ 0 for every 

k ∈ { 2 , . . . , r} . 
(ii) For i ∈ N k , m i ( E , c) = max 

1 ≤λ≤k 

{ (
c i −

∑ r 
μ= λ L μ

)
+ 
} 

. 

. Upwards mechanism for sequential bankruptcy problems 

In this section, we introduce the upwards mechanism for se- 

uential bankruptcy problems. It generalizes rules for bankruptcy 

roblems to rules for sequential bankruptcy problems. The name 

f upwards mechanism is inspired by the connection of sequen- 

ial bankruptcy problems and problems of sharing water in a river: 

he mechanism starts allocating the estates from downstream and 

oves upwards by updating the claims at each stage. We start this 

ection by reconsidering Example 2.1 . 

xample 3.1. Reconsider the problem of sharing water in a river 

n Example 2.1 (see Fig. 1 ). As pointed out in Example 2.3 ,

it can be interpreted as a sequential bankruptcy problem 

ith N = { A , B , C , D , E , F } , N 1 = { A , B } , N 2 = { C , D , E } , and N 3 = { F } ;
 1 = 6 , E 2 = 5 , and E 3 = 3 ; and c = (2 , 3 , 1 , 2 , 3 , 5) . 

To allocate the available water among the claimants, we will 

se the constrained equal awards rule. First, recall that the water 

nflow E 3 can only be shared among the claimants in N 3 as wa- 

er only flows downstream. We can apply the constrained equal 

wards rule to (E 3 , (0 N 1 , 0 N 2 , c N 3 )) ∈ B 

N : 

 

3 = CEA (3 , (0 , 0 , 0 , 0 , 0 , 5)) = (0 , 0 , 0 , 0 , 0 , 3) . 

econd, the water inflow E 2 can only be shared among the 

laimants in N and N as water only flows downstream. Since in 
2 3 
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Fig. 2. Activities interconnections and project representation in Example 2.2 . 

Table 2 

Upwards mechanism applied to the constrained equal awards, constrained equal 

losses, and proportional rules in Example 3.1 . 

Rule A B C D E F 

CEA Up 1 5 
9 

1 5 
9 

1 2 2 8 
9 

5 

CEL Up 1 2 
3 

2 2 
3 

2 
3 

1 2 
3 

2 2 
3 

4 2 
3 

Prop Up 1 1 
2 

2 1 
4 

29 
32 

1 13 
16 

2 23 
32 

4 13 
16 
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1 We follow here the nomenclature in Herrero and Villar (2001) . 
ur first step agent F has already got 3 units of water, we need to

pdate his claim to 5 − 3 = 2 . We can now apply the constrained

qual awards rule to (5 , (0 , 0 , 1 , 2 , 3 , 2)) ∈ B 

N : 

 

2 = CEA (5 , (0 , 0 , 1 , 2 , 3 , 2)) = 

(
0 , 0 , 1 , 1 

1 

3 

, 1 

1 

3 

, 1 

1 

3 

)
. 

Third and last, the water inflow E 1 can be shared among all 

he claimants. Since in our second step agents C, D, E and F have

lready got water, we need to update their claims: for C we have 

 − 1 = 0 , for D we have 2 − 1 1 3 = 

2 
3 , for E we have 3 − 1 1 3 = 1 2 3 ,

nd for F we have 2 − 1 1 3 = 

2 
3 . We can now apply the constrained

qual awards rule to (6 , (2 , 3 , 0 , 2 3 , 1 
2 
3 , 

2 
3 )) ∈ B 

N : 

 

1 = CEA 

(
6 , 

(
2 , 3 , 0 , 

2 

3 

, 1 

2 

3 

, 
2 

3 

))
= 

(
1 

5 

9 

, 1 

5 

9 

, 0 , 
2 

3 

, 1 

5 

9 

, 
2 

3 

)
. 

he upwards mechanism applied to the constrained equal awards 

ule leads to the allocation: 

 

3 + x 2 + x 1 = 

(
1 

5 

9 

, 1 

5 

9 

, 1 , 2 , 2 

8 

9 

, 5 

)
. 

n Table 2 , we give the allocations obtained by applying the up- 

ards mechanism to the constrained equal awards, constrained 

qual losses, and proportional rules. 

