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Abstract: During the last few decades, domination theory has been one of the most active areas of
research within graph theory. Currently, there are more than 4400 published papers on domination
and related parameters. In the case of total domination, there are over 580 published papers, and 50
of them concern the case of product graphs. However, none of these papers discusses the case of
rooted product graphs. Precisely, the present paper covers this gap in the theory. Our goal is to
provide closed formulas for the total domination number of rooted product graphs. In particular,
we show that there are four possible expressions for the total domination number of a rooted product
graph, and we characterize the graphs reaching these expressions.
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Let G be a graph. The open neighborhood of a vertex v ∈ V(G) is defined to be N(v) = {u ∈
V(G) : u is adjacent to v}. A set S ⊆ V(G) is a dominating set of G if N(v) ∩ S 6= ∅ for every vertex
v ∈ V(G) \ S. Let D(G) be the set of dominating sets of G. The domination number of G is defined
to be,

γ(G) = min{|S| : S ∈ D(G)}.

A set S ⊆ V(G) is a total dominating set, TDS, of a graph G without isolated vertices if every
vertex v ∈ V(G) is adjacent to at least one vertex in S. Let Dt(G) be the set of total dominating sets
of G.

The total domination number of G is defined to be,

γt(G) = min{|S| : S ∈ Dt(G)}.

By definition, Dt(G) ⊆ D(G), so that γ(G) ≤ γt(G).
We define a γt(G)-set as a set S ∈ Dt(G) with |S| = γt(G). The same agreement will be assumed

for optimal parameters associated with other characteristic sets defined in the paper. For instance,
a γ(G)-set will be a set S ∈ D(G) with |S| = γ(G).

The theory of domination in graphs has been extensively studied. For instance, there are more
than 4400 papers already published on domination and related parameters. In particular, we cite the
following books [1,2]. In the case of total domination, there are over 580 published papers and one
book [3]. Among these papers on total domination in graphs, there are over 50 which concern the case
of product graphs. Surprisingly, none of these papers discusses the case of rooted product graphs. The
present paper covers that gap in the theory.

In order to present our results, we need to introduce some additional notation and terminology.
The closed neighborhood of v ∈ V(G) is defined to be N[v] = N(v) ∪ {v}. A vertex v ∈ V(G) is
universal if N[v] = V(G), while it is a leaf if |N(v)| = 1. The set of leaves of G will be denoted by
L(G). A support vertex is a vertex v with N(v) ∩ L(G) 6= ∅. The set of support vertices of G will
be denoted by S(G). If v is a vertex of a graph G, then the vertex-deletion subgraph G− {v} is the
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subgraph of G induced by V(G) \ {v}. By analogy, we define the subgraph G − S for an arbitrary
subset S ⊆ V(G).

The concept of rooted product graph was introduced in 1978 by Godsil and McKay [4]. Given a
graph G of order n(G) and a graph H with root vertex v, the rooted product graph G ◦v H is defined
as the graph obtained from G and H by taking one copy of G and n(G) copies of H and identifying the
ith vertex of G with the root vertex v in the ith copy of H for every i ∈ {1, 2, . . . , n(G)}. If H or G is a
trivial graph, then G ◦v H is equal to G or H, respectively. In this sense, hereafter we will only consider
graphs G and H with no isolated vertex.

G

v

H
G ◦v H

Figure 1. The set of black-coloured vertices forms a γt(G ◦v H)-set.

Figure 1 shows an example of a rooted product graph. In this case, the set of black-coloured
vertices forms a TDS of G ◦v H and γt(G ◦v H) = 14 = γ(G) + n(G)(γt(H)− 1).

For every x ∈ V(G), Hx ∼= H will denote the copy of H in G ◦v H containing x. The restriction
of any set S ⊆ V(G ◦v H) to V(Hx) will be denoted by Sx, and the restriction to V(Hx − {x}) will
be denoted by S−x ; i.e., Sx = S ∩ V(Hx) and S−x = Sx \ {x}. In some cases, we will need to define
S ⊆ V(G ◦v H) from the sets Sx ⊆ V(Hx) as S = ∪x∈V(G)Sx.

Since V(G ◦v H) = ∪x∈V(G)V(Hx), we have that for every set S ⊆ V(G ◦v H),

|S| = ∑
x∈V(G)

|Sx| = ∑
x∈V(G)

|S−x |+ |S ∩V(G)|. (1)

A basic problem in the study of product graphs consists of finding closed formulas or sharp
bounds for specific invariants of the product of two graphs and expressing these in terms of parameters
of the graphs involved in the product. In this sense, for recent results on rooted product graphs, we cite
the following works [5–19]. As we can expect, the products of graphs are not alien to applications in
other fields. In particular, in [5] the authors show that several important classes of chemical graphs can
be expressed as rooted product graphs, and as described in [20], there exist a number of molecular
graphs of high-tech interest that can be generated using the rooted product of graphs.

1. Closed Formulas for the Total Domination Number

The following three lemmas will be the main tools to deduce our results.

Lemma 1. Given a graph H with no isolated vertex and any v ∈ V(H) \ S(H), the following statements hold.

(i) γt(H − {v}) ≥ γt(H)− 1.
(ii) If γt(H − {v}) = γt(H)− 1, then the following statements hold.

