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Abstract: This paper introduces a general approach to the idea of protection of graphs,
which encompasses the known variants of secure domination and introduces new ones. Specifically,
we introduce the study of secure w-domination in graphs, where w = (w0, w1, . . . , wl) is a vector
of nonnegative integers such that w0 ≥ 1. The secure w-domination number is defined as
follows. Let G be a graph and N(v) the open neighborhood of v ∈ V(G). We say that a function
f : V(G) −→ {0, 1, . . . , l} is a w-dominating function if f (N(v)) = ∑u∈N(v) f (u) ≥ wi for every
vertex v with f (v) = i. The weight of f is defined to be ω( f ) = ∑v∈V(G) f (v). Given a w-dominating
function f and any pair of adjacent vertices v, u ∈ V(G) with f (v) = 0 and f (u) > 0, the function
fu→v is defined by fu→v(v) = 1, fu→v(u) = f (u)− 1 and fu→v(x) = f (x) for every x ∈ V(G) \ {u, v}.
We say that a w-dominating function f is a secure w-dominating function if for every v with
f (v) = 0, there exists u ∈ N(v) such that f (u) > 0 and fu→v is a w-dominating function as well.
The secure w-domination number of G, denoted by γs

w(G), is the minimum weight among all secure
w-dominating functions. This paper provides fundamental results on γs

w(G) and raises the challenge
of conducting a detailed study of the topic.
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1. Introduction

Let Z+ = {1, 2, 3, . . . } and N = Z+ ∪ {0} be the sets of positive and nonnegative integers,
respectively. Let G be a graph, l ∈ Z+ and f : V(G) −→ {0, . . . , l} a function. Let Vi = {v ∈ V(G) :
f (v) = i} for every i ∈ {0, . . . , l}. We identify f with the subsets V0, . . . , Vl associated with it, and thus
we use the unified notation f (V0, . . . , Vl) for the function and these associated subsets. The weight of f
is defined to be

ω( f ) = f (V(G)) =
l

∑
i=1

i|Vi|.

Let w = (w0, . . . , wl) ∈ Z+ ×Nl such that w0 ≥ 1. As defined in [1], a function f (V0, . . . , Vl) is
a w-dominating function if f (N(v)) ≥ wi for every v ∈ Vi. The w-domination number of G, denoted by
γw(G), is the minimum weight among all w-dominating functions. For simplicity, a w-dominating
function f of weight ω( f ) = γw(G) is called a γw(G)-function. For fundamental results on the
w-domination number of a graph, we refer the interested readers to the paper by Cabrera et al. [1],
where the theory of w-domination in graphs is introduced.

The definition of w-domination number encompasses the definition of several well-known
domination parameters and introduces new ones. For instance, we highlight the following particular
cases of known domination parameters that we define here in terms of w-domination: the domination
number γ(G) = γ(1,0)(G) = γ(1,0,...,0)(G), the total domination number γt(G) = γ(1,1)(G) =

γ(1,...,1)(G), the k-domination number γk(G) = γ(k,0)(G), the k-tuple domination number γ×k(G) =

γ(k,k−1)(G), the k-tuple total domination number γ×k,t(G) = γ(k,k)(G), the Italian domination number
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γI(G) = γ(2,0,0)(G), the total Italian domination number γtI(G) = γ(2,1,1)(G), and the {k}-domination
number γ{k}(G) = γ(k,k−1,...,0)(G). In these definitions, the appropriate restrictions on the minimum
degree of G are assumed, when needed.

For any function f (V0, . . . , Vl) and any pair of adjacent vertices v ∈ V0 and u ∈ V(G) \ V0,
the function fu→v is defined by fu→v(v) = 1, fu→v(u) = f (u) − 1 and fu→v(x) = f (x) whenever
x ∈ V(G) \ {u, v}.

We say that a w-dominating function f (V0, . . . , Vl) is a secure w-dominating function if for every
v ∈ V0 there exists u ∈ N(v) \ V0 such that fu→v is a w-dominating function as well. The secure
w-domination number of G, denoted by γs

w(G), is the minimum weight among all secure w-dominating
functions. For simplicity, a secure w-dominating function f of weight ω( f ) = γs

w(G) is called a
γs

w(G)-function. This approach to the theory of secure domination covers the different versions of
secure domination known so far. For instance, we emphasize the following cases of known parameters
that we define here in terms of secure w-domination.

• The secure domination number of G is defined to be γs(G) = γs
(1,0)(G). In this case, for any secure

(1, 0)-dominating function f (V0, V1), the set V1 is known as a secure dominating set. This concept
was introduced by Cockayne et al. [2] and studied further in several papers (e.g., [3–9]).

• The secure total domination number of a graph G of minimum degree at least one is defined to be
γst(G) = γs

(1,1)(G). In this case, for any secure (1, 1)-dominating function f (V0, V1), the set V1 is
known as a secure total dominating set of G. This concept was introduced by Benecke et al. [10] and
studied further in several papers (e.g., [7,11–14]).

• The weak Roman domination number of a graph G is defined to be γr(G) = γs
(1,0,0)(G). This concept

was introduced by Henning and Hedetniemi [15] and studied further in several papers
(e.g., [5,6,16,17]).

• The total weak Roman domination number of a graph G of minimum degree at least one is defined to
be γtr(G) = γs

(1,1,1)(G). This concept was introduced by Cabrera et al. in [12] and studied further
in [18].