Given a bankruptcy rule f, the upwards mechanism gener- 

tes a rule for sequential bankruptcy problems, f Up , that assigns 

o each ( E , c) ∈ B 

N 1 , ... ,N r , a vector f Up ( E , c) ∈ R 

N defined by 

f Up ( E , c) = 

r ∑ 

k =1 

x k 

here x r = f (E r , c 
r ) and, for k = r − 1 , . . . , 1 , x k is recursively de-

ned by 

 

k = f 

( 

E k , c 
k, ... ,r −

r ∑ 

λ= k +1 

x λ

) 

. 

ecall that c k, ... ,r = (0 N 1 , . . . , 0 N k −1 
, c N k , . . . , c N r ) . 

Our assumption on sequential bankruptcy problems and the 

oundedness constraints of bankruptcy rules ensure that all the 

roblems above are bankruptcy problems. 

Following the idea behind the upwards mechanism, a rule f is 

n upwards sequential bankruptcy rule or upwards rule if for 

every ( E , c) ∈ B 

N 1 , ... ,N r , x r+1 = 0 and x k recursively defined by 

 

k = f 

(
E k , c k, ... ,r −

r+1 ∑ 

λ= k +1 

x λ
)
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or k = r, r − 1 , . . . , 2 , 1 , imply 

f ( E , c) = 

r ∑ 

λ=1 

x λ. 

ecall that E k = (0 , . . . , 0 , E k , 0 , . . . , 0) . Thus, if f is an upwards

ule, it is the same to directly apply f to ( E , c) , or to apply the

ule to ( E r , c r ) and, after updating the claims, work all the way up

o ( E 1 , d 1 ) , where d 1 represents the updated claims. Clearly, the 

pwards mechanism generates upwards rules. 

The following result states that the properties of invariance 

nder claims truncation, equal treatment of equals, and minimal 

ights first in the class of bankruptcy problems are inherited in the 

lass of sequential bankruptcy problems by the upwards mecha- 

ism. The proof is postponed to the supplementary material. 

roposition 3.1. Let f be a bankruptcy rule. 

(i) If f satisfies invariance under claims truncation, then, f Up sat- 

isfies invariance under claims truncation. 

(ii) If f satisfies invariance under claims truncation, then, f Up sat- 

isfies weak invariance under claims truncation. 

(iii) If f satisfies equal treatment of equals, then, f Up satisfies equal 

treatment of equals. 

(iv) If f satisfies minimal rights first, then, f Up satisfies minimal 

rights first. 

Next, we turn our attention to the properties of duality (cf. 

umann & Maschler, 1985 ), composition (cf. Young, 1988 ), and 

ath independence (cf. Moulin, 1987 ). 1 Two bankruptcy rules f

nd f D are dual if f shares rewards in the same way as f D al-

ocates losses and vice versa: For each (E, c) ∈ B 

N , f (E, c) = c −
f D (L, c) . A rule f is self-dual if f D = f . 

The difficulty of generalizing duality to sequential bankruptcy 

roblems lies in how to define the losses at a given estate E k ,

ince this estate is shared by agents in N k , . . . , N r . We are going to

se an upwards approach, although other generalizations may also 

e possible. Given ( E , c) ∈ B 

N 1 , ... ,N r , recall that DL k = 

∑ r 
λ= l L λ repre-

ents the downwards aggregate loss for the members of N k , . . . , N r 

nd DL k ≥ 0 for all k ∈ { 1 , . . . , r} by assumption. We denote DL =
DL 1 , . . . , DL r ) . It follows ( DL k , c) ∈ B 