(a) N(v) ∩ S = ∅ for every γt(H − {v})-set S.
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(b) There exists a γt(H)-set S such that v /∈ S.
(iii) If γt(H − {v}) > γt(H), then v ∈ S for every γt(H)-set S.

Proof. Let v ∈ V(H) \ S(H) and S a γt(H − {v})-set. For every u ∈ N(v) we have that S ∪ {u} is
a TDS of H, which implies that γt(H) ≤ |S ∪ {u}| ≤ γt(H − {v}) + 1. Therefore, (i) follows.

Now, in order to prove (ii), we assume that |S| = γt(H)− 1. If there exists a vertex y ∈ N(v) ∩ S,
then S is also a TDS of H, which is a contradiction. Therefore, N(v) ∩ S = ∅ and so (a) follows.
In addition, for any y ∈ N(v), the set S∪ {y} is a γt(H)-set not containing v. Therefore, (b) also follows.

Finally, we proceed to prove (iii). If there exists a γt(H)-set D such that v /∈ D, then D is also a TDS
of H − {v}, and so γt(H − {v}) ≤ |D| = γt(H). Therefore, we conclude that if γt(H − {v}) > γt(H),
then v ∈ D for every γt(H)-set D, which completes the proof.

Lemma 2. Let H be a graph and v ∈ V(H). If v is not a universal vertex and H − N[v] does not have isolated
vertices, then

γt(H − N[v]) ≥ γt(H)− 2.

Furthermore, if γt(H − {v}) = γt(H)− 1, then

γt(H)− 2 ≤ γt(H − N[v]) ≤ γt(H)− 1.

Proof. Assume that v is not a universal vertex and H − N[v] does not have isolated vertices. Let S be
a γt(H − N[v])-set and u ∈ N(v). Since S ∪ {u, v} is a TDS of H, we have that γt(H) ≤ |S ∪ {u, v}| =
γt(H − N[v]) + 2, as required.

Now, assume γt(H− {v}) = γt(H)− 1. In this case, by Lemma 1 (ii) we have that N(v)∩D = ∅
for every γt(H− {v})-set D, which implies that D is a TDS of H− N[v], and so γt(H− N[v]) ≤ |D| =
γt(H − {v}) = γt(H)− 1. Therefore, the result follows.

Lemma 3. Given a γt(G ◦v H)-set S and a vertex x ∈ V(G), the following statements hold.

(i) |Sx| ≥ γt(H)− 1.
(ii) If |Sx| = γt(H)− 1, then N(x) ∩ Sx = ∅.

Proof. Let x ∈ V(G). Notice that every vertex in V(Hx) \ {x} is adjacent to some vertex in Sx. For any
y ∈ N(x) ∩ V(Hx), the set Sx ∪ {y} is a TDS of Hx, and so γt(H) = γt(Hx) ≤ |Sx ∪ {y}| = |Sx|+ 1.
Therefore, (i) follows.

Finally, assume that |Sx| = γt(H)− 1. If there exists a vertex y ∈ N(x) ∩ Sx, then Sx is a TDS of
Hx, which is a contradiction. Therefore, N(x) ∩ Sx = ∅, and so (ii) follows.

Given a γt(G ◦v H)-set S, we define the following subsets of V(G) associated with S.

AS = {x ∈ V(G) : |Sx| ≥ γt(H)} and BS = {x ∈ V(G) : |Sx| = γt(H)− 1}.

These sets will play an important role in the inference results. By Lemma 3, V(G) = AS ∪ BS.
In particular, if AS = ∅, then γt(G ◦v H) = n(G)(γt(H)− 1), and as we will show in the proof of
Theorem 2, if BS = ∅, then γt(G ◦v H) = n(G)γt(H). As we can expect, these are the extreme values
of γt(G ◦v H).

Theorem 1. For any graphs G and H with no isolated vertex and any v ∈ V(H),

n(G)(γt(H)− 1) ≤ γt(G ◦v H) ≤ n(G)γt(H).

Furthermore, if γt(H − {v}) = γt(H)− 1, then

γt(G ◦v H) ≤ γt(G) + n(G)(γt(H)− 1).
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Proof. The lower bound follows from Lemma 3, as for any γt(G ◦v H)-set S,

γt(G ◦v H) = |S| = ∑
x∈V(G)

|Sx| ≥ n(G)(γt(H)− 1).

Now, we proceed to prove the upper bound. Let D ⊆ V(G ◦v H) such that Dx is a γt(Hx)-set for
every x ∈ V(G). It is readily seen that D is a TDS of G ◦v H. Hence,

γt(G ◦v H) ≤ |D| = ∑
x∈V(G)

|Dx| = ∑
x∈V(G)

γt(Hx) = n(G)γt(H).

From now on, assume γt(H − {v}) = γt(H)− 1. Notice that, by assumption, H − {v} does not
have isolated vertices.

Let W ⊆ V(G ◦v H) such that W−x = Wx \ {x} is a γt(Hx − {x})-set for every x ∈ V(G) and
W ∩V(G) is a γt(G)-set. Clearly, W is a TDS of G ◦v H, which implies that

γt(G ◦v H) ≤ |W ∩V(G)|+ ∑
x∈V(G)

|W−x | = γt(G) + ∑
x∈V(G)

γt(Hx−{x}) = γt(G) + n(G)(γt(H)− 1).