• The secure Italian domination number of G is defined to be γs
I
(G) = γs

(2,0,0)(G). This parameter was
introduced by Dettlaff et al. [19].

For the graphs shown in Figure 1, we have the following:

• γs
(1,1)(G1) = γs

(2,0)(G1) = γs
(2,1)(G1) = γ(2,0)(G1) = γ(2,1)G1) = γs

(1,1,0)(G1) = γs
(1,1,1)(G1) =

γs
(2,0,0)(G1) = γs

(2,1,0)(G1) = γ(2,0,0)(G1) = γ(2,1,0)(G1) = γ(2,2,0)(G1) = γ(2,2,1)(G1) =

γ(2,2,2)(G1) = 4 and γs
(2,2)(G1) = γ(2,2)(G1) = γs

(2,2,0)(G1) = γs
(2,2,1)(G1) = γs

(2,2,2)(G1) =

γs
(3,0,0)(G1) = γs

(3,1,0)(G1) = γs
(3,1,1)(G1) = γs

(3,2,0)(G1) = γs
(3,2,1)(G1) = γs

(3,2,2)(G1) =

γ(3,0,0)(G1) = γ(3,1,0)(G1) = γ(3,1,1)(G1) = γ(3,2,0)(G1) = γ(3,2,1)(G1) = γ(3,2,2)(G1) = 6.

• γs
(1,1)(G2) = γs

(1,1,0)(G2) = γs
(1,1,1)(G2) = γ(2,2,0)(G2) = γ(2,2,1)(G2) = γ(2,2,2)(G2) = 3.

• γs
(1,1)(G3) = γs

(1,1,0)(G3) = γs
(1,1,1)(G3) = γ(2,1,0)(G3) = γ(3,0,0)(G3) = 3 < 4 = γs

(2,0,0)(G3) =

γs
(2,1,0)(G3) = γs

(3,1,0)(G3) = γ(2,2,0)(G3) = γ(2,2,1)(G3) = γ(2,2,2)(G3) = γ(3,2,0)(G3) <

5 = γs
(2,2,0)(G3) = γs

(3,2,0)(G3) = γs
(2,2,1)(G3) = γs

(2,2,2)(G3) = γs
(3,1,1)(G3) = γs

(3,2,1)(G3) =

γ(3,2,1)(G3) = γ(3,2,2)(G3) < 6 = γs
(3,2,2)(G3).

This paper is devoted to providing general results on secure w-domination. We assume that
the reader is familiar with the basic concepts, notation, and terminology of domination in graph.
If this is not the case, we suggest the textbooks [20,21]. For the remainder of the paper, definitions are
introduced whenever a concept is needed.
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Figure 1. The labels of black-colored vertices describe the positive weights of a γs
(2,1,0)(G1)-function,

a γs
(1,1,1)(G2)-function, and a γs

(2,2,2)(G3)-function, respectively.

2. General Results on Secure w-Domination

Given a w-dominating function f (V0, . . . , Vl), we introduce the following notation.

• Given v ∈ V0, we define M f (v) = {u ∈ V(G) \V0 : fu→v as a w-dominating function}.
• M f (G) =

⋃
v∈V0

M f (v).

• Given u ∈ M f (G), we define D f (u) = {v ∈ V0 : u ∈ M f (v)}.
• Given u ∈ M f (G), we define Tf (u) = {v ∈ V0 : u ∈ M f (v) and f (N(v)) = w0}.

Obviously, if f is a secure w-dominating function, then M f (v) 6= ∅ for every v ∈ V0.

Lemma 1. Let f be a secure w-dominating function on a graph G, and let u ∈ M f (G). If Tf (u) 6= ∅,
then each vertex belonging to Tf (u) is adjacent to every vertex in D f (u) and, in particular, G[Tf (u)] is a clique.

Proof. Since Tf (u) ⊆ D f (u), we only need to suppose the existence of two non-adjacent vertices
v ∈ Tf (u) and v′ ∈ D f (u) with v 6= v′. In such a case, fu→v′(N(v)) < w0, which is a contradiction.
Therefore, the result follows.

Remark 1 ([1]). Let G be a graph of minimum degree δ and let w = (w0, w1, . . . , wl) ∈ Z+ ×Nl . If w0 ≥
w1 ≥ · · · ≥ wl , then there exists a w-dominating function on G if and only if wl ≤ lδ.

Throughout this section, we repeatedly apply, without explicit mention, the following necessary
and sufficient condition for the existence of a secure w-dominating function on G.

Remark 2. Let G be a graph of minimum degree δ and let w = (w0, w1, . . . , wl) ∈ Z+ ×Nl . If w0 ≥ w1 ≥
· · · ≥ wl , then there exists a secure w-dominating function on G if and only if wl ≤ lδ.

Proof. If f is a secure w-dominating function on G, then f is a w-dominating function, and by Remark 1
we conclude that wl ≤ lδ.

Conversely, if wl ≤ lδ, then the function f , defined by f (v) = l for every v ∈ V(G), is a secure
w-dominating function. Therefore, the result follows.