N 1 , ... ,N r for all k ∈ { 1 , . . . , r} . The

equential bankruptcy problem ( DL k , c) represents the problem 

f sharing the sum of the downwards aggregate loss in groups 

 k , . . . , N r among their members. Two rules f and f UpD are up- 

ards dual if f shares rewards in the same way as f UpD allocates 

ownward losses in an upwards manner. The rule f UpD is the up- 

ards dual rule of f if for each ( E , c) ∈ B 

N 1 , ... ,N r , 

f UpD ( E , c) = c − f 
(
DL 1 , c − (c 2 , ... ,r − x 2 ) 

)
here x r = f 

(
DL r , c r 

)
and for k = r − 1 , . . . , 1 , 

 

k = f 
(
DL k , c k, ... ,r − (c k +1 , ... ,r − x k +1 ) 

)
. 
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he rule f is upwards self-dual if f = f UpD . 

emark 3.2. Let f UpD be the upwards dual rule of f and let 

 E , c) ∈ B 

N 1 , ... ,N r with E 1 = . . . = E k −1 = 0 and E k > 0 for some

 ∈ { 2 , . . . , r} . Using that f UpD ( E , c) = 

∑ r 
l=1 (c l, ... ,r − x l − (c l+1 , ... ,r −

 

l+1 )) , with c r+1 = x r+1 = 0 , it readily follows that 

f UpD ( E , c) = c k, ... ,r − x k . 

The following result establishes the one-to-one relation be- 

ween an upwards rule and its dual. Besides, it shows that given 

wo dual bankruptcy rules, the corresponding upwards rules ob- 

ained with the upwards mechanism are also upwards dual. The 

roof is postponed to the supplementary material. 

emma 3.3. 

(i) Let f be an upwards rule and let f UpD be its upwards dual rule. 

Then, f UpD is also an upwards rule and f is the upwards dual 

rule of f UpD . 

(ii) Let f and g be two dual bankruptcy rules. Then, f Up and g Up 

are upwards dual. 

A bankruptcy rule f satisfies composition if given two 

ankruptcy problems with same claimants and same claims, but 

here one of the estates is higher than the other, it is the same

o directly apply f to the problem with the higher estate than 

o first apply f to the problem with the lowest estate and sec- 

nd apply f to the estates difference after updating the claims: 

or each (E, c) , (E ′ , c) ∈ B 

N with E ≥ E ′ and x = f (E ′ , c) , f (E, c) =
f (E ′ , c) + f (E − E ′ , c − x ) . 

Ansink and Weikard (2015) have translated composition of 

ankruptcy problems to rules for the river claims problem, which 

an be analyzed in the context of sequential bankruptcy prob- 

ems where each element of the partition has exactly one claimant. 

hey propose three composition properties: (i) river composition, 

ii) composition downstream, and (iii) composition upstream. Un- 

ortunately, the updated estate vector combined with the updated 

laims in the definition of river composition need not lead to a 

equential bankruptcy problem. Besides, their definition of compo- 

ition upstream is equivalent to the concept of upwards rule. 

The main challenge when generalizing composition to sequen- 

ial bankruptcy problems is making sure that the updated es- 

ate vector and updated claims remain in the class of sequential 

ankruptcy problems. For this, we continue to apply an upwards 

ethodology. A rule f satisfies upwards composition if given two 

equential bankruptcy problems ( E , c) and ( E ′ , c) that only differ 

n estate k with E ′ 
k 

≤ E k , then, it is the same to apply the rule to

 E , c) than to apply first the rule to ( E ′ k, ... ,r 
, c) and second to the

pdated estate vector and claims. A rule f satisfies upwards com- 

osition if for each ( E , c) ∈ B 

N 1 , ... ,N r , each k ∈ { 1 , . . . , r} , and each

 

′ 
k 

∈ R + with E ′ 
k 

≤ E k , x 
k = f ( E ′ k + E k +1 , ... ,r 

, c k, ... ,r ) implies 

f ( E , c) = f ( E 1 , ... ,k − E ′ k , c − x k ) + f ( E ′ k + E k +1 , ... ,r 
, c k, ... ,r ) . 

emma 3.4. Any rule satisfying upwards composition is an upwards 

ule. 

roof. Let f satisfy upwards composition and let ( E , c) ∈ B 

N 1 , ... ,N r . 