Therefore, the result follows.

The following lemma is another important tool for determining all possible values of γt(G ◦v H).

Lemma 4. Given a γt(G ◦v H)-set S with BS 6= ∅, the following statements hold.

(i) If BS ∩ S 6= ∅, then γt(G ◦v H) = n(G)(γt(H)− 1).
(ii) If BS ∩ S = ∅, then γt(H − {v}) = γt(H)− 1, and as a consequence,

γ(G) + n(G)(γt(H)− 1) ≤ γt(G ◦v H) ≤ γt(G) + n(G)(γt(H)− 1).

Proof. First, we proceed to prove (i). Given a fixed x′ ∈ BS ∩ S, let D ⊆ V(G ◦v H) such that for
every x ∈ V(G) the set Dx is induced by Sx′ . Obviously, D is a TDS of G ◦v H. Hence, γt(G ◦v H) ≤
|D| = ∑x∈V(G) |Dx| = n(G)|Sx′ | = n(G)(γt(H)− 1). Therefore, Theorem 1 leads to γt(G ◦v H) =

n(G)(γt(H)− 1).
In order to prove (ii), assume that BS ∩ S = ∅, and let x ∈ BS. By Lemma 3 we have that

N[x] ∩ Sx = ∅. So, x /∈ S(Hx) and Sx is a TDS of Hx − {x}. Hence, γt(H − {v}) = γt(Hx − {x}) ≤
|Sx| = γt(H)− 1, and so Lemma 1 leads to γt(H − {v}) = γt(H)− 1. Therefore, by Theorem 1 we
have that γt(G ◦v H) ≤ γt(G) + n(G)(γt(H)− 1).

Moreover, since N[x]∩ Sx = ∅ for every x ∈ BS, we have thatAS is a dominating set of G. Hence,

γt(G ◦v H) = ∑
x∈AS

|Sx|+ ∑
x∈BS

|Sx|

≥ |AS|γt(H) + |BS|(γt(H)− 1)

≥ |AS|+ n(G)(γt(H)− 1)

≥ γ(G) + n(G)(γt(H)− 1).

Therefore, the result follows.

Next we give one of the main results of this section, which states the four possible values of
γt(G ◦v H).

Theorem 2. Let G and H be two graphs with no isolated vertex. For any v ∈ V(H),

γt(G ◦v H) ∈ {n(G)(γt(H)− 1), γ(G) + n(G)(γt(H)− 1), γt(G) + n(G)(γt(H)− 1), n(G)γt(H)}.
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Proof. Let S be a γt(G ◦v H)-set and consider the subsets AS,BS ⊆ V(G) associated with S.
We distinguish the following cases.

Case 1. BS = ∅. In this case, for any x ∈ V(G) we have that |Sx| ≥ γt(H), and as a consequence,
γt(G ◦v H) = ∑x∈V(G) |Sx| ≥ n(G)γt(H). Thus, Theorem 1 leads to the equality γt(G ◦v H) =

n(G)γt(H).

Case 2. BS 6= ∅. If BS ∩ S 6= ∅, then from Lemma 4 (i) we have that γt(G ◦v H) = n(G)(γt(H)− 1).
From now on we assume that BS ∩ S = ∅. Hence, Lemma 4 (ii) leads to

γ(G) + n(G)(γt(H)− 1) ≤ γt(G ◦v H) ≤ γt(G) + n(G)(γt(H)− 1).

We only need to prove that γt(G ◦v H) only can take the extreme values. To this end, we shall
need to introduce the following notation. Let A′S = {x ∈ AS : |Sx| = γt(H)} and A′′S = AS \ A′S.

Subcase 2.1. There exists x′ ∈ A′S such that Sx′ is a γt(Hx′)-set containing x′. From a fixed vertex y ∈ BS
and any γ(G)-set D, we can construct a set W ⊆ V(G ◦v H) as follows. If x ∈ D, then Wx is induced by
Sx′ , while if x ∈ V(G) \ D, then Wx is induced by Sy. Notice that W is a TDS of G ◦v H, which implies
that γt(G ◦v H) ≤ |W| = γ(G) + n(G)(γt(H)− 1). Therefore, γt(G ◦v H) = γ(G) + n(G)(γt(H)− 1).

Subcase 2.2. A′S = ∅ or for any x ∈ A′S, either Sx is not a γt(Hx)-set or x 6∈ Sx. If A′S 6= ∅, then every
vertex x ∈ A′S satisfies one of the following conditions.

(a) Sx is a γt(Hx)-set such that x /∈ Sx.
(b) Sx is not a TDS of Hx and x ∈ Sx.

Notice that we do not consider the case where Sx is not a TDS of Hx and x 6∈ Sx, as in this case we
can replace S with the γt(G ◦v H)-set (S \ Sx) ∪ S′x for some γt(Hx)-set S′x. In such a case, if x ∈ S′x,
then we proceed as in Subcase 2.1, while if x 6∈ S′x, then x satisfies (a).

Let us construct a TDS X of G as follows.