It was shown by Cabrera et al. [1] that the w-domination numbers satisfy a certain monotonicity.
Given two integer vectors w = (w0, . . . , wl) and w′ = (w′0, . . . , w′l), we say that w′ ≺ w if w′i ≤ wi
for every i ∈ {0, . . . , l}. With this notation in mind, we can state the next remark which is a direct
consequence of the definition of w-dominating function.
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Remark 3. [1] Let G be a graph of minimum degree δ and let w = (w0, . . . , wl), w′ = (w′0, . . . , w′l) ∈
Z+ ×Nl such that wi ≥ wi+1 and w′i ≥ w′i+1 for every i ∈ {0, . . . , l− 1} . If w′ ≺ w and wl ≤ lδ, then every
w-dominating function is a w′-dominating function and, as a consequence,

γw′(G) ≤ γw(G).

The monotonicity also holds for the case of secure w-domination.

Remark 4. Let G be a graph of minimum degree δ and let w = (w0, . . . , wl), w′ = (w′0, . . . , w′l) ∈ Z+ ×Nl

such that wi ≥ wi+1 and w′i ≥ w′i+1 for every i ∈ {0, . . . , l − 1} . If w′ ≺ w and wl ≤ lδ, then every secure
w-dominating function is a secure w′-dominating function and, as a consequence,

γs
w′(G) ≤ γs

w(G).

Proof. For any γs
w(G)-function f and any v ∈ V(G) with f (v) = 0, there exists u ∈ M f (v). Since f

and fu→v are w-dominating functions, by Remark 3, we conclude that, if w′ ≺ w and wl ≤ lδ, then both
f and fu→v are w′-dominating functions. Therefore, f is a secure w′-dominating function and, as a
consequence, γs

w′(G) ≤ ω( f ) = γs
w(G).

From the following equality chain, we obtain examples of equalities in Remark 4. Graph G1 is
illustrated in Figure 1.

γs
(3,0,0)(G1) = γs

(3,1,0)(G1) = γs
(3,2,0)(G1) = γs

(3,2,1)(G1) = γs
(3,2,2)(G1).

Theorem 1. Let G be a graph of minimum degree δ, and let w = (w0, . . . , wl) ∈ Z+×Nl such that wi ≥ wi+1
for every i ∈ {0, . . . , l − 1}. If lδ ≥ wl , then the following statements hold.

(i) γw(G) ≤ γs
w(G).

(ii) If k ∈ Z+, then γ(k+1,k=w1,...,wl)
(G) ≤ γs

(k,k=w1,...,wl)
(G).

Proof. Since every secure w-dominating function on G is a w-dominating function on G, (i) follows.
Let f (V0, . . . , Vl) be a γs

(k,k=w1,...,wl)
(G)-function. Since f is a (k, k = w1, . . . , wl)-dominating

function, f (N(v)) ≥ wi for every v ∈ Vi with i ∈ {1, . . . , l} and w1 = k. If V0 = ∅, then f is
a (k + 1, k = w1, . . . , wl)-dominating function, which implies that γ(k+1,k=w1,...,wl)

(G) ≤ ω( f ) =

γs
(k,k=w1,...,wl)

(G). Assume V0 6= ∅. Let v ∈ V0 and u ∈ M f (v). If f (N(v)) = k, then fu→v(N(v)) =
f (N(v))− 1 = k− 1, which is a contradiction. Thus, f (N(v)) ≥ k + 1, which implies that f is a (k +
1, k = w1, . . . , wl)-dominating function. Therefore, γ(k+1,k=w1,...,wl)

(G) ≤ ω( f ) = γs
(k,k=w1,...,wl)

(G),
and (ii) follows.

The inequalities above are tight. For instance, for any integers n, n′ ≥ 4, we have that γ(2,2,2)(Kn +

Nn′) = γs
(2,2,2)(Kn + Nn′) = 3 and γ(3,2,2)(K2,n) = γs

(2,2,2)(K2,n) = 5.

Corollary 1. Let G be a graph of minimum degree δ and order n. Let w = (w0, . . . , wl) ∈ Z+ ×Nl such that
wi ≥ wi+1 for every i ∈ {0, . . . , l − 1} and lδ ≥ wl . The following statements hold.

(i) If n > w0, then γs
w(G) ≥ w0.

(ii) If n > w0 = w1, then γs
w(G) ≥ w0 + 1.

Proof. Assume n > w0. By Theorem 1, we have that γs
w(G) ≥ γw(G). Now, if γw(G) ≤ w0− 1 < n− 1,

then for any γw(G)-function f there exists at least one vertex x ∈ V(G) such that f (x) = 0 and
f (N(x)) ≤ ω( f ) < w0, which is a contradiction. Thus, γs

w(G) ≥ γw(G) ≥ w0.
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Analogously, if w0 = w1, then Theorem 1 leads to γs
w(G) ≥ γ(w0+1,w1,...,wl)

(G). In this case,
if γ(w0+1,w1,...,wl)

(G) ≤ w0 < n, then for any γ(w0+1,w1,...,wl)
(G)-function f there exists at least one

vertex x ∈ V(G) such that f (x) = 0 and f (N(x)) ≤ ω( f ) < w0 + 1, which is a contradiction.
Therefore, γs

w(G) ≥ γ(w0+1,w1,...,wl)
(G) ≥ w0 + 1.

As the following result shows, the bounds above are tight.

Proposition 1. For any integer n and any w = (w0, . . . , wl) ∈ Z+ ×Nl such that wl ≤ · · · ≤ w0 < n,

γs
w(Kn) =

{
w0 + 1 if w0 = w1,

w0 otherwise.