et E ′ r = E r and x r = f ( E r , c r ) . By upwards composition, 

f ( E , c) = f ( E − E r , c − x r ) + f ( E r , c r ) . 

et E ′ 
k 

= E k and x k = f 

(
E k , c k − ∑ r 

λ= k +1 x 
λ
)

for k = r − 1 , . . . , 1 . Re-

teratively applying upwards composition, we get 

f ( E , c) = 

r ∑ 

λ=1 

x l . 
� p
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The following result states that composition in the class 

f bankruptcy problems is inherited in the class of sequential 

ankruptcy problems by the upwards mechanism. The proof is 

ostponed to the supplementary material. 

roposition 3.5. Let f be a bankruptcy rule satisfying composition, 

hen, f Up satisfies upwards composition. 

heorem 3.6. The upwards constrained equal awards rule is the 

nly rule satisfying equal treatment of equals, weak invariance under 

laims truncation, and upwards composition. 

roof. It is well established that the constrained equal awards 

ule for bankruptcy problems satisfies equal treatment of 

quals, invariance under claims truncation, and composition. By 

ropositions 3.1 and 3.5 , the upwards constrained equal awards 

ule satisfies equal treatment of equals, weak invariance under 

laims truncation, and upwards composition as well. We now 

rove uniqueness. Let f be a rule satisfying equal treatment of 

quals, weak invariance under claims truncation, and upwards 

omposition. By Lemma 3.4 , f is an upwards rule. Next, we 

how f = CEA 

Up . Let ( E , c) ∈ B 

N 1 , ... ,N r . By upwards composition,

 

r = f ( E r , c r ) implies 

f ( E , c) = f ( E − E r , c − x r ) + f ( E r , c r ) . 

ollowing the same lines as in Dagan (1996) , it is readily seen 

hat equal treatment of equals, weak invariance under claims trun- 

ation, and upwards composition imply f ( E r , c r ) = CEA 

Up ( E r , c r )

nd 

f ( E , c) = f ( E − E r , c − x r ) + CEA 

Up ( E r , c r ) 

ith x r = CEA 

Up ( E r , c) . Recursively, following the same lines as 

bove, for k ∈ { 1 , . . . , r − 1 } , x r = f ( E r , c r ) = CEA 

Up ( E r , c r ) and

 

l = f 

(
E l , c l, ... ,r − ∑ r 

λ= l+1 x 
λ
)

= CEA 

Up 
(

E l , c l, ... ,r − ∑ r 
λ= l+1 x 

λ
)

for 

 ∈ { k, . . . , r − 1 } , imply 

f ( E , c) = f 

(
E 1 , ... ,k − E k , c −

r ∑ 

μ= λ+1 

x μ
)

+ 

r ∑ 

λ= k 
f 

(
E λ, c λ, ... ,r −

r ∑ 

μ= λ+1 

x μ
)

= f 

(
E 1 , ... ,k − E k , c −

r ∑ 

μ= λ+1 

x μ
)

+ 

r ∑ 

λ= k 
CEA 

Up 
(

E λ, c λ, ... ,r −
r ∑ 

μ= λ+1 

x μ
)

herefore, for k = 1 , 

f ( E , c) = 

r ∑ 

λ=1 

CEA 

Up 
(

E λ, c λ, ... ,r −
r ∑ 

μ= λ+1 

x μ
)

= CEA 

Up ( E , c) . 

�

As an immediate consequence of Proposition 3.1 and 

heorem 3.6 , we have 

orollary 3.7. The upwards constrained equal awards rule is the 

nly rule satisfying equal treatment of equals, invariance under claims 

runcation, and upwards composition. 

A bankruptcy rule f satisfies path independence if given two 

ankruptcy problems with same claimants and same claims, but 

here one of the estates is higher than the other, it is the same to

irectly apply f to the problem with the lowest estate than to first 

pply f to the problem with the highest estate and second use this 

llocation as the new vector of claims to share the lowest estate: 

or each (E, c) , (E ′ , c) ∈ B 

N with E ≥ E ′ , f (E ′ , c) = f (E ′ , f (E, c)) . 