- AS ⊆ X.
- For any x ∈ A′S which satisfies condition (a) and N(x) ∩ S ∩V(G) = ∅, we choose one vertex

y ∈ N(x) ∩V(G) and set y ∈ X.
- For any x ∈ A′′S with N(x) ∩ S ∩ V(G) = ∅, we choose one vertex y ∈ N(x) ∩ V(G) and set

y ∈ X.

We proceed to show that X is a TDS of G. If x ∈ V(G) \ X, then either x ∈ BS or x ∈ A′S \ S.
If x ∈ BS, then N(x) ∩ S ∩ AS 6= ∅, which implies that N(x) ∩ X 6= ∅. Obviously, if x ∈ A′S \ S,
then N(x) ∩ X 6= ∅, by definition of X. Now, let x ∈ X. If x ∈ A′′S ∪ (A′S \ S), then N(x) ∩ X 6= ∅ by
definition. If x ∈ A′S ∩ S, then x satisfies condition (b). This implies that N(x) ∩ Sx = ∅. Hence, there
exists a vertex y ∈ N(x) ∩V(G) ∩ S ⊆ X, as desired.

Therefore, X is a TDS of G, which implies that γt(G) ≤ |X| ≤ 2|A′′S |+ |A′S|. Thus,

γt(G ◦v H) ≥ ∑
x∈A′′S

|Sx|+ ∑
x∈A′S

|Sx|+ ∑
x∈BS

|Sx|

≥ |A′′S |(γt(H) + 1) + |A′S|γt(H) + |BS|(γt(H)− 1)

≥ (2|A′′S |+ |A′S|) + n(G)(γt(H)− 1)

≥ γt(G) + n(G)(γt(H)− 1),

which completes the proof.

Later on, we will characterize the graphs that reach each of the previous expressions. However,
we have to admit that when applying some of these characterizations we will need to calculate the
total domination number of H − {v} or H − N[v] which may not be easy. Before giving the above
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mentioned characterizations, we shall show a simple example in which we can observe that these
expressions of γt(G ◦v H) are realizable.

Example 1. Let G be a graph with no isolated vertex. If H is one of the graphs shown in Figure 2, then the
resulting values of γt(G ◦v H) for some specific roots are described below.

• γt(G ◦v′ H2) = 3 n(G) = n(G)(γt(H2)− 1).
• γt(G ◦v H2) = γ(G) + 3 n(G) = γ(G) + n(G)(γt(H2)− 1).
• γt(G ◦v H1) = γt(G) + 2 n(G) = γt(G) + n(G)(γt(H1)− 1).
• γt(G ◦v′ H1) = γt(G ◦v′′ H1) = 3 n(G) = n(G)γt(H1).

For these cases, it is not difficult to construct a γt(G ◦v H)-set. For instance, a γt(G ◦v H2)-set S can be
formed as follows. Given a fixed γ(G)-set X, we take S in such a way that the set Sx is induced by {a, b, v′, v}
for every x ∈ X, and induced by {a, b, c} for every x ∈ V(G) \ X.

v′ v′′ v

H1

a v′ v

b c

H2

Figure 2. The set of black-coloured vertices forms a γt(Hi)-set for i ∈ {1, 2}. The set {v′, v′′} forms a
γt(H1 − {v})-set, while {a, b, c} forms a γt(H2 − {v})-set.

As we have observed in Lemma 2, if v ∈ V(H) is not a universal vertex and H − N[v] does
not have isolated vertices, then γt(H − N[v]) ≥ γt(H) − 2. Next we show that the extreme case
γt(H − N[v]) = γt(H)− 2 characterizes the graphs with γt(G ◦v H) = n(G)(γt(H)− 1).

Theorem 3. Given two graphs G and H with no isolated vertex and v ∈ V(H), the following statements
are equivalent.

(i) γt(G ◦v H) = n(G)(γt(H)− 1).
(ii) v is a universal vertex of H or γt(H − N[v]) = γt(H)− 2.

Proof. First, assume that (i) holds. Let S be a γt(G ◦v H)-set. If v is a universal vertex of H, then
we are done. Assume that v ∈ V(H) is not a universal vertex. In this case, Lemma 3 leads to
BS = V(G) and N(x) ∩ Sx = ∅ for every x ∈ BS. Thus, BS ∩ S is a dominating set of G and for any
x ∈ BS ∩ S we have that Hx − N[x] does not have isolated vertices and Sx \ {x} is a TDS of Hx − N[x],
which implies that γt(H − N[v]) = γt(Hx − N[x]) ≤ |Sx \ {x}| = γt(H)− 2. Hence, Lemma 2 leads
to γt(H − N[v]) = γt(H)− 2. Therefore, (ii) follows.

Conversely, assume that (ii) holds. If v is a universal vertex of H, then V(G) is a TDS of G ◦v H,
which implies that γt(G ◦v H) ≤ |V(G)| = n(G) = n(G)(γt(H)− 1). Thus, by Theorem 1 we conclude
that γt(G ◦v H) = n(G)(γt(H)− 1).