Proof. Assume n > w0. Let S ⊆ V(Kn) such that |S| = w0 + 1 if w0 = w1 and |S| = w0 otherwise.
In both cases, the function f (V0, . . . , Vl), defined by V1 = S, V0 = V(G) \ V1 and Vj = ∅ whenever
j 6∈ {0, 1}, is a secure w-dominating function. Hence, γs

w(Kn) ≤ ω( f ) = |S|. Therefore, by Corollary 1
the result follows.

Theorem 2. Let G be a graph of minimum degree δ, and let w = (w0, . . . , wl), w′ = (w′0, . . . , w′l) ∈ Z+ ×Nl

such that lδ ≥ wl , wi ≥ wi+1 and w′i ≥ w′i+1 for every i ∈ {0, . . . , l − 1}. If wi ≥ w′i−1 − 1 for every
i ∈ {1, . . . , l}, and max{wj − 1, 0} ≥ w′j for every j ∈ {0, . . . , l}, then

γs
w′(G) ≤ γw(G).

Proof. Assume that wi ≥ w′i−1 − 1 for every i ∈ {1, . . . , l} and max{wj − 1, 0} ≥ w′j for every
j ∈ {0, . . . , l}. Let f (V0, . . . , Vl) be a γw(G)-function. We claim that f is a secure w′-dominating
function. Since f (N(x)) ≥ wi ≥ w′i for every x ∈ Vi with i ∈ {0, . . . , l}, we deduce that f is a
w′-dominating function. Now, let v ∈ V0 and u ∈ N(v) ∩Vi with i ∈ {1, . . . , l}. We differentiate the
following cases for x ∈ V(G).

Case 1. x = v. In this case, fu→v(v) = 1 and fu→v(N(v)) = f (N(v))− 1 ≥ w0− 1 ≥ max{w1− 1, 0} ≥
w′1.

Case 2. x = u. In this case, fu→v(u) = f (u)− 1 = i− 1 and fu→v(N(u)) = f (N(u)) + 1 ≥ wi + 1 ≥
w′i−1.

Case 3. x ∈ V(G) \ {u, v}. Assume x ∈ Vj. Notice that fu→v(x) = f (x) = j. Now, if x 6∈ N(u)
or x ∈ N(u) ∩ N(v), then fu→v(N(x)) = f (N(x)) ≥ wj ≥ w′j, while if x ∈ N(u) \ N[v],
then fu→v(N(x)) = f (N(x))− 1 ≥ max{wj − 1, 0} ≥ w′j.

According to the three cases above, fu→v is a w′-dominating function. Therefore, f is a secure
w′-dominating function, and so γs

w′(G) ≤ ω( f ) = γw(G).

The inequality above is tight. For instance, γs
(1,1,1)(Kn,n′) = γ(2,2,2)(Kn,n′) = 4 for n, n′ ≥ 4.

From Theorems 1 and 2, we derive the next known inequality chain, where G has minimum
degree δ ≥ 1, except in the last inequality in which δ ≥ 2.

γs(G) ≤ γ2(G) ≤ γ×2(G) ≤ γst(G) ≤ γ×2,t(G).

The following result is a particular case of Theorem 2.

Corollary 2. Let G be a graph of minimum degree δ, and let w = (w0, . . . , wl) ∈ Z+ ×Nl and 1 = (1, . . . , 1).
If 0 ≤ wj−1 − wj ≤ 2 for every j ∈ {1, . . . , i}, where 1 ≤ i ≤ l and lδ ≥ wl + 1, then

γs
(w0,...,wi ,0,...,0)(G) ≤ γ(w0+1,...,wi+1,0,...,0)(G) ≤ γw+1(G).
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For Graph G2 illustrated in Figure 1, we have that γs
(1,1)(G2) = γs

(1,1,0)(G2) = γ(2,2,0)(G2) =

γs
(1,1,1)(G2) = γ(2,2,2)(G2) = 3. Notice that γs

w(G2) = γw+1(G2) for w = 1 = (1, 1, 1).
Next, we show a class of graphs where γw(G) = γw+1(G). To this end, we need to introduce

some additional notation and terminology. Given the two Graphs G1 and G2, the corona product graph
G1 � G2 is the graph obtained from G1 and G2, by taking one copy of G1 and |V(G1)| copies of G2 and
joining by an edge every vertex from the ith copy of G2 with the ith vertex of G1. For every x ∈ V(G1),
the copy of G2 in G1 � G2 associated to x is denoted by G2,x.

Theorem 3 ([1]). Let G1 � G2 be a corona graph where G1 does not have isolated vertices, and let w =

(w0, . . . , wl) ∈ Z+ ×Nl . If l ≥ w0 ≥ · · · ≥ wl and |V(G2)| ≥ w0, then

γw(G1 � G2) = w0|V(G1)|.

From the result above, we deduce that under certain additional restrictions on G2 and w we can
obtain γs

w(G1 � G2) = γw+1(G1 � G2).

Theorem 4. Let G1 � G2 be a corona graph, where G1 does not have isolated vertices and G2 is a triangle-free
graph. Let w = (w0, . . . , wl) ∈ Z+ ×Nl such that l − 1 ≥ w0 ≥ · · · ≥ wl . If |V(G2)| ≥ w0 + 2, then

γs
w(G1 � G2) = (w0 + 1)|V(G1)| = γw+1(G1 � G2).