Ansink and Weikard (2015) have defined path independence of 

ankruptcy problems for rules to the river claims problem. Recall 

hat river claims problem can be seen as sequential bankruptcy 

roblems where all elements in the partition are singletons. They 

ropose river path independence where, if the water level at some 

oints in the river is less than the anticipated, it is the same to 
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llocate the water of the new situation using the original vector of 

laims, or using the initially established allocation. The bounded- 

ess conditions 1 and 2 allow for a similar definition of path inde- 

endence in the context of sequential bankruptcy problems: A rule 

f satisfies path independence if for each ( E , c) , ( E ′ , c) ∈ B 

N 1 , ... ,N r , 

ith E ′ 
k 

≤ E k for each k ∈ { 1 , . . . , r} , 
f ( E ′ , c) = f ( E ′ , f ( E , c)) . 

n this paper, we are putting forward upwards mechanisms to 

ranslate bankruptcy rules to the more general setting of sequen- 

ial bankruptcy problems. Therefore, we also propose a new con- 

ept for path independence which is based on the upwards idea. 

 rule f satisfies upwards path independence if for each ( E , c) ∈ 

 

N 1 , ... ,N r , each k ∈ { 1 , . . . , r} , and each E ′ 
k 

∈ R + with E ′ 
k 

≤ E k , E ′ =
 − E k + E ′ k , d k = f ( E k, ... ,r 

, c k, ... ,r ) , x k +1 = f ( E ′ k +1 , ... ,r 
, c k +1 , ... ,r ) and

 

′ k = f ( E ′ k , d k − x k +1 ) , imply 

f ( E ′ , c) = f ( E ′ 1 , ... ,k −1 
, c − x ′ k − x k +1 ) + f ( E ′ k , d k − x k +1 ) + f ( E ′ k +1 , ... ,r 

, c k +1 , ... ,r ) . 

ollowing the same lines as Lemma 3.4 , one can see that path in-

ependence implies being an upwards rule. The proof is, therefore, 

mitted. 

emma 3.8. Any rule satisfying upwards path independence is an up- 

ards rule. 

It is readily seen that upwards path independence is equivalent 

o path independence together with being an upwards rule. 

Inspired by Herrero and Villar (2001) , two properties P and 

 

UpD are upwards dual when a rule f satisfies P if, and only if, 

ts upwards dual rule f UpD satisfies P 

UpD . A property P is upwards 

elf-dual when a rule f satisfies P if, and only if, its upwards dual 

ule f UpD satisfies P as well. 

The proof of the following result follows the same lines as the 

roof of Theorem 0 in Herrero and Villar (2001) . It is, therefore, 

mitted. 

heorem 3.9 ( Herrero and Villar, 2001 ) . Let a rule f be character-

zed by a set of independent properties P 1 , . . . , P s . Let P 

UpD 
1 

, . . . , P 

UpD 
s 

e the dual properties of P 1 , . . . , P s , respectively. Then, the upwards

ual rule f UpD is characterized by P 

UpD 
1 

, . . . , P 

UpD 
s and these proper- 

ies are also independent. 

The following result states that upwards composition and up- 

ards path independence are upwards dual properties, and mini- 

al rights first and weak invariance under claims truncation are 

pwards dual properties as well. The proof of these results fol- 

ow the same lines as their counterparts in the framework of 

ankruptcy problems and is, therefore, omitted. 

emma 3.10. 

(i) Upwards composition and upwards path independence are up- 

wards dual. 

(ii) Minimal rights first and weak invariance under claims trunca- 

tion are upwards dual. 

(iii) Equal treatment of equals is upwards self-dual. 

The following result is a direct consequence of Lemma 3.3 (ii), 

heorems 3.6 and 3.9 , and Lemma 3.10 . 

heorem 3.11. The upwards constrained equal losses rule is the only 

ule satisfying equal treatment of equals, minimal rights first, and up- 

ards path independence. 

orollary 3.12. The upwards constrained equal losses rule is the only 

pwards rule satisfying equal treatment of equals, minimal rights first, 

nd path independence. 