From now on, we assume that v is not a universal vertex. For any x ∈ V(G), let D′x be a
γt(Hx−N[x])-set and Dx = D′x ∪ {x}. Observe that D = ∪x∈V(G)Dx is a TDS of G ◦v H, which implies
that γt(G ◦v H) ≤ |D| = n(G)(γt(H − N[v]) + 1) = n(G)(γt(H)− 1). By Theorem 1 we conclude
that γt(G ◦v H) = n(G)(γt(H)− 1), which completes the proof.

Lemma 5. Let G and H be two graphs with no isolated vertex and v ∈ V(H) \ S(H). If γt(H − {v}) ≥
γt(H), then

γt(G ◦v H) ∈ {n(G)γt(H), n(G)(γt(H)− 1)}.
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Proof. By Theorem 1 we have that γt(G ◦v H) ≤ n(G)γt(H). Let S be a γt(G ◦v H)-set. If |S| =
n(G)γt(H), then we are done. Suppose that |S| < n(G)γt(H). Hence, there exists x ∈ V(G) such that
|Sx| < γt(H), which implies that x ∈ BS by Lemma 3. Since γt(H − {v}) ≥ γt(H), Lemma 4 (ii) leads
to x ∈ S, and by Lemma 4 (i) we deduce that γt(G ◦v H) = n(G)(γt(H)− 1).

Lemma 6. Let G and H be two graphs with no isolated vertex and v ∈ V(H). If v belongs to every
γt(H)-set, then

γt(G ◦v H) ∈ {n(G)γt(H), n(G)(γt(H)− 1)}.

Proof. We first consider the case where v ∈ V(H) \ S(H). By Lemma 1 we deduce that γt(H−{v}) ≥
γt(H), and so Lemma 5 leads to the result. Now, assume that v ∈ S(H) and let S be a γt(G ◦ H)-set.
If γt(G ◦v H) = n(G)γt(H), then we are done. Thus, we assume that γt(G ◦v H) < n(G)γt(H). In such
a case, there exists x ∈ BS, and since x ∈ S(Hx), it follows that x ∈ S(G ◦ H). Therefore, x ∈ S, and by
Lemma 4 (i) we deduce that γt(G ◦v H) = n(G)(γt(H)− 1), which completes the proof.

We are now ready to characterize the graphs with γt(G ◦v H) = γ(G) + n(G)(γt(H)− 1).

Theorem 4. Let G and H be two graphs with no isolated vertex and v ∈ V(H). The following statements
are equivalent.

(i) γt(G ◦v H) = γ(G) + n(G)(γt(H)− 1).
(ii) γt(H − N[v]) = γt(H − {v}) = γt(H) − 1, and in addition, γt(G) = γ(G) or there exists a

γt(H)-set D such that v ∈ D.

Proof. First, assume that (i) holds. Since 1 ≤ γ(G) < n(G), by Lemma 6, v 6∈ S(H), so that from
Lemma 5 we deduce that γt(H − {v}) ≤ γt(H)− 1 and Lemma 1 leads to γt(H − {v}) = γt(H)− 1.
Hence, by Lemma 2 it follows that γt(H − N[v]) ∈ {γt(H)− 2, γt(H)− 1} and by Theorem 3 we
obtain that γt(H − N[v]) = γt(H)− 1.

Now, let S be a γt(G ◦v H)-set. Since 1 ≤ γ(G) < n(G), Lemma 3 leads to AS 6= ∅ and
BS 6= ∅. Additionally, by Lemma 4 we deduce that BS ∩ S = ∅, and by Lemma 3 we have that
N(x) ∩ Sx = ∅ for every x ∈ BS. Hence, AS is a dominating set of G and AS ∩ S 6= ∅. Thus,
γt(G ◦v H) ≥ |AS| + n(G)(γt(H) − 1) ≥ γ(G) + n(G)(γt(H) − 1) = γt(G ◦v H), which implies
that AS is a γ(G)-set and for every x ∈ AS ∩ S we have that |Sx| = γt(H). Therefore, there exists
x ∈ AS ∩ S such that Sx is a γt(Hx)-set or AS is a γt(G)-set, which implies that (ii) holds.

Conversely, assume that (ii) holds. As above, let S be a γt(G ◦v H)-set. Since γt(H − {v}) =

γt(H)− 1, by Theorem 1, γt(G ◦v H) ≤ γt(G) + n(G)(γt(H)− 1).
Suppose that BS = ∅. In such a case, γt(G ◦v H) = n(G)γt(H), which implies that γ(G) <

γt(G) = n(G), and so G ∼= ∪K2. Let A ∪ B = V(G) be the bipartition of the vertex set of G, i.e., every
edge has one endpoint in A and the other one in B. Thus, for every x ∈ V(G) we define a subset
Yx ⊆ V(Hx) as follows. If x ∈ A, then Yx is a γt(Hx)-set which contains x, while if x ∈ B, then
Yx is a γt(Hx − {x})-set. Hence, Y = ∪x∈V(G)Yx is a TDS of G ◦v H and so γt(G ◦v H) ≤ |Y| =
n(G)γt(H)− n(G)

2 < n(G)γt(H), which is a contradiction. From now on we assume that BS 6= ∅.
If there exists a vertex x ∈ BS ∩ S, then by Lemma 3 we have that N(x) ∩ Sx = ∅, which implies

that Sx \ {x} is a TDS of Hx − N[x]. Hence, γt(H − N[v]) = γt(Hx − N[x]) ≤ |Sx \ {x}| = γt(H)− 2,
which is a contradiction with the assumption γt(H − N[v]) = γt(H) − 1. Therefore, BS ∩ S = ∅,
and by Lemma 4 we deduce that γt(G ◦v H) ≥ γ(G) + n(G)(γt(H)− 1).