Proof. Since G1 does not have isolated vertices, the upper bound γs
w(G1 � G2) ≤ (w0 + 1)|V(G1)| is

straightforward, as the function f , defined by f (x) = w0 + 1 for every x ∈ V(G1) and f (x) = 0 for the
remaining vertices of G1 � G2, is a secure w-dominating function.

On the other hand, let f (V0, . . . , Vl) be a γs
w(G1 � G2)-function and suppose that there exists

x ∈ V(G1) such that f (V(G2,x)) + f (x) ≤ w0. Since |V(G2,x)| ≥ w0 + 2, there exist at least two
different vertices u, v ∈ V(G2,x) ∩ V0. Hence, f (N(u)) = f (N(v)) = w0, which implies that u and
v are adjacent and, since G2 is a triangle-free graph, f (x) = w0 and f (y) = 0 for every y ∈ V(G2,x).
Thus, by Lemma 1, we conclude that G2,x is a clique, which is a contradiction as |V(G2)| ≥ 3 and G2

is a triangle-free graph. This implies that f (V(G2,x)) + f (x) ≥ w0 + 1 for every x ∈ V(G1), and so
γs

w(G1 � G2) = ω( f ) ≥ (w0 + 1)|V(G1)|.
Therefore, γs

w(G1�G2) = (w0 + 1)|V(G1)|, and by Theorem 3 we conclude that γw+1(G1�G2) =

(w0 + 1)|V(G1)|, which completes the proof.

Theorem 5. Let G be a graph of minimum degree δ and l ≥ 2 an integer. For any (w0, . . . , wl−1) ∈ Z+×Nl−1

with w0 ≥ · · · ≥ wl−1 and lδ ≥ wl−1,

γs
(w0,...,wl−1,wl=wl−1)

(G) ≤ γ(w0,...,wl−1)
(G) + γ(G).

Proof. Let f (V0, . . . , Vl−1) be a γ(w0,...,wl−1)
(G)-function and S a γ(G)-set. We define a function

g(W0, . . . , Wl) as follows. Let Wl = Vl−1 ∩ S, W0 = V0 \ S, and Wi = (Vi−1 ∩ S) ∪ (Vi \ S) for every
i ∈ {1, . . . , l − 1}.

We claim that g is a secure (w0, . . . , wl−1, wl = wl−1)-dominating function. First, we observe that,
if x ∈ Wi ∩ S with i ∈ {1, . . . , l}, then x ∈ Vi−1 and g(N(x)) ≥ f (N(x)) ≥ wi−1 ≥ wi. Moreover,
if x ∈ Wi \ S with i ∈ {0, . . . , l − 1}, then x ∈ Vi and g(N(x)) ≥ f (N(x)) ≥ wi. Hence, g is a
(w0, . . . , wl−1, wl = wl−1)-dominating function.

Now, let v ∈W0 = V0 \ S. Notice that there exists a vertex u ∈ N(v)∩Vi−1 ∩ S with i ∈ {1, . . . , l}.
Hence, u ∈ N(v) ∩Wi. We differentiate the following cases for x ∈ V(G).

Case 1. x = v. In this case, gu→v(v) = 1 and, as N(v) ∩ S 6= ∅, we obtain that gu→v(N(v)) =

g(N(v))− 1 ≥ f (N(v)) ≥ w0 ≥ w1.
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Case 2. x = u. In this case, gu→v(u) = g(u) − 1 = i − 1 and gu→v(N(u)) = g(N(u)) + 1 ≥
f (N(u)) + 1 ≥ wi−1 + 1 > wi−1.

Case 3. x ∈ V(G) \ {u, v}. Assume x ∈ Wj. Notice that gu→v(x) = g(x) = j. If x 6∈ N(u) or
x ∈ N(u) ∩ N(v), then gu→v(N(x)) = g(N(x)) ≥ f (N(x)) ≥ wj.

Moreover, if x ∈ (N(u) \ N[v]) ∩ S, then x ∈ Vj−1 and so gu→v(N(x)) = g(N(x)) − 1 ≥
f (N(x)) ≥ wj−1 ≥ wj. Finally, if x ∈ (N(u) \ N[v]) \ S, then x ∈ Vj and therefore gu→v(N(x)) =

g(N(x))− 1 ≥ f (N(x)) ≥ wj.
According to the three cases above, gu→v is a (w0, . . . , wl−1, wl = wl−1)-dominating

function. Therefore, f is a secure (w0, . . . , wl−1, wl = wl−1)-dominating function, and so
γs
(w0,...,wl−1,wl=wl−1)

(G) ≤ ω(g) ≤ ω( f ) + |S| = γ(w0,...,wl−1)
(G) + γ(G).

From Theorem 5, we derive the next known inequalities, which are tight.

Corollary 3. For a graph G, the following statements hold.

• Ref. [15] γr(G) ≤ 2γ(G).

• Ref. [12] γtr(G) ≤ γt(G) + γ(G), where G has minimum degree at least one.

• Ref. [19] γs
I(G) ≤ γ2(G) + γ(G).

To establish the following result, we need to define the following parameter.

νs
(w0,...,wl)

(G) = max{|V0| : f (V0, . . . , Vl) is a γs
(w0,...,wl)

(G)-function.}

In particular, for l = 1 and a graph G of order n, we have that νs
(w0,w1)

(G) = n− γs
(w0,w1)

(G).