To conclude this section, we characterize the upwards propor- 

ional rule. For this, we need to introduce one last property. Let f
394 
e a rule. Let c ∈ R 

N . For k ∈ { 1 , . . . , r} , let p k,c 
f 

: [0 , 
∑ r 

l= k c(N l )] →
 

N be defined by p k,c 
f 

(E k ) = f ( E k , c) . We say that f is weak con-

inuous if for each c ∈ R 

N and each k ∈ { 1 , . . . , r} , p k,c 
f 

is continu-

us. 

As remarked in Herrero and Villar (2001) , Young’s characteriza- 

ion of the proportional rule uses continuity. However, only con- 

inuity with respect to the estate is needed. In our case, we only 

eed the requirement of weak continuity, which follows from both 

pwards composition and upwards path independence. The proof 

f the following result follows the same lines as the proof of 

heorem 3.6 and is, therefore, omitted. 

heorem 3.13. 

(i) The upwards proportional rule is the only rule satisfying up- 

wards composition and upwards self-duality. 

(ii) The upwards proportional rule is the only rule satisfying up- 

wards path independence and upwards self-duality. 

. Concluding remarks 

In this paper, we have introduced sequential bankruptcy prob- 

ems as a generalization of bankruptcy problems, which includes 

iver problems and allocation of expedition rewards in projects. 

e have put forward the upwards method to translate rules for 

ankruptcy problems to rules for sequential bankruptcy problems. 

e have translated basic properties of bankruptcy rules to the 

ramework of sequential bankruptcy problems. For properties in- 

olving a change of estate, we have used the upwards philosophy 

o adapt them to the new setting. Further, we have characterized 

he upwards versions of three well-known bankruptcy rules (con- 

trained equal awards, constrained equal losses, and proportional 

ules) on the basis of upwards composition and upwards path in- 

ependence. 

Ansink and Weikard (2012) and Ansink and Weikard (2015) put 

orward sequential sharing rules for river problems. They start 

haring the “most upstream estate” between the agent claiming 

nly on that estate (agent 1) and a fictitious agent representing 

he “downstream agents”, which claim is the aggregated loss of all 

ownstream agents. Agent 1 leaves with his share and the alloca- 

ion given to the fictitious player is added to the second “most up- 

tream estate”. Second, they share the updated second “most up- 

tream estate” between the remaining agent claiming only on that 

state and a fictitious agent representing his “downstream agents”, 

hich claim is the aggregated loss of all his downstream agents. 

ollowing the same idea, all estates are updated and consecutively 

hared until arriving to the “most downstream” agent that gets his 

wn updated estate. This technique can easily be generalized to 

equential bankruptcy problems, which we call the “downstream 

echanism ” to distinguish both settings and to be consistent with 

he upwards mechanism. 

Inspired by the two-step procedure for bankruptcy problems 

ith a priori unions in Borm, Carpente, Casas-Méndez, and Hen- 

rickx (2005) , we propose the two-steps mechanism for gener- 

lizing rules for bankruptcy problems to rules for sequential 

ankruptcy problems. In a “first step”, a chosen bankruptcy rule is 

pplied to the bankruptcy problem with r agents where the estate 

s the sum of all estates and the claim of agent k is the total claim

f the members of N k truncated with respect to the sum of the es- 

ates E k , . . . , E r , k ∈ { 1 , . . . , r} ; in a “second step”, the same rule is

sed to divide the allocation of each group N 1 , . . . , N r among their

embers. 

It is easily seen, although technically convoluted, that the prop- 

rties of invariance under claims truncation and minimal rights 

rst are inherited when applying the downwards and the two- 

teps mechanisms. However, equal treatment of equals is not in- 
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erited in the class of sequential bankruptcy problems by these 

wo mechanisms. The same applies to composition and path inde- 

endence and their generalizations in the form of upwards compo- 

ition and upwards path independence since the downwards and 

wo-steps mechanisms do not generate upwards rules. Future re- 

earch should further study characterizations of rules generated by 

he downstream and the two-steps mechanisms. 
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