It is still necessary to prove that γt(G ◦v H) ≤ γ(G) + n(G)(γt(H)− 1). If γ(G) = γt(G), then
we are done. Assume γ(G) < γt(G). Now we take a γ(G)-set X and for every x ∈ V(G) we
define a set Zx ⊆ V(Hx) as follows. If x ∈ X, then Zx is a γt(Hx)-set such that x ∈ Zx, while if
x ∈ V(G) \ X, then Zx is a γt(Hx − {x})-set. Notice that Z = ∪x∈V(G)Zx is a TDS of G ◦v H. Therefore,
γt(G ◦v H) ≤ |Z| = γ(G) + n(G)(γt(H)− 1), as required.
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Next we proceed to characterize the graphs with γt(G ◦v H) = γt(G) + n(G)(γt(H) − 1).
Notice that it is excluded the case G ∼= ∪K2. In such a case, γt(G) = n(G), and so γt(G) +

n(G)(γt(H)− 1) = n(G)γt(H), which implies that the characterization of this particular case can be
derived by elimination from Theorems 3 and 4. Analogously, the case γ(G) = γt(G) is excluded, as it
was discusses in Theorem 4.

Theorem 5. Let G 6∼= ∪K2 and H be two graphs with no isolated vertex such that γ(G) < γt(G), and let
v ∈ V(H). The following statements are equivalent.

(i) γt(G ◦v H) = γt(G) + n(G)(γt(H)− 1).
(ii) γt(H − {v}) = γt(H)− 1 and v /∈ D for every γt(H)-set D.

Proof. First, assume that (i) holds. Since, G 6∼= ∪K2, we have that γt(G) < n(G). Thus, by Lemma 6,
v 6∈ S(H) and then by Lemma 5 we deduce that γt(H − {v}) ≤ γt(H)− 1 and Lemma 1 leads to
γt(H − {v}) = γt(H)− 1.

Suppose that there exists a γt(H)-set containing v. Let X be a γ(G)-set. For every x ∈ V(G)

we define a set Zx ⊆ V(Hx) as follows. If x ∈ X, then Zx is a γt(Hx)-set such that x ∈ Zx, while if
x ∈ V(G) \ X, then Zx is a γt(Hx − {x})-set. Notice that Z = ∪x∈V(G)Zx is a TDS of G ◦v H. Therefore,
γt(G ◦v H) ≤ |Z| = γ(G) + n(G)(γt(H)− 1), which is a contradiction, as γt(G) > γ(G). Therefore,
v 6∈ D for every γt(H)-set D, which implies that (ii) follows.

Conversely, assume that (ii) holds. Since γt(H − {v}) = γt(H)− 1, by Theorem 1 we have that
γt(G ◦v H) ≤ γt(G) + n(G)(γt(H) − 1). Let S be a γt(G ◦v H)-set. If BS = ∅, then γt(G ◦v H) =

n(G)γt(H), and so γt(G) = n(G), which is a contradiction, as G 6∼= ∪K2. Hence, from now on we
assume that BS 6= ∅.

If there exists a vertex x ∈ BS ∩ S, then for any vertex y ∈ N(v) ∩ V(Hx), the set Sx ∪ {y} is a
γt(Hx)-set, which is a contradiction. Thus, BS ∩ S = ∅, and so by Lemma 3, AS is a dominating set of
G. Moreover, by Lemma 4 and Theorem 2 we deduce that either γt(G ◦v H) = γ(G)+ n(G)(γt(H)− 1)
or γt(G ◦v H) = γt(G) + n(G)(γt(H)− 1). Now, let AS = A− ∪ A+ where x ∈ A− if x ∈ AS and
N(x) ∩AS = ∅. Let B ⊆ BS such that |B| ≤ |A−| and N(x) ∩ B 6= ∅ for every x ∈ A−. Obviously,
B ∪ A+ is a total dominating set of G, and so γt(G) + n(G)(γt(H)− 1) ≤ |B ∪ A+|+ n(G)(γt(H)−
1) ≤ |AS|+ n(G)(γt(H)− 1) ≤ γt(G ◦v H). Therefore, the result follows.

From Theorem 2 we learned that there are four possible expressions for γt(G ◦v H). In the case
of the first three expressions, the graphs (and the root) reaching the equality were characterized
in Theorems 3–5. In the case of the expression γt(G ◦v H) = n(G)γt(H), the corresponding
characterization can be derived by elimination from the previous results, although it must be
recognized that the formulation of such a characterization is somewhat cumbersome. To conclude this
section, we will just give a couple of examples where this expression is obtained.

The following result shows an example where γt(G ◦v H) = n(G)γt(H), which covers the cases
in which v is a neighbor of a support vertex, excluding the case where v is the only leaf adjacent to
its support.