Theorem 6. Let G be a graph of minimum degree δ and order n. The following statements hold for any
(w0, . . . , wl) ∈ Z+ ×Nl with w0 ≥ · · · ≥ wl .

(i) If there exists i ∈ {1, . . . , l − 1} such that iδ ≥ wi, then γs
(w0,...,wl)

(G) ≤ γs
(w0,...,wi)

(G).

(ii) If l ≥ i + 1 > w0, then γs
(w0,...,wi ,0,...,0)(G) ≤ (i + 1)γ(G).

(iii) Let k, i ∈ Z+ such that l ≥ ki, and let (w′0, w′1, . . . , w′i) ∈ Z+ ×Nl . If iδ ≥ w′i and wkj = kw′j for every
j ∈ {0, 1, . . . , i}, then γs

(w0,...,wl)
(G) ≤ kγs

(w′0,...,w′i)
(G).

(iv) Let k ∈ Z+ and β1, . . . , βk ∈ Z+. If lδ ≥ k + wl > k and w0 + k ≥ β1 ≥ · · · ≥ βk ≥ w1 + k, then
γs
(w0+k,β1,...,βk ,w1+k,...,wl+k)(G) ≤ γs

(w0,...,wl)
(G) + k(n− νs

(w0,...,wl)
(G)).

(v) If lδ ≥ wl ≥ l ≥ 2, then γs
(w0,...,wl)

(G) ≤ lγs
(w0−l+1,wl−l+1)(G).

Proof. If there exists i ∈ {1, . . . , l − 1} such that iδ ≥ wi, then for any γs
(w0,...,wi)

(G)-function
f (V0, . . . , Vi) we define a secure (w0, . . . , wl)-dominating function g(W0, . . . , Wl) by Wj = Vj for every
j ∈ {0, . . . , i} and Wj = ∅ for every j ∈ {i + 1, . . . , l}. Hence, γs

(w0,...,wl)
(G) ≤ ω(g) = ω( f ) =

γs
(w0,...,wi)

(G). Therefore, (i) follows.
Now, assume l ≥ i + 1 > w0. Let S be a γ(G)-set. Let f be the function defined by f (v) = i + 1

for every v ∈ S and f (v) = 0 for the remaining vertices. Since i + 1 > w0, we can conclude that f is a
secure (w0, . . . , wi, 0 . . . , 0)-dominating function. Therefore, γs

(w0,...,wi ,0...,0)(G) ≤ ω( f ) = (i + 1)|S| =
(i + 1)γ(G), which implies that (ii) follows.
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To prove (iii), assume that l ≥ ki, iδ ≥ w′i and wkj = kw′j for every j ∈ {0, . . . , i}. Let f ′(V′0, . . . , V′i )
be a γs

(w′0,...,w′i)
(G)-function. We construct a function f (V0, . . . , Vl) as f (v) = k f ′(v) for every v ∈ V(G).

Hence, Vkj = V′j for every j ∈ {0, . . . , i}, while Vj = ∅ for the remaining cases. Thus, for every
v ∈ Vkj with j ∈ {0, . . . , i} we have that f (N(v)) = k f ′(N(v)) ≥ kw′j = wkj, which implies that f is a
(w0, . . . , wl)-dominating function. Now, for every x ∈ V0, there exists y ∈ M f ′(x). Hence, for every
v ∈ Vkj with j ∈ {0, . . . , i}, we have that fy→x(N(v)) = k f ′y→x(N(v)) ≥ kw′j = wkj, which implies that
fy→x is a (w0, . . . , wl)-dominating function. Therefore, f is a secure (w0, . . . , wl)-dominating function,
and so γs

(w0,...,wl)
(G) ≤ ω( f ) = kω( f ′) = kγs

(w′0,...,w′i)
(G). Therefore, (iii) follows.

Now, assume that lδ ≥ k + wl > k and w0 + k ≥ β1 ≥ · · · ≥ βk ≥ w1 + k. Let g(W0, . . . , Wl)

be a γs
(w0,...,wl)

(G)-function. We construct a function f (V0, . . . , Vl+k) as f (v) = g(v) + k for every
v ∈ V(G) \W0 and f (v) = 0 for every v ∈ W0. Hence, Vj+k = Wj for every j ∈ {1, . . . , l},
V0 = W0 and Vj = ∅ for the remaining cases. Thus, if v ∈ Vj+k and j ∈ {1, . . . , l},
then f (N(v)) ≥ g(N(v)) + k ≥ wj + k, and if v ∈ V0, then f (N(v)) ≥ g(N(v)) + k ≥ w0 + k.
This implies that f is a (w0 + k, β1, . . . , βk, w1 + k, . . . , wl + k)-dominating function. Now, for every
x ∈ V0 = W0, there exists y ∈ Mg(x). Hence, if v ∈ Vj+k and j ∈ {1, . . . , l}, then fy→x(N(v)) ≥
gy→x(N(v)) + k ≥ wj + k, and if v ∈ V0, then fy→x(N(v)) ≥ gy→x(N(v)) + k ≥ w0 + k. This implies
that fy→x is a (w0 + k, β1, . . . , βk, w1 + k, . . . , wl + k)-dominating function, and so f is a secure
(w0 + k, β1, . . . , βk, w1 + k, . . . , wl + k)-dominating function. Therefore, γs

(w0+k,β1,...,βk ,w1+k,...,wl+k)(G) ≤
ω( f ) = ω(g) + k ∑l

j=1 |Wj| = γs
(w0,...,wl)

(G) + k(n − |W0|) ≤ γs
(w0,...,wl)

(G) + k(n − νs
(w0,...,wl)

(G)),
concluding that (iv) follows.

Furthermore, if lδ ≥ wl ≥ l ≥ 2, then, by applying (iv) for k = l − 1, we deduce that

γs
(w0,...,wl)

(G) ≤ γs
(w0−l+1,wl−l+1)(G) + (l − 1)(n− νs

(w0−l+1,wl−l+1)(G)) = lγs
(w0−l+1,wl−l+1)(G).

Therefore, (v) follows.

In the next subsections, we consider several applications of Theorem 6 where we show that the
bounds are tight. For instance, the following particular cases is of interest.

Corollary 4. Let G be a graph of minimum degree δ, and let k, l, w2, . . . , wl ∈ Z+ with k ≥ w2 ≥ · · · ≥ wl .

(i’) If δ ≥ k, then γs
(k+1,k,w2,...,wl)

(G) ≤ γs
(k+1,k)(G).

(ii’) If δ ≥ k, then γs
(k,k,w2,...,wl)

(G) ≤ γs
(k,k)(G).

(iii’) If lδ ≥ k ≥ l ≥ 2, then γs
(k, k, . . . , k︸ ︷︷ ︸

l+1

)
(G) ≤ lγs

(k−l+1,k−l+1)(G).

(iv’) Let i ∈ Z+. If l ≥ ki and δ ≥ 1, then γs
(k, . . . , k︸ ︷︷ ︸

l+1

)
(G) ≤ kγs

(1, . . . , 1︸ ︷︷ ︸
i+1

)
(G).

Proof. If δ ≥ k, then by Theorem 6 (i) we conclude that (i’) and (ii’) follow. If lδ ≥ k ≥ l ≥ 2, then by
Theorem 6 (v) we deduce (iii’). Finally, if l ≥ k and δ ≥ 1, then by Theorem 6 (iii) we deduce that (iv’)
follows.

To show that the inequalities above are tight, we consider the following examples. For (i’), we have
γs
(2,1,1)(K1 + (K2 ∪ K2)) = γs

(2,1)(K1 + (K2 ∪ K2)) = 3. For (ii’) we have γs
(k,k,w2,...,wl)

(G) = γs
(k,k)(G) =

k + 1 for every graph G with k + 1 universal vertices. Finally, for (iii’) and (iv’), we take l = k = 2 and
γs
(2,2,2)(K2 + Nn) = 2γs

(1,1)(K2 + Nn) = 4 for every n ≥ 2.
We already know that γt(G) = γ(1,1)(G) = γ(1,1,w2,...,wl)

(G), for every w2, . . . , wl ∈ {0, 1}.
In contrast, the picture is quite different for the case of secure (1, 1)-domination, as there are graphs
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where the gap γs
(1,1)(G)− γs

(1,...,1)(G) is arbitrarily large. For instance, lim
n→∞

γs
(1,1)(K1,n−1) = +∞, while,

if l ≥ 2, then lim
n→+∞

γs
(1, . . . , 1︸ ︷︷ ︸

l+1

)(K1,n−1) = 3.

Proposition 2. Let G be a graph of order n. Let w = (w0, . . . , wl) ∈ Z+ ×Nl such that w0 ≥ · · · ≥ wl .
If G′ is a spanning subgraph of G with minimum degree δ′ ≥ wl

l , then

γs
w(G) ≤ γs

w(G
′).

Proof. Let E− = {e1, . . . , ek} be the set of all edges of G not belonging to the edge set of G′. Let G′0 = G
and, for every i ∈ {1, . . . , k}, let Xi = {e1, . . . , ei} and G′i = G− Xi, the edge-deletion subgraph of G
induced by E(G) \ Xi.

For any γs
w(G′i)-function f and any v ∈ V(G′i) = V(G) with f (v) = 0, there exists u ∈ M f (v).

Since f and fu→v are w-dominating functions on G′i , both are w-dominating functions on G′i−1, and so
we can conclude that f is a secure w-dominating function on G′i−1, which implies that γs

w(G′i−1) ≤
γs

w(G′i). Hence, γs
w(G) = γs

w(G′0) ≤ γs
w(G′1) ≤ · · · ≤ γs

w(G′k) = γs
w(G′).

As a simple example of equality in Proposition 2 we can take any graph G of order n, having n′ +
1 ≥ 2 universal vertices. In such a case, for n′ = w1 ≥ · · · ≥ wl we have that

γs
(n′ ,n′=w1,...,wl)

(Kn) = γs
(n′ ,n′=w1,...,wl)

(G) = γs
(n′ ,n′)(Kn) = γs

(n′ ,n′)(G) = n′ + 1.

From Proposition 2, we obtain the following result.

Corollary 5. Let G be a graph of order n and w = (w0, . . . , wl) ∈ Z+ ×Nl such that w0 ≥ · · · ≥ wl .

• If G is a Hamiltonian graph and wl ≤ 2l, then γs
w(G) ≤ γs

w(Cn).

• If G has a Hamiltonian path and wl ≤ l, then γs
w(G) ≤ γs

w(Pn).

To derive some lower bounds on γs
w(G), we need to establish the following lemma.