Proposition 1. Let G and H be two graphs with no isolated vertex and v ∈ V(H). If there exists u ∈ N(v)
such that N(u) ∩ (L(H) \ {v}) 6= ∅, then

γt(G ◦v H) = n(G)γt(H).

Proof. Assume first that v 6∈ S(H). Let D be a γt(H − {v})-set. Since u ∈ S(H − {v}), we have
that u ∈ D. Hence, D is a TDS of H, and so γt(H − {v}) = |D| ≥ γt(H). Therefore, Lemma 5
leads to γt(G ◦v H) = n(G)γt(H) or γt(G ◦v H) = n(G)(γt(H) − 1). Now, suppose that γt(G ◦v

H) = n(G)(γt(H) − 1). Let S be a γt(G ◦v H)-set. By Lemma 3, BS = V(G) and N(x) ∩ Sx = ∅
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for every x ∈ BS, which is a contradiction, as N(x) ∩ S(Hx) 6= ∅ and S(Hx) ⊆ Sx. Therefore,
γt(G ◦v H) = n(G)γt(H).

Now, if v ∈ S(H), then u, v ∈ S(G ◦v H). Hence, for every γt(G ◦v H)-set S and every vertex
x ∈ V(G), we have that Sx is a TDS of Hx. Thus, BS = ∅, which implies that γt(G ◦v H) = n(G)γt(H),
as required.

We next consider another example where γt(G ◦v H) = n(G)γt(H).

Proposition 2. Let G and H be two graphs with no isolated vertex and v ∈ V(H) \ S(H). If γt(H− {v}) ≥
γt(H) and v does not belong to any γt(H)-set, then

γt(G ◦v H) = n(G)γt(H).

Proof. If γt(H − {v}) ≥ γt(H), then by Lemma 5 we have that γt(G ◦v H) = n(G)γt(H) or γt(G ◦v

H) = n(G)(γt(H) − 1). Now, assume that v does not belong to any γt(H)-set. If γt(G ◦v H) =

n(G)(γt(H) − 1), then BS = V(G). Hence, by Lemma 4 (ii) there exists x ∈ BS ∩ S, which is a
contradiction as from any x′ ∈ N(x) ∩V(Hx) the set Sx ∪ {x′} is a γt(Hx)-set containing x. Therefore,
γt(G ◦v H) = n(G)γt(H).

2. An Observation on the Domination Number

It was shown in [15] that there are two possibilities for the domination number of a rooted product
graph. Since the graphs reaching these expressions have not been characterized, we consider that
it is appropriate to derive a result in this direction. Specifically, we will provide a characterization
in Theorem 7.

Theorem 6. [15] For any nontrivial graphs G and H and any v ∈ V(H),

γ(G ◦v H) ∈ {n(G)γ(H), γ(G) + n(G)(γ(H)− 1)}.

In order to derive our result, we need to introduce the following two lemmas.

Lemma 7. [21] Let H be a graph. For any vertex v ∈ V(H),

γ(H − {v}) ≥ γ(H)− 1.

Lemma 8. For any γ(G ◦v H)-set D and any vertex x ∈ V(G),

|Dx| ≥ γ(H)− 1.

Furthermore, if |Dx| = γ(H)− 1, then N[x] ∩ Dx = ∅.

Proof. Let x ∈ V(G). Notice that every vertex in V(Hx) \ {x} is adjacent to some vertex in Dx.
Since Dx ∪ {x} is a dominating set of Hx, we have that γ(H) = γ(Hx) ≤ |Dx ∪ {x}| ≤ |Dx| + 1,
as required.

Now, assume that |Dx| = γ(H)− 1. If N[x]∩Dx 6= ∅, then Dx is a dominating set of Hx, which is
a contradiction as |Dx| = γ(Hx)− 1. Therefore, the result follows.

Theorem 7. For any pair of nontrivial graphs G and H, and any v ∈ V(H),

γ(G ◦v H) =

 γ(G) + n(G)(γ(H)− 1) if γ(H − {v}) = γ(H)− 1,

n(G)γ(H) otherwise.
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Proof. By Theorem 6 we only need to prove that γ(G ◦v H) = γ(G) + n(G)(γ(H)− 1) if and only if
γ(H − {v}) = γ(H)− 1.

We first assume γ(H − {v}) = γ(H) − 1. Let D ⊆ V(G ◦v H) such that D−x = Dx \ {x} is
a γ(Hx − {x})-set for every x ∈ V(G), and D ∩ V(G) is a γ(G)-set. It is readily seen that D is a
dominating set of G ◦v H, which implies that γ(G ◦v H) ≤ |D| = γ(G) + ∑x∈V(G) |D−x | = γ(G) +

n(G)(γ(H)− 1), and by Theorem 6 we conclude that the equality holds.
Conversely, assume γ(G ◦v H) = γ(G) + n(G)(γ(H) − 1). Let S be a γ(G ◦v H)-set. Since

|S| < n(G)γ(H), there exists x ∈ V(G) such that |Sx| < γ(H). Hence, by Lemma 8, |Sx| = γ(H)− 1
and N[x]∩ Sx = ∅. This implies that Sx is a dominating set of Hx −{x}, and so γ(H−{v}) = γ(Hx −
{x}) ≤ |Sx| = γ(H)− 1. By Lemma 7 we conclude that γ(H − {v}) = γ(H)− 1, which completes
the proof.

Author Contributions: All authors contributed equally to this work. All authors have read and agreed to the
published version of the manuscript

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Haynes, T.W.; Hedetniemi, S.T.; Slater, P.J. Domination in Graphs: Advanced Topics.; Chapman and Hall/CRC
Pure and Applied Mathematics Series; Marcel Dekker, Inc.: New York, NY, USA, 1998.

2. Haynes, T.W.; Hedetniemi, S.T.; Slater, P.J. Fundamentals of Domination in Graphs; Chapman and Hall/CRC
Pure and Applied Mathematics Series; Marcel Dekker, Inc.: New York, NY, USA, 1998.

3. Henning, M.; Yeo, A. Total Domination in Graphs. Springer Monographs in Mathematics; Springer: New York, NY,
USA, 2013.

4. Godsil, C.D.; McKay, B.D. A new graph product and its spectrum Bull. Austral. Math. Soc. 1978, 18, 21–28.
[CrossRef]

5. Azari, M.; Iranmanesh, A. Chemical Graphs Constructed from Rooted Product and Their Zagreb Indices.
MATCH Commun. Math. Comput. Chem. 2013, 70, 901–919.

6. Cabrera Martínez, A. Double outer-independent domination number of graphs. Quaest. Math. 2020.
[CrossRef]

7. Cabrera Martínez, A.; Cabrera García, S.; Carrión García, A.; Hernández Mira, F.A. Total Roman domination
number of rooted product graphs. Mathematics 2020, 8, 1850. [CrossRef]

8. Cabrera Martínez, A.; Cabrera García, S.; Carrión García, A.; Grisales del Rio, A.M. On the outer-independent
Roman domination in graphs. Symmetry 2020, 12, 1846. [CrossRef]

9. Cabrera Martínez, A.; Estrada-Moreno, A.; Rodríguez-Velázquez, J.A. Secure total domination in rooted
product graphs. Mathematics 2020, 8, 600. [CrossRef]

10. Cabrera Martínez, A.; Montejano, L.P.; Rodríguez-Velázquez, J.A. Total weak Roman domination in graphs.
Symmetry 2019, 11, 831. [CrossRef]

11. Chris Monica, M.; Santhakumar, S. Partition dimension of rooted product graphs. Discrete Appl. Math. 2019,
262, 138–147. [CrossRef]

12. Hernández-Ortiz, R.; Montejano, L.P.; Rodríguez-Velázquez, J.A. Italian domination in rooted product graphs.
Bull. Malays. Math. Sci. Soc. 2020. [CrossRef]

13. Hernández-Ortiz, R.; Montejano, L.P.; Rodríguez-Velázquez, J.A. Secure domination in rooted product graphs.
J. Comb. Optim. to appear.

14. Klavžar, S.; Yero, I.G. The general position problem and strong resolving graphs. Open Math. 2019, 17,
1126–1135. [CrossRef]

15. Kuziak, D.; Lemanska, M.; Yero, I.G. Domination-Related parameters in rooted product graphs. Bull. Malays.
Math. Sci. Soc. 2019, 39, 199–217. [CrossRef]

16. Kuziak, D.; Yero, I.G.; Rodríguez-Velázquez, J.A. Strong metric dimension of rooted product graphs.
Int. J. Comput. Math. 2016, 93, 1265–1280. [CrossRef]

http://dx.doi.org/10.1017/S0004972700007760
http://dx.doi.org/10.2989/16073606.2020.1834001
http://dx.doi.org/10.3390/math8101850
http://dx.doi.org/10.3390/sym12111846
http://dx.doi.org/10.3390/math8040600
http://dx.doi.org/10.3390/sym11060831
http://dx.doi.org/10.1016/j.dam.2019.02.007
http://dx.doi.org/10.1007/s40840-020-00962-3
http://dx.doi.org/10.1515/math-2019-0088
http://dx.doi.org/10.1007/s40840-015-0182-5
http://dx.doi.org/10.1080/00207160.2015.1061656


Symmetry 2020, 12, 1929 11 of 11

17. Jakovac, M. The k-path vertex cover of rooted product graphs. Discrete Appl. Math. 2015, 187, 111–119.
[CrossRef]

18. Lou, Z.; Huang, Q.; Huang, X. On the construction of Q-controllable graphs. Electron. J. Linear Algebra 2017,
32, 365–379. [CrossRef]

19. Yang, Y.; Klein, D.J. Resistance distances in composite graphs. J. Phys. A 2014, 47, 375203. [CrossRef]
20. Farrell, E.J.; Rosenfeld, V.R. Block and articulation node polynomials of the generalized rooted product of

graphs. J. Math. Sci. India 2000, 11, 35–47.
21. Sampathkumar, E.; Neeralagi, P.S. Domination and neighbourhood critical, fixed, free and totally free points.

Sankhya 1992, 54, 403–407.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.dam.2015.02.018
http://dx.doi.org/10.13001/1081-3810.3298
http://dx.doi.org/10.1088/1751-8113/47/37/375203
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Closed Formulas for the Total Domination Number
	An Observation on the Domination Number
	References