Lemma 2 ([1]). Let G be a graph with no isolated vertex, maximum degree ∆ and order n. For any w-dominating
function f (V0, . . . , Vl) on G such that w0 ≥ · · · ≥ wl ,

∆ω( f ) ≥ w0n +
l

∑
i=1

(wi − w0)|Vi|.

Theorem 7. Let G be a graph with no isolated vertex, maximum degree ∆ and order n. Let w = (w0, . . . , wl) ∈
Z+ ×Nl such that w0 ≥ · · · ≥ wl and lδ ≥ wl . The following statements hold.

• If w0 = w1 and w0 − wi ≤ i for every i ∈ {2, ..., l}, then γs
w(G) ≥

⌈
(w0+1)n

∆+1

⌉
.

• If w0 = w1, then γs
w(G) ≥

⌈
(w0+1)n

∆+w0

⌉
.

• If w0 = w1 + 1 and w0 − wi ≤ i for every i ∈ {2, ..., l}, then γs
w(G) ≥

⌈ w0n
∆+1

⌉
.

• γs
w(G) ≥

⌈
w0n

∆+w0

⌉
.

Proof. Let w0 = w1 and w0 − wi ≤ i for every i ∈ {2, ..., l}. Let f (V0, . . . , Vl) be a
γ(w0+1,w1,...,wl)

(G)-function. By Lemma 2, we deduce the following.
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∆ω( f ) ≥ (w0 + 1)n +
l

∑
i=1

(wi − w0)|Vi|

≥ (w0 + 1)n−
l

∑
i=1

i|Vi|

= (w0 + 1)n−ω( f ).

Therefore, Theorem 1 (ii) leads to γs
w(G) ≥ ω( f ) ≥

⌈
(w0+1)n

∆+1

⌉
.

The proof of the remaining items is completely analogous. In the last two cases, we consider that
f (V0, . . . , Vl) is a γw(G)-function, and we apply Theorem 1 (i) instead of (ii).

The bounds above are sharp. For instance, γs
(1,1,0)(G) ≥

⌈ 2n
∆+1

⌉
is achieved by Graph G2 shown in

Figure 1, the bound γs
(k,k,0)(G) ≥

⌈
(k+1)n

∆+k

⌉
is achieved by G ∼= Kn for every n > k(k− 1) > 0, the bound

γs
(2,1,1)(G) ≥

⌈ 2n
∆+1

⌉
is achieved by the corona graph K2 � Kn′ with n′ ≥ 4, while γs

(2,0,0)(G) ≥
⌈ 2n

∆+2
⌉

is achieved by G ∼= C5, G ∼= Kn and G ∼= Kn′ ∪ Kn′ with n ≥ 2 and n′ ≥ 4.
To conclude the paper, we consider the problem of characterizing the graphs G and the vectors

w for which γs
w(G) takes small values. It is readily seen that γs

(w0,...,wl)
(G) = 1 if and only if w0 = 1,

w1 = 0 and G ∼= Kn. Next, we consider the case γs
w(G) = 2.

Theorem 8. Let w = (w0, . . . , wl) ∈ Z+ ×Nl such that w0 ≥ · · · ≥ wl . For a graph G of order at least three,
γs
(w0,...,wl)

(G) = 2 if and only if one of the following conditions holds.

(i) w2 = 0, γ(G) = 1 and one of the following conditions holds.

• w0 = w1 = 1.
• w0 = 1, w1 = 0, and G 6∼= Kn.
• w0 = 2, w1 ∈ {0, 1} and G ∼= Kn.

(ii) w0 = 1, w1 = 0, and γs
(1,0)(G) = 2.

(iii) w0 = w1 = 1 and γs
(1,1)(G) = 2.

(iv) w0 = 2, w1 ∈ {0, 1}, and G ∼= Kn.

Proof. Assume first that γs
(w0,...,wl)

(G) = 2 and let f (V0, . . . , Vl) be a γs
(w0,...,wl)

(G)-function. Notice that
(w0, w1) ∈ {(1, 0), (1, 1), (2, 0), (2, 1)} and |V2| ∈ {0, 1}.

Firstly, we consider that |V2| = 1, i.e., V2 = {u} for some universal vertex u ∈ V(G). In this
case, w2 = 0, γ(G) = 1, and Vi = ∅ for every i 6= 0, 2. By Lemma 1, if w0 = 2, then G[Tf (u)] =
G[V(G) \ {u}] is a clique, which implies that G ∼= Kn. Obviously, in such a case, w1 < 2. Finally,
the case, w0 = 1 and w1 = 0 leads to G 6∼= Kn, as γs

(1,0...,0)(Kn) = 1. Therefore, (i) follows.
From now on, assume that V2 = ∅. Hence, Vi = ∅ for every i 6= 0, 1. If w0 = 1 and w1 = 0,

then G 6∼= Kn and V1 is a secure dominating set. Therefore, (ii) follows. If w0 = w1 = 1, then V1 is a
secure total dominating set of cardinality two, and so γs

(1,1)(G) = 2. Therefore, (iii) follows. Finally,
assume w0 = 2. In this case, V1 is a double dominating set of cardinality two, and by Lemma 1 we
know that G[Tf (x)] = G[V(G) \ V1] is a clique for any x ∈ V1. Hence, G ∼= Kn and, in such a case,
w1 < 2. Therefore, (iv) follows.

Conversely, if one of the four conditions holds, then it is easy to check that γs
(w0,...,wl)

(G) = 2,
which completes the proof.
